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Abstract: This paper proposes an algebraic expression of noncausal stable inversion based
on the two-sided Laplace transform, which is a classic mathematical tool but has not been
used very much in the field of control engineering. This expression brings an advantage that
computing of stable inversion is reduced to simulation of the response of the plant and the
reverse of time horizon without solving the boundary value problem of state-space equations as
the conventional definition of stable inversion. An illustrative example demonstrates that this
approach is useful to reduce the load of the programming for a search algorithm to determine the
shape of a transition trajectory under the constraint of input saturation. As another application
of the proposed expression, developed is a method of iterative learning control to obtain stable
inversion for infinite dimensional systems. An experiment to apply the iterative learning control
to tip control of a flexible arm is reported to demonstrate the effectiveness of the method.
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1. INTRODUCTION

System inversion plays crucial roles in many control ap-
plications such as perfect tracking, transient response
shaping, disturbance attenuation, and noise cancellation.
For example, consider shaping the transient response of
a plant G(s). Then, if 1/G(s) is stable, one can employ
F (s) = M(s)/G(s) as a prefilter of G(s), where M(s) is
a model that has a desired response. If G(s) is a non-
minimum phase system or equivalently 1/G(s) is unstable,
F (s) = M(s)/G(s) cannot be used as a prefilter. However
it was proposed to substitute the optimal function of the
model matching problem

min ‖G(s)F (s) − M(s)‖∞ F (s) ∈ RH∞ (1)
for a prefilter instead of the unstable F (s) = M(s)/G(s).
This approach has an advantage that both prefilters and
feedback controllers can be designed in the same frame-
work of H∞ optimization(Limebeer et al. (1993)). It is
recognized that feedback controller design based on the
transfer function is very effective from the viewpoint of
robustness or sensitivity design. However, effectiveness of
the prefilter designed by the aforementioned approach is
controversial from the viewpoint of response shaping.

On the other hand, noncausal stable inversion technique
was proposed in order to calculate a bounded input which
achieves perfect tracking even if 1/G(s) is unstable, equiva-
lently, M(s)/G(s) /∈ RH∞. (Devasia et al. (1996); Zou and
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Devasia (1999); Hunt et al. (1996)). This technique utilizes
noncausal or preview information of desired trajectories in
order to generate bounded input profiles. In most of the
work reported so far, the calculation of stable inversion
is based on solving the boundary value problem of the
inverted state-space equations. This means that transfer
functions are necessarily transformed into state-space rep-
resentations to design stable inversion even if feedback
controller design is based on transfer functions which are
common in control engineering.

In order to improve this inconvenience, this paper intro-
duces the two-sided Laplace transform to express stable
inversion and its calculation simply as unstable transfer
function 1/G(s) and noncausal convolution, respectively.
It will be shown that the proposed transfer-function ex-
pression of inversion is actually equivalent to the conven-
tional stable inversion expressed by state-space representa-
tions; this simplifies computing the input profile for stable
inversion. It will be demonstrated that stable inversion
based on the transfer-function expression can be applied
to infinite dimensional systems. This will be illustrated
by an example of iterative learning control applied to tip
positioning of a flexible arm.

In this paper, we use following notations: For f(t) :
(−∞,+∞) → R, norms of f(t) are defined as ‖f(t)‖∞ :=
ess supt∈(−∞,+∞) |f(t)|, ‖f(t)‖1 :=

∫ +∞
−∞ |f(t)|dt and

‖f(t)‖2 :=
∫ +∞
−∞ |f(t)|2dt. Spaces of functions which have

bounded ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ norms are denoted by L1,
L2 and L∞, respectively. For F (s) : C → C, norms of F (s)
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are defined as ‖F (s)‖∞ = ess supω∈(−∞,+∞) |F (jω)| and
‖F (s)‖2 :=

∫ +∞
−∞ |F (jω)|2dω.

