
Discrete-Time H∞ Gaussian Filter ⋆

Ali Tahmasebi ∗ and Xiang Chen ∗∗

∗ Department of Electrical and Computer Engineering, University of
Windsor, Windsor, Ontario, Canada, N9B 3P4

∗∗ Corresponding Author, Department of Electrical and Computer
Engineering, University of Windsor, Windsor, Ontario, Canada, N9B 3P4

(e-mail: xchen@uwindsor.ca)

Abstract:
A discrete-time signal estimator for systems subject to both white noise and bounded-power disturbance
signals is developed. Sufficient and necessary conditions for the robust optimal filter are proved and the
resulting filter gain is characterized by a set of two cross-coupled Riccati equations.

1. INTRODUCTION

It is generally known that signal estimation for the dynamic
systems is one of the most important problems in engineering
applications [Anderson, 1979, Petersen and Savkin, 1999]. The
popular Kalman filter[Anderson, 1989], also known as H2 fil-
ter, is an optimal design that is based on the stochastic noise
model with known power spectral densities. However, this tech-
nique may be very sensitive to changes in system parameters or
other disturbances with unknown spectral densities. For such
cases, a better choice is to use an H∞ filter, which is devel-
oped specifically to address model uncertainty [Fu et al., 1992,
Nagpal et al., 1991], and different techniques have been well
developed and applied for different systems (see for example
[Gao and Wang, 2003, Li and Fu, 1997, Xu and Chen, 2002]
and the references therein). Although H∞ filter usually pro-
vides much better robustness than H2 filter, it, in general, does
not guarantee desired optimal performance if it is applied to a
system affected by stochastic noise. Clearly, a mixed H2/H∞

filter design scheme that can combine the strengths of these two
estimation methods in a systematic way is highly desirable.

Several methods have been proposed to carry out the robust
optimal filter design and a few examples are given here for
different approaches to this problem. One method is to convert
the problem to an auxiliary minimization one [Bernstein et al.,
1989]. In this approach, an H2 estimation error is minimized
which is subject to a prespecified H∞ constraint. This con-
straint is introduced in the optimization process by a Riccati
equation whose solution leads to an upper bound on the H2

error variance. In [Rotstein et al., 1996], [Halder et al., 1997]
and [Khargonekar et al., 1996], the mixed H2/H∞ filters are
obtained using convex programming characterization. For sys-
tems with norm-bounded parameter uncertainties, the problem
is solved in [Wang et al., 2000] and [Wang et al., 1999] by
using Riccati-like equations, where the transfer function from
the noise inputs to error state outputs meets an H∞-norm
upper bound constraint. For discrete-time polytopic systems,
[Palhares et al., 2001] obtains the mixed H2/H∞ filters by
solving a set of linear matrix inequalities (LMIs), while [Gao
et al., 2005] uses the parameter-dependent stability idea and
finds a filter that depends on the parameters, which are assumed

⋆ This work is supported in part by NSERC Grant.

to reside in a polytope and be measurable online. A time domain
game theoretic approach is proposed in [Theodor et al., 1996]
which improves the H2 performance of the central H∞ filter
while satisfying the required H∞ performance. For systems
with polytope-bounded uncertainty, a pole-placement design
strategy is proposed in [Goncalves et al., 2006] which utilizes
an optimization algorithm in the space of filter parameters.

In [Chen and Zhou, 2002], utilizing the game approach, a new
formulation called ‘H∞ Gaussian filter’ is proposed, and it is
shown that the robust optimal filter can be obtained by solving a
set of cross-coupled Riccati equations. The result is a Kalman-
type filter for uncertain plants and is characterized by the choice
of the disturbance attenuation level γ. One advantage of this
approach is that optimal state estimation is achieved at the
presence of the worst case model uncertainty. Therefore, it
clearly reflects the trade-off between the inherently conflicting
H2 and H∞ performances.

Motivated by the approach in [Chen and Zhou, 2002], in this
paper, the Nash game methodology is adopted to derive a
mixed H2/H∞ filter in discrete time. The design is based on
a constrained optimization problem and is characterized by two
cross-coupled Riccati equations. As it can be seen, obtaining
the discrete-time counterpart of the continuous procedure is not
so straightforward. An optimal filter gain is characterized by an
equation consisting of the plant parameters and the solutions to
the Riccati equations.

The remaining part of this paper is organized as follows:
Section II presents some definitions and preliminary results
required for obtaining the main solution; in Section III, the
problem formulation and the design of the discrete-time mixed
H2/H∞ filter is provided; the conclusion can be found in
Section IV.

Notations: Throughout this work, if a is a vector and A is
a matrix of arbitrary dimensions, aT and AT represent their
transposes, respectively. We use the notation ∂D := {z : |z| =
1} to describe the points on the unit circle in the complex
plane. Furthermore, when working with a discrete time signal
u(k) (scalar- or vector-valued), for simplicity of presentation,
we denote δu := u(k+1), and then the time variable k will be

omitted. ‖ · ‖ represents the Euclidian norm of a vector.
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2. PRELIMINARIES

Definition 1. (Bounded power signal). Consider the given discrete-
time real vector stochastic signal u(k):

u(k) = [u1(k) u2(k) · · · um(k)]
T ∈ R

m ∀k ∈ Z ,

where ui(k), i = 1, ... , m are real stationary discrete random
processes, we define the mean and autocorrelation matrices,
respectively, as:

E{u} := [E{u1(k)} E{u2(k)} · · · E{um(k)}]
T ,

Ruu(n) = lim
N→∞

1

N

N−1
∑

k=0

E{u(k+n)u
T
(k)} .

where n is an integer. The Fourier transform of Ruu(n), or the
power spectral density of u(k), is:

Suu =
1

2π

∞
∑

k=−∞

Ruu(k)e
−jωk .

A stationary stochastic vector signal is said to have bounded
power if:

• both Ruu and Suu exist;

• lim
N→∞

1

N

N−1
∑

k=0

E{‖ u(k) ‖
2
2} < ∞.

Definition 2. (P-norm). Let P be the set of all signals with
bounded power, we define the seminorm:

‖ u ‖2
P= lim

N→∞

1

N

N−1
∑

k=0

E{‖ u(k) ‖
2} . (1)

Definition 3. (Mutually uncorrelated signals). Two stochastic vec-
tor signals u1 and u2 are said to be mutually uncorrelated if:

E{u1(k1)u
T
2(k2)

} = 0, ∀k1, k2 ∈ Z .

Constrained Optimization

The constrained optimization problem presented in this section
plays an important role in the main derivations of this work.

Given A ∈ R
n×n, B ∈ R

n×r, C ∈ R
p×n, D ∈ R

p×r and
R = DDT > 0, let L be any consistent matrix such that
A + LC is stable in discrete time sense and define the index
function:

J(L) = trace(QPQT ) , (2)

where Q is any constant weighting matrix, and P = PT ≥ 0
satisfies:

P = (A + LC)P (A + LC)T + (B + LD)(B + LD)T . (3)

The constrained optimization problem is stated as follows: find
(L∗ , P∗) where A+L∗C is stable, such that J(L) is minimized
at L∗, i.e.:

min
L

J(L) = min
P

trace(QPQT ) = trace(QP∗Q
T ) ,

where (L, P ) and (L∗, P∗) are all subject to constraint (3).

The following theorem presents the solution to this problem.
Only the proof of the sufficiency part is given here. The neces-
sity part of the proof can also be carried out, however, it consists
of more derivations that could not be included due to page limit.