2. STABLE INVERSION FOR LTI SYSTEMS

Consider a plant

G(s) =
c0s

m + · · · + cm−1s + cm

sn + a1sn−1 + · · · + an−1s + an
(2)

with the controllable canonical form of the state-space
representation (A,B,C). We assume that all poles of
G(s) or eigenvalues of A are in the left half plane. Then
Silverman’s inversion (Silverman (1969)) of the system is
expressed as

ẋn−m+1

...
ẋn−1

ẋn

 = Φ


xn−m+1

...
xn−1

xn

 +


0
...
0

1/c0

 y(n−m) (3)

u = Γ


xn−m+1

...
xn−1

xn

 + Λ


y
...

y(n−m−1)

y(n−m)

 (4)

where y(k) = dky/dtk, equivalently

1/G(s) =
(
sn−m + ā1s

n−m−1 + · · · + ān−m

)
/c0

+
ān−m+1s

m−1 + · · · + ān

c0sm + c1sm−1 + · · · + cm
(5)

If G(s) is a nonminimum phase system, Φ has eigenvalues
in the right half plane and the solution of the initial value
problem of (3) is unbounded. This means that the input
to achieve perfect tracking to an output trajectory yd

is unbounded in the causal framework. However, if the
constraint of causality is not imposed on (3), there exists
an input to achieve perfect tracking for a class of output
trajectories.
Proposition 1. [Devasia et al. (1996); Hunt et al. (1996)]
Assume that

y
(i)
d ∈ L1 ∩ L∞ (i = 0, 1, · · · , n − m) (6)

and G(s) has no zero on the imaginary axis. Then, there
exist bounded xd(t) and ud(t) such that

ẋd = Axd + Bud (7)
yd = Cxd (8)

and
ud(t) → 0, xd(t) → 0 as t → ±∞ (9)

2

Functions xd(t) and ud(t) given in Proposition 1 are
obtained by solving the differential equation (3) under the
boundary condition (9). Calculating the bounded input
ud(t) defined by Proposition 1 requires the following steps:

(1) transform of the transfer function into the state-space
equation

(2) inversion of the state-space equation
(3) solving of the boundary value problem

In order to reduce these steps, we develop a simple method
based on transfer functions in the next section.

3. ALGEBRAIC EXPRESSION OF STABLE
INVERSION

Since all elements in feedback control systems are on-
line and causal, the one-sided Laplace transform is widely
used to analyze control systems algebraically. In order to
import noncausal elements into the same framework, we
introduce the two-sided Laplace transform(Van der Pol
and Bremmer (1987); Papoulis (1962)), which is a classic
mathematical tool but has not been very common in the
field of control engineering 1 .

For a function g(t) defined on the infinite time horizon,
the two-sided Laplace transform is defined as

L[g(t)](s) = G(s) :=
∫ +∞

−∞
e−stg(t)dt (10)

where the region of convergence is the strip {s; γ1 <
Re(s) < γ2} (Van der Pol and Bremmer (1987); Papoulis
(1962)). It should be noted that

L[g′(t)](s) = sG(s) (11)

L
[∫ t

−∞
g(τ)dτ

]
(s) =

G(s)
s

(12)

L
[∫ +∞

−∞
g(t − τ)f(τ)dτ

]
(s) = G(s)F (s) (13)

where F (s) = L[f(t)](s). The inverse transform is ex-
pressed by

L−1[G(s)](t) = g(t) =
1

2πj

∫ α+j∞

α−j∞
estG(s)ds

=


∑

Re(pn)<α

Res(estG(s), pn) t ≥ 0∑
Re(pm)>α

Res(−estG(s), pm) t < 0
(14)

where {pn} and {pm} denote the sets of poles of G(s)
which are in the left and right half plane of the vertical
line s = α, respectively.

The next theorem shows that inversion of the transfer
function based on the two-sided Laplace transform is actu-
ally equivalent to stable inversion defined in Proposition 1.

Theorem 2. Assume that y
(i)
d ∈ L1∩L∞ (i = 0, 1, · · · , n−

m) and G(s) has no zero on the imaginary axis. Functions
ud and xd satisfying (7), (8) and (9) are expressed by

ud(t) = L−1[1/G(s) · Yd(s)] (15)
xd(t) = L−1[(sI − A)−1BUd(s)] (16)

where Yd(s) = L[yd] and Ud(s) = L[ud]. 2

Proof: From the assumption on yd, we have
L−1[(sn−m + ā1s

n−m−1 + · · · + ān−m)Yd(s)] ∈ L1 ∩ L∞
(17)