Theorem 4. For the constrained optimization problem stated
above, suppose (C, A) is detectable. If there is a solution P∗ ≥
0 for:

P∗ = AP∗A
T−(BDT + AP∗C

T )(R + CP∗C
T )−1

.(DBT + CP∗A
T ) + BBT ,

(4)

i.e., A− (AP∗C
T +BDT )(R +CP∗C

T )−1C is stable, where
R + CP∗C

T > 0, then J(L) achieves the minimum value at:

L∗ = −(AP∗C
T + BDT )(R + CP∗C

T )−1 .

Conversely, let (C, A) be detectable. If there are L1 and P1 ≥ 0,
where A + L1C is stable and P1 solves:

P1 = (A + L1C)P1(A + L1C)T + (B + L1D)(B + L1D)T ,

such that J(L) is minimized at L1, then there is a P∗ ≥ 0
solving (4), where R + CP∗C

T > 0.

Moreover, the optimal L∗ can be found as:

L∗ = −(AP∗C
T + BDT )(R + CP∗C

T )−1 ,

if A + L∗C is Hurwitz.

proof(Sufficiency) For any L for which A+LC is stable, there
is a P ≥ 0 solving:

P = (A + LC)P (A + LC)T + (B + LD)(B + LD)T .

On the other hand, since P∗ is a stabilizing solution, so A+L∗C
is stable, for L∗ = −(AP∗C

T +BDT )(R+CP∗C
T )−1. Using

(4) , (3) can be rewritten as:

P =APAT + APCT LT + LCPAT + LCPCT LT

− L(R + CP∗C
T )LT

∗ − LCP∗A
T − AP∗C

T LT

+ L∗(R + CP∗C
T )LT

∗ − L∗(R + CP∗C
T )LT

− AP∗A
T + P∗ + LRLT .

If we define ∆P = P − P∗, then the above expression can be
simplified into:

∆P =(A + LC)∆P (A + LC)T

+ (L − L∗)(R + CP∗C
T )(L − L∗)

T .

From this Lyapunov equation, it is obvious that ∆P ≥ 0 and
also ∆P = 0 if and only if L = L∗. Hence:

J(L) − J(L∗) = trace(Q∆PQT ) ≥ 0 ,

or in other words, J(L) achieves the minimum value at L∗,
which concludes the proof for the sufficiency condition.

3. DISCRETE-TIME H∞ FILTER DESIGN

Consider the filter design problem in Fig. 1. For the plant G,
described by:
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Fig. 1. H∞ Gaussian filter

δx = Ax + B0w0 + B1w , x(0) = 0 ,

z0 = C0x ,

z = C1x ,

y = C2x + D20w0 ,

(5)

where w is a bounded power signal and w0 is a white noise
signal. The following standard assumptions are made:

(A1) (C2, A) is detectable ;

(A2) R0 := D20D
T
20 > 0 ;

(A3)

[

A − λI B0

C2 D20

]

has full row rank, ∀λ ∈ ∂D .

The goal is to find a filter:

F : y →

[

ẑ
ẑ0

]

, (6)

where ẑ and ẑ0 are estimates of z and z0, respectively. The filter
is to be designed as:

δx̂ = Ax̂ + L(C2x̂ − y) ,

ẑ0 = C0x̂ ,

ẑ = C1x̂ ,

(7)

where L is the filter gain to be calculated. Define the following
error variables:

e := z − ẑ, e0 := z0 − ẑ0, ex := x − x̂ , (8)

and the cost functions as:

J1(F, w, w0) = γ2 ‖ w ‖2
P − ‖ e ‖2

P , (9)

J2(F, w, w0) =‖ e0 ‖2
P . (10)

The discrete-time H∞ Gaussian filter design problem is stated
as follows:

Find a filter F∗ in the form (7) and a worst disturbance signal
w∗ such that they achieves:

J1(F∗, w∗, w0)≤ J1(F∗, w, w0) ,

J2(F∗, w∗, w0)≤ J2(F, w∗, w0) .

for any bounded power signal w 6= w∗ and any other admissible
F .

Combining the equations of the plant and the filter and imple-
menting ex := x − x̂, derive:

δex = (A + LC2)ex + (B0 + LD20)w0 + B1w ,

e0 = C0ex ,

e = C1ex .

(11)

The design is presented in the following theorem.

Theorem 5. Let the plant G be described by the equation set
(5), where w and w0 are assumed to be uncorrelated, and the
cost functions J1 and J2 are defined as (9) and (10). If there are
stabilizing solutions P1 ≥ 0 and P2 ≥ 0 to:

P1 =ĀT P1Ā + γ−2ĀT P1B1(I − γ−2BT
1 P1B1)

−1BT
1 P1Ā

+ CT
1 C1,

(12)

P2 =AF P2A
T
F − (B0D

T
20 + AF P2C

T
2 )(R0 + C2P2C

T
2 )−1

.(D20B
T
0 + C2P2A

T
F ) + B0B

T
0 ,

(13)

where (I − γ−2BT
1 P1B1) > 0, R0 + C2P2C

T
2 > 0 and:

Ā = A + L∗C2 , ∆1 = I − γ−2B1B
T
1 P1 ,

AF = (I + γ−2B1B
T
1 P1∆

−1
1 )A + γ−2B1B

T
1 P1∆

−1
1 L∗C2 .

Then by choosing L∗ that satisfies:

L∗ = −(AF P2C
T
2 + B0D

T
20)(R0 + C2P2C

T
2 )−1 , (14)

the filter F∗:

δx̂ = (A + L∗C2)x̂ − L∗y ,

ẑ0 = C0x̂ ,

ẑ = C1x̂ ,

and the worst disturbance signal:

w∗ = γ−2BT
1 P1∆

−1
1 Āex ,

achieve:

J1(F∗, w∗, w0)≤ J1(F∗, w, w0) ,

J2(F∗, w∗, w0)≤ J2(F, w∗, w0) .

Conversely, if there exists a filter F∗, with a worst disturbance
signal w′

∗, such that for the system without white noise, we
have:

0 < J1(F∗, w
′

∗, 0) ≤ J1(F∗, w, 0) , ∀w 6= w′

∗ ,

and a worst disturbance signal w∗ at the presence of white
noise, such that:

J1(F∗, w∗, w0)≤ J1(F∗, w, w0) ,

J2(F∗, w∗, w0)≤ J2(F, w∗, w0) ,

then, there exist stabilizing solutions P1 ≥ 0 and P2 ≥ 0 to:

P1 =ĀT P1Ā + γ−2ĀT P1B1(I − γ−2BT
1 P1B1)

−1BT
1 P1Ā

+ CT
1 C1,

P2 =AF P2A
T
F − (B0D

T
20 + AF P2C

T
2 )(R0 + C2P2C

T
2 )−1

.(D20B
T
0 + C2P2A

T
F ) + B0B

T
0 ,

where (I − γ−2BT
1 P1B1) > 0 and R0 + C2P2C

T
2 > 0.

Moreover, the optimal value of the filter gain L∗ satisfies:

L∗ = −(AF P2C
T
2 + B0D

T
20)(R0 + C2P2C

T
2 )−1 .

proof (Sufficiency) If we choose the filter gain L∗, that satis-
fies:

L∗ = −(AF P2C
T
2 + B0D

T
20)(R0 + C2P2C

T
2 )−1 ,

completing the squares, using (12), we have:
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J1(F∗, w, w0) =γ2 ‖ w ‖2
P − ‖ e ‖2

P

=γ2 ‖ w − w∗ ‖2
P

− lim
N→∞

1

N

N−1
∑

k=0

trace
(

(B0 + L∗D20)
T

.P1AE{xwT
0 }

)

=γ2 ‖ w − w∗ ‖2
P ,

where

w∗ = γ−2BT
1 P1∆

−1
1 Āex ,

which is bounded since A + L∗C2 + B1w∗ is stable.