Since G(s) has no zero on the imaginary axis, α of (14) for
the fraction term of (5) can be chosen as 0. This implies

L−1

[
ān−m+1s

m−1 + · · · + ān

c0sm + c1sm−1 + · · · + cm

]
∈ L1 ∩ L∞ (18)

1 As far as the author knows, an application to identification of
systems with delay was reported in the field of control engineer-
ing(Kachanov and Khrolovich (1993))
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moreover

L−1

[
ān−m+1s

m−1 + · · · + ān

c0sm + c1sm−1 + · · · + cm
Yd(s)

]
∈ L1 ∩ L∞ (19)

From (17) and (19), ud defined by (15) satisfies ud(t) ∈
L1 ∩ L∞. Since all eigenvalues of A are in the left half
plane, ud(t) ∈ L1 ∩ L∞ implies xd(t) ∈ L1 ∩ L∞ which
leads to (9).

From the definition of G(s) and (A,B,C), ud and xd de-
fined by (15) and (16) satisfies (7) and (8). This completes
the proof. 2

Remark 3. It should be noted that the input profile (15)
is defined even though y

(i)
d /∈ L1 ∩ L∞. (See Example 1

below) This implies that the inversion based on the two-
sided Laplace transform generalizes the stable inversion
defined by Proposition 1.

The next corollary shows that the noncausal convolution
for (15) can be substituted by the ordinary causal con-
volution for two stable systems with the reverse of the
time horizon. In the following discussion, L̄ denotes the
conventional one-sided Laplace transform, namely

L̄[g(t)](s) = G(s) :=
∫ +∞

0

e−stg(t)dt (20)

Corollary 4. Assume that y
(i)
d ∈ L1∩L∞ (i = 0, 1, · · · , n−

m) and G(s) has no zero on the imaginary axis. Let

1/G(s) =
(
sn−m + ā1s

n−m−1 + · · · + ān−m

)
/c0

+ Fl(s) · Fr(s) (21)

where Fl(s) and Fr(s) are proper transfer functions all
poles of which are in the left and right half plane, respec-
tively. Then ud(t) defined by (15) is expressed by

ud(t) =(yn−m
d (t) + ā1y

n−m−1
d (t) + · · · + ān−myd(t))/c0

+
∫ t

−∞
fl(t − τ)v(τ)dτ (22)

v(t) =
∫ σ

−∞
fr(σ − τ)yd(−τ)dτ

∣∣∣∣
σ=−t

(23)

where

fl(t) =L̄−1[Fl(s)] (24)
fr(t) =L̄−1[Fr(−s)] (25)

2

Proof: From (14) with α = 0, we have

L−1[Fl(s)] =


∑

n

Res(estFl(s), pn) if t ≥ 0

0 if t < 0
(26)

= L̄−1[Fl(s)] = fl(t) (27)

L−1[Fr(−s)] =


∑
m

Res(estFr(−s),−pm) if t ≥ 0

0 if t < 0
(28)

= L̄−1[Fr(−s)] = fr(t) (29)

and

L−1[Fr(s)] = − 1
2πj

∫ −j∞

+j∞
e−stFr(−s)ds (30)

=

0 if t ≥ 0
−

∑
m

Res(−e−stFr(−s),−pm) if t < 0

(31)
= fr(−t) (32)

These equalities with (11) and (13) imply (22) and

v(t) =
∫ +∞

t

fr(−(t − τ))yd(τ)dτ (33)

which leads to (23). 2

From Corollary 4, one can obtain the input profile based
on the stable inversion by the following steps:

(1) decomposition of the proper part of the inverted
transfer function into the cascade connection of the
stable and antistable part

(2) computation of the causal convolution or the solution
of the initial value problem with reversing the time
horizon

Example 1. Consider a nonminimum phase system

G(s) =
(s + 4)(3 − s)

s3 + 2s2 + 3s + 4
(34)

and a function

yd(t) =


0 if t < 0

e−
1

t/3

e−
1

t/3 + e−
1

1−t/3
if 0 ≤ t ≤ 3

1 if t > 3

(35)

as the desired output trajectory of (34); the function (35)
is a C∞ function which is monotonously increasing from
0 to 1 and Yd(s) = L[yd(t)] exists for {s; 0 < Re(s)}. To
calculate the input that achieves perfect tracking to (35),
express 1/G(s) as

1
G(s)

= −s − 1 +
4s + 16
s + 4

· 1
3 − s

(36)

then one can see that L−1[1/G(s) · Yd(s)] is well-defined
and bounded since yd(t) ∈ C∞ and L−1[(4s + 16)/{(s +
4)(3 − s)}Yd(s)] ∈ L∞ with {s; 0 < Re(s) < 3}.
The input profile ud(t) = L−1[1/G(s) · Yd(s)] is computed
by (23) and (22) with

Fl(s) =
4s + 16
s + 4

, Fr(−s) =
1

s + 3
(37)

which can be easily computed by a standard tool for nu-
merical simulation (e.g. lsim command in MATLAB). It
should be noted that the convolution over the infinite time
horizon for (35) can be approximated by a convolution
over a sufficiently long time interval with truncation. Fig.
1 shows the computed ud and its response.
Remark 5. For MIMO systems, algebraic expression of
stable inversion corresponds to the inversion of transfer
function matrix. The time-domain calculation proposed in
Corollary 4 can be applied to each element of the transfer
function matrix.
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Fig. 1. The input profile and its response for Example 1

Fig. 2. The input profile with T = 1 and its response for
Example 2

4. APPLICATIONS OF TRANSFER FUNCTION
EXPRESSION OF STABLE INVERSION

In the preceding section, suggested was that the algebraic
expression of stable inversion has advantages in computing
and the range of applications. This section presents two
practical examples.

4.1 Application to optimization of a transition trajectory
under input constraint

In many control applications, of importance is shaping
a trajectory that achieves a fast monotonous transition
between two constant values under input saturation:

|u(t)| ≤ umax for t ∈ (−∞,+∞) (38)
Example 2. Consider (34) with a C1 function

yd(t) =


0 if t < 0
3!
T 3

1∑
i=0

(−1)1−i

i!(1 − i)!(3 − i)
T it3−i if 0 ≤ t ≤ T

1 if t > T
(39)

as a desired trajectory where T is the time parameter of
transition that affects the peak value of the input(Piazzi
and Visioli (2005)). Fig. 2 shows the input profile ud(t)
that achieves y(t) = yd(t) with T = 1. It was proven that
if

umax ≥ 1
|G(0)|

(40)

Fig. 3. The input profile satisfying the constraint and its
response for Example 2

the feasible set {T} for (38) is nonempty and there
exists the minimum transition time Tmin under the con-
straint(Piazzi and Visioli (2005)). One can find Tmin prac-
tically by a bisection search algorithm with respect to T .
It should be noted that Corollary 4 reduces the load of
coding of the search algorithm since no explicit expression
ud(t) for each yd(t) is required. For

umax = 0.5 (41)
a value T = 1.4609 was found by a bisection search starting
from the interval [1, 2] for T . Fig. 3 shows the found input
ud(t) and its response y(t).

4.2 Application to an infinite dimensional system

The algebraic expression of stable inversion presented
in Section 3 suggests that stable inversion is essentially
applicable to infinite dimensional systems. It is, however,
practically difficult to execute the computation given in
Corollary 4 because of the difficulty of identification of the
infinite-dimensional model. To circumvent this, we develop
an iterative method to obtain the desired input profile
without the decomposition of 1/G(s).
Theorem 6. Assume that there exists

L−1[1/G(s) · Yd(s)] ∈ L1 ∩ L∞ (42)
and G(s) has no zeros on the imaginary axis and G(jω) →
0 as |ω| → ∞. Let yd(t) be a desired output trajectory and
Yd(s) = L−1[yd(t)]. Then, the sequence of input functions
{Uk(s); k = 0, 1, · · · } defined by

U0(s) ≡ 0 (43)
Uk+1(s) = Uk(s) − αG(−s){G(s)Uk(s) − Yd(s)} (44)

satisfies
‖Uk(s) − 1/G(s) · Yd(s)‖2 → 0 as k → ∞ (45)

where α is a constant satisfying 0 < α < 1/‖G(s)‖2
∞.