Next it is shown that J1 achieves the minimum value at the
given L∗. Let L1 be any filter gain such that both A +L1C and
A + L1C2 + B1w∗ are stable. Substituting the above w∗ in the
plant-filter equations (11), we get:

δex =
(

A + L1C2 + γ−2B1B
T
1 P1∆

−1
1 (A + L1C2)

)

ex

+ (B0 + L1D20)w0

=ALex + BLw0 ,

e0 =C0ex .

The first difference equation above can be solved as:

ex(k) =

k−1
∑

j=0

Ak−j−1
L BLw0(j) ,

and

J2(F, w∗, w0) = ‖ e0 ‖2
P= lim

N→∞

1

N

N−1
∑

k=0

E{eT
x CT

0 C0ex}

= lim
N→∞

1

N

N−1
∑

k=0

E

{ k−1
∑

i=0

k−1
∑

j=0

wT
0(i)B

T
L

.(AT
L)k−i−1CT

0 C0A
k−j−1
L BLw0(j)

}

= lim
N→∞

1

N

N−1
∑

k=0

k−1
∑

i=0

k−1
∑

j=0

trace[C0A
k−i−1
L BL

. δ(i−j)B
T
L (AT

L)k−j−1CT
0 ]

= lim
N→∞

1

N

N−1
∑

k=0

k−1
∑

i=0

trace[C0A
k−i−1
L BLBT

L

.(AT
L)k−i−1CT

0 ]

=trace(C0Y CT
0 )

where

Y =

∞
∑

i=0

Ai
LBLBT

L (AT
L)i ,

which is the solution of the Lyapunov equation ALY AT
L −

Y + BLBT
L = 0. Then, by Theorem 4, the solution to this

constrained optimization problem, L∗ is to satisfy:

L∗ = −(AF P2C
T
2 + B0D

T
20)(R0 + C2P2C

T
2 )−1 ,

where P2 is the solution to (13).

(Necessity) First, for the system without white noise (w0 = 0),
suppose there exists a filter F∗ and a signal w′

∗ such that they
achieve:

0 < J1(F∗, w
′

∗, 0) ≤ J1(F∗, w, 0) , ∀w 6= w′

∗ .

In other words, for the linear operator Re′w, defined as:

δe′x = Āe′x + B1w ,

e = C1e
′

x ,

it holds that ‖ Re′w ‖∞< γ. Then, by the bounded real lemma
[de Souza and Xie, 1992], there exists a P1 ≥ 0, solving (12)
and the worst disturbance signal is

w′

∗ = γ−2BT
1 P1∆

−1
1 Āe′x .

Next, including the white noise signal into the system, it can be
seen that:

J1(F∗, w
′

∗, w0) =γ2 ‖ w − w′

∗ ‖2
P

− lim
N→∞

1

N

N−1
∑

k=0

trace
[

(B0 + L∗D20)
T

.P1AE{xwT
0 }

]

=γ2 ‖ w − w′

∗ ‖2
P ,

which means that the worst disturbance signal at the presence
of the white noise is w∗ = γ−2BT

1 P1∆
−1
1 Āex.

Now, substituting the w∗ into the equation set (11), we get:

δex =
(

Ā + γ−2B1B
T
1 P1∆

−1
1 Ā

)

ex + (B0 + L1D20)w0

= ALex + BLw0

e0 = C0ex

Similar to the proof of sufficiency, we can write:

J2(F, w∗, w0) =‖ e0 ‖2
P= trace(C0Y CT

0 )

where

Y =

∞
∑

i=0

Ai
LBLBT

L (AT
L)i

and by Theorem 4, L∗ is to satisfy:

L∗ = −(AF P2C
T
2 + B0D

T
20)(R0 + C2P2C

T
2 )−1 ,

and P2 is the solution to (13).

4. ILLUSTRATIVE EXAMPLE

Consider the following dynamic system:

δx =

[

1 −0.1
0.12 0.95

]

x +

[

0.05 0.1
0.1 0.01

]

w0 +

[

−0.12
0.03

]

w ,

z = [ 0.6 0.4 ] x ,

y = [ 0.5 −0.65 ] x + [ 1.2 1.6 ]w0 .

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13536



First, considering only the H∞ performance, assume the filter

gain L = [ 2 3 ]
T

. Fixing γ = 1.5, there exists a solution
P1 ≥ 0 to:

P1 =(A + LC2)
T P1(A + LC2) + CT

1 C1 + γ−2(A + LC2)
T

.P1B1(I − γ−2BT
1 P1B1)

−1BT
1 P1(A + LC2) .

This filter achieves ‖ Tew ‖= 0.9663 ≤ 1.5, where Tew repre-
sents the transfer function from w to e, and therefore satisfying
the H∞ requirement. In this case, the worst disturbance signal
is characterized by w∗ = 0.444BT

1 P1∆
−1
1 (A + LC2)ex =

Kwex. However, when the noise signal w0 is added, the optimal
performance of the system in the worst case is then calculated
by:

J2 = trace(C1C
T
1 P2) = 35.463 ,

where P2 is the solution to the discrete-time Lyapunov equa-
tion:

P2 =(A + LC2 + B1Kw)P2(A + LC2 + B1Kw)T

+ (B0 + LD20)(B0 + LD20)
T .

It is clear that the performance of this filter in presence of
noise is not desirable. On the other hand, a Kalman filter
can be calculated that satisfies the H2 optimal performance
requirement. This filter can be found by solving the Riccati
equation:

P2 =AP2A
T − (B0D

T
20 + AP2C

T
2 )(R0 + C2P2C

T
2 )−1

.(D20B
T
0 + C2P2A

T ) + B0B
T
0 ,

leading to a filter gain:

L∗ = −(AP2C
T
2 + B0D

T
20)(R0 + C2P2C

T
2 )−1

=

[

−0.0622
−0.0248

]

.

The optimal performance of the system with this filter then
becomes:

J2 = trace(C1C
T
1 P2) = 0.0472 ,

which in fact is much lower than 35.463 obtained when only
the H∞ performance was considered.

Now, designing a multi-objective filter using Theorem 5 and
fixing γ = 2.5, results to solutions to Riccati equations (12)
and (13) as:

P1 =

[

8.900 0.012
0.012 2.684

]

> 0 , P2 =

[

0.066 −0.004
−0.004 0.086

]

> 0 ,

and a filter gain:

L∗ =

[

−0.0647
−0.0210

]

, (15)

that satisfies (14).

For the closed-loop system consisting this filter, the cost func-
tions are:

J1 = 1.8927 , J2 = 0.0788 .

Note that although the index J2 is worse than the Kalman filter,
but is still much improved compared to the system with only
an H∞ filter. On the other hand, as can be seen in Figure 2,
the error performance of the closed-loop system is much better
in the presence of the white noise signal w0 when the multi-
objective filter is used, compared to the filter that only satisfies
the H∞ performance.

Fig. 2. Error behavior at the presence of white noise signal w0

for the closed -loop system with filter L∞ (dashed) and
with the multi-objective filter (solid).

Fig. 3. Singular value diagram for Tew for the system with
multi-objective filter.

Figure 3 shows the singular value diagram for the transfer
function Tew of the system with filter gain (15) which, as
expected, meets the disturbance attenuation of γ = 2.5.

5. CONCLUSIONS

In this paper, we have developed a direct design method for a
robust optimal signal estimator in discrete-time domain. This
method provides a filter that can be capable of achieving robust
performance against system model uncertainties, as well as
optimal performance against white noise. The mixed H2/H∞

filter can be obtained by solving a set of cross-coupled Riccati
equations.
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