Proof: Let Ek(s) = Uk(s) − 1/G(s) · Yd(s) Then we
have Ek+1(s) = (1 − αG(−s)G(s))Ek(s) which leads to
Ek+1(jω) = (1−α|G(jω)|2)Ek(jω) moreover |Ek(jω)|2 =
(1 − α|G(jω)|2)2k|E0(jω)|2 Since 1 − α|G(jω)|2 < 1 for
ω ∈ (−∞,+∞), we have

‖Ek(s)‖2
2 ≤

∫ +Ω

−Ω

(1 − α|G(jω)|2)2k|E0(jω)|2dω

+
∫

Ω<|ω|≤∞
|E0(jω)|2dω (46)
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for any positive Ω. Note that (42) implies E0(s) =
−1/G(s) · Yd(s) ∈ L2. Then we have∫

Ω<|ω|≤∞
|E0(jω)|2dω → 0 (47)

as Ω → ∞. Hence, for any given ε > 0, there exist Ω and
an positive integer N such that ‖Ek(s)‖2

2 < ε/2 + ε/2 for
all k > N . This completes the proof. 2

The algorithm given in Theorem 6 is equivalent to a time-
domain algorithm which requires only measuring of the
response of the plant G(s).
Corollary 7. Assume the same properties as Theorem 6
and all poles of G(s) are in the left half plane. Then the
sequence of inputs {uk(t); k = 0, 1, · · · } defined by

ηk(t) =
∫ t

−∞
g(t − τ)uk(τ)dτ − yd(t) (48)

uk+1(t) = uk(t) − α

∫ σ

−∞
g(σ − τ)ηk(−τ)dτ

∣∣∣∣
σ=−t

(49)

satisfies
‖uk(t) − L−1[1/G(s) · Yd(s)]‖2 → 0 (50)

as k → ∞.

Proof: The assumption of poles of G(s) with (13) and
(14) implies (48). Since all poles of G(−s) are in the right
half plane, (49) is obtained by the same discussion as the
proof of Corollary 4. By the Parseval equality, (50) follows
(45). 2

In contrast to the method in Corollary 4, there is no need
of the decomposition of the inverted transfer function for
the method given in Corollary 7. Moreover, all required
integrations are the convolution for G(s), which is obtained
as the response of G(s). This can be done experimentally
on real plants without identifying a model of the plant. The
iterative method presented in Corollary 4 is summarized
as the following steps.

(0) k := 0; u0(t) ≡ 0
(1) measure the response of G(s) for the input uk(t) and

record the error ηk(t)
(2) measure the response of G(s) for the time-reversed

error ηk(−t)
(3) update the input with the time-reversed response and

the last input
(4) k := k + 1 and go to (1)
Remark 8. The iterative method presented in Corollary
7 is actually a generalization of iterative learning control
using adjoint systems which was proposed with state-
space representations(Kinoshita et al. (2002)). Theorem
6 extends the applicable range of iterative learning con-
trol(Kinoshita et al. (2002); Markusson et al. (2001);
Owens and Hätönen (2005); Moore (1993)).
Example 3. Consider tip control of a experimental flexible
arm depicted in Fig. 4 (The length of the arm: L = 3.0 ×
10−1m, the moment of inertia of the arm including the
hub: I = 637.4× 10−6Kg ·m2). The hub is directly driven
by a DC motor; the rotational angle θ(t) [rad] with respect
to the inertial reference frame is measured by a rotary
encoder embedded in the motor. The deflection of the
tip w(L, t) with respect to the frame fixed on the hub is
measured by an optical device on the hub, which senses
the horizontal location of a light source attached to the

Fig. 4. experimental setup of the flexible arm

tip. Assuming that the deflection of the tip is sufficiently
smaller than the length of the arm, we consider

y(t) = Lθ(t) + w(L, t) [m] (51)
as the position of the tip. The dynamics of the motor is
expressed by T (s) = Km/R · Vin(s) − K2

m/R · θ̇(s) where
Km = 7.67 × 10−3Nm/A and R = 2.60Ω. Observations
based on the Euler-Bernoulli model lead to transfer func-
tions of the flexible arm as follows(Cannon and Schmitz
(1984)):

θ̇(s)
T (s)

=
1
Is

+
1
I

∞∑
i=1

ais

s2 + 2ζiωis + ω2
i

(52)

y(s)
T (s)

= P (s) =
L

Is2
+

1
I

∞∑
i=1

ki

s2 + 2ζiωis + ω2
i

(53)

A PD-feedback with a reference input v

Vin(t) = −KP θ(t) − KD θ̇(t) + v(t) (54)
is applied to the aforementioned experimental setup; PD
gain KP and KD are experimentally chosen to make
the system stable. Letting a desired trajectory of the tip
position as

yd(t) =


0 0 ≤ t ≤ 2
πL

2
{−f(t)6 + 3f(t)4 − 3f(t)2 + 1} 2 ≤ t ≤ 3

0 3 ≤ t ≤ 5
(55)

where f(t) = 2(t − 2.5), conducted was an experiment
to apply the scheme of iterative learning control given
in Corollary 7 to update the reference input v(t) with
respect to the trajectory of the error y(t) − yd(t) without
identifying the transfer function G(s) = L[y(t)]/L[v(t)]
The length of the time horizon for the experiment is chosen
sufficiently long in view of the interval of the support of
yd(t) and the decay time of the impulse response of G(s)
estimated by an experiment.

Fig. 5 and 6 show the input vk and tip position yk with yd,
respectively, for the number of iteration k = 1 and k = 15.
Fig. 7 shows the tip deflection w(L, t) with the tip position
yk for k = 15 (Nishiki (2004)).

5. CONCLUSION

This paper proposed an algebraic expression of noncausal
stable inversion based on the two-sided Laplace transform,
which is classic but has not been used very much. It was
shown that this simple expression brings an advantage
that computing of stable inversion is reduced to simulation
of the response of the plant and the reverse of the time
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Fig. 5. Input profiles for k = 1 and k = 15

Fig. 6. Output for k = 1 and k = 15 with the desired
trajectory

Fig. 7. Output with the tip deflection for k = 15

horizon without solving the boundary value problem as the
conventional definition of stable inversion. An illustrative
example demonstrates that this approach is useful for a
search algorithm to choose a transition trajectory for the
case where there is an input saturation. Moreover, alge-
braic expression extended the application class of stable
inversion into infinite dimensional systems. A practical it-
erative method to obtain stable inversion for such systems
was proposed. An experiment to apply the method to tip
control of a flexible arm was presented.

Application of the aforementioned idea to discrete-time
or sampled-data systems is straightforward by introducing
the two-sided z-transform. This helps us to clarify a rela-
tion between inversion of sampled-data and continuous-
time systems, the former of which mostly has unstable
zeros even if the latter has no unstable zero. In another pa-

per, the author shows that the former with a small sample
time actually approximates the latter(Sogo (2008)).
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learning control of nonlinear non-minimum phase sys-
tems and its application to system and model inversion.
Proc of the 40th IEEE Conference on Decision and
Control, 2001.

K. L. Moore. Iterative Learning Control for Deterministic
Systems. Springer-Verlag, 1993.

M. Nishiki. Iterative learning control using input-output
data for linear nonminimum phase systems. Master’s
thesis at the graduate school of infomatics, Kyoto Uni-
versity, 2004. (in Japanese).

D. H. Owens and J. Hätönen. Iterative learning control–an
optimization paradigm. Annual Reviews in Control, 29:
57–70, 2005.

A. Papoulis. The Fourier Integral and Its Applications.
McGraw-Hill, 1962.

A. Piazzi and A. Visioli. Using stable input-output
inversion for minimum-time feedforward constrained
regulation of scalar systems. Automatica, 41(2):305–313,
2005.

L. M. Silverman. Inversion of multivariable linear systems.
IEEE Transactions on Automatic Control, AC-14(3):
270–276, 1969.

T. Sogo. Inversion of sampled-data system approximates
the continuous-time counterpart in a noncausal frame-
work. Automatica, 44(3):823–829, 2008.

B. Van der Pol and H. Bremmer. Operational Calculus
based on the Two-sided Laplace Integral. Chelsea Pub-
lishing Company, 1987.

Q. Zou and S. Devasia. Preview-based stable-inversion
for output tracking of linear systems. ASME Journal
of Dynamic Systems, Measurement, and Control, 121:
625–630, 1999.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2825


