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Abstract: We consider several cases of a sequential estimation problem in which two decision
making agents work together but with limited communication (between them) to minimize a
performance criterion. One agent makes sequential observations about the state of an underlying,
possibly vector valued, stochastic process for a fixed period of time. This observer agent upon
observing the process decides whether or not to disclose some information about the process to
the other agent, the estimator, and if yes, when and how. The constraint is that the observer may
act only a limited, pre-specified number of times. For such problems, we develop the optimal
observer-estimator policies first for the case when the source process is nth order Gauss-Markov,
and then for the case when the source is a vector process.

1. INTRODUCTION

The emergence of networked real-time systems during the
last decade has led to a number of challenging problems
in control and communications, due to nontraditional re-
quirements on control and communication policies and
architectures in such settings, such as communication and
coordination of various components of what used to be
a centralized operation over digital and wireless networks
under bandwidth, energy, and usage constraints [1]. In this
paper we address one such constraint, channel usage limi-
tation, in the context of estimation of stochastic processes.
Even though the topic of estimation of random processes
using noisy state information has been thoroughly studied
in the literature and has long been a fairly mature field
with a complete theory [2], with the kind of nontraditional
(but realistic) limitation brought about by channel usage,
the emerging new classes of estimation (as well as control)
problems are quite novel and challenging. Such problems
were introduced recently in [3, 4, 5, 6], and we build here
on this earlier work. Specifically, we are interested in the
problem of estimation of a discrete-time stochastic process
over a decision horizon of length N using only M < N
measurements. Measurement and estimation of the process
are done sequentially by two different agents, called the
observer and the estimator, respectively. Over the decision
horizon of length N, the observer agent has exactly M op-
portunities to disclose some information about the process
to the estimator. These transmissions are assumed to be
error and noise free. The general problem then is to jointly
determine the optimal observation and estimation policies
that minimize the average estimation error between the
process output (input to the observer) and its estimate
(output from the estimator).

As indicated above, problems of this type have various
applications. Among them are monitoring and control of
wireless sensor networks, scheduling of packet transmis-
sions over time-allocation limited channels or any other
situation in which power limitation is factor [7, 8, 9].

In Sect. 2 we formally define the problem and review what
is known about its solution, as pertains to this paper.
Sect. 3 discusses estimating an nth order Gauss-Markov
scalar random sequence in which the dependence of the
current state on the past reaches n time units into the past.
Sect. 4 considers optimal strategies for transmitting and
estimating a set of D identical, independent scalar random
processes over D identical channels. Sect. 5 includes ex-
tensions in which optimal transmission/estimation of non-
uniform, independent processes over non-uniform chan-
nels (using each one incurs a different cost) is developed.
Simulations and examples are presented in Sect. 6, and
concluding remarks are made in Sect. 7.

2. PROBLEM STATEMENT AND DEVELOPMENT

2.1 Problem Definition

Building on [3], we treat the problem of optimal estimation
with limited measurements in the framework of a com-
munication system with limited channel uses. We consider
the communication system of Figure 1. The source outputs
some vector data bk for 0 ≤ k ≤ N−1, to be communicated
to a user over a channel, with the data {bk} generated
according to some known stochastic process which may be
i.i.d., or correlated as in a Markov process; further, it could
be a scalar or a vector process. An encoder/observer and
a decoder/estimator are placed after the source output
and the channel output, respectively, to relay the data
to the user optimally. Additionally, the encoder/observer
may have access to a noise corrupted version of the source
output: zk = bk + vk, 0 ≤ k ≤ N − 1, where vk is a noise
process, independent of bk for all k and with no correlation
across time.
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Fig. 1. Communication with limited channel use.
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The primary constraint is that the encoder/observer can
use the channel only a limited, M < N , number of times.
For a vector process, we view the channel to be composed
of several bands, each corresponding to a component of the
process. All bands are used simultaneously when a trans-
mission is made, and this counts as one channel use. We
assume the channel to be memoryless and noiseless. The
goal in these problems is to design an observer-estimator
pair, (O, E ), that will sequentially observe/encode the
data measurements, zk, and estimate/decode the channel
output, yk, while minimizing the error between the actual

data, bk, and estimated data, b̂k.

We define the estimation error by the standard mean
square measure:

e(M,N) = E

{

N−1
∑

k=0

D
∑

i=1

(bki − b̂ki)
2

}

(1)

where D represents the dimension of the vectors, bk, i is
the subscript denoting the component of the vector, and
k is the subscript denoting the time step.

Using this framework, with the source, channel and esti-
mation error defined, our problem is formally stated as
follows: Given a source and a memoryless channel, for a
given decision-horizon N , and a given number of channel
uses M , what is the minimum attainable value of the
estimation error e(M,N)? This minimization is carried out
over all causal encoder-decoder (observer-estimator) pairs.

2.2 Problem Development

In [3] a special case of the defined problem, with a zero-
mean i.i.d. scalar random sequence bk, 0 ≤ k ≤ N − 1,
was considered. The bk’s are assumed to have a finite
second moment, σ2

b . Let B denote the range of the random
variable bk. At time k, the encoder/observer makes a
sequential measurement of bk and decides whether to use
one of M < N channel transmissions. The channel is
noiseless and even when the observer/encoder decides not
to transmit, a 1-bit information may still be conveyed
across the channel. Specifically, the channel input xk

belongs to the set X := B∪NT , where NT stands for ”no
transmission.” Let sk denote the number of transmissions
remaining at time k. Both the encoder and decoder can
keep track of this by initializing s0 = M and decrementing
it by 1 every time a transmission is made. The objective is

to design an estimator/decoder b̂k = µ̂k(Id
k ), 0 ≤ k ≤ N −

1, based on the information Id
k available at time k, which

is a result of an outcome of decisions taken by the observer
until time k. The observer’s decision at time k is denoted
by xk = µk(Ie

k), 0 ≤ k ≤ N−1, where Ie
k is the information

available to the observer at time k. The range of µk(·) is
X as defined above. We assume perfect recall and have

Ie
0 = {(s0, t0); b0}

Ie
k =

{

(sk, tk); bk
0 ; xk−1

0

}

, 1 ≤ k ≤ N − 1

where tk and sk denote respectively the number of time
slots and transmissions left at time k. The channel output
yk is yk = xk if sk ≥ 1, and yk ∈ ∅ (no information) if
sk = 0. So we can write the information Id

k available to the
estimator at time k as Id

k = {(sk, tk); yk
0}, 0 ≤ k ≤ N − 1.

In view of (1), we want to find an admissible policy that
minimizes the N stage estimation error. In [3], the problem
was also considered for random processes which are Gauss-
Markov in nature.

To summarize, the problem is sequential in nature: at time
k, bk is observed, then the observer decides whether or not
to transmit some data. The estimator makes an estimate,
incurring some (possibly zero) cost and we move on to the
next time k + 1, and so on.

2.3 Relevant Results

Only the case M < N is considered, because otherwise
the result is trivial. For the zero mean i.i.d. problem it is
shown in [3] that the optimal estimator is

µ̂k(Id
k ) =

{

E{bk} = 0 if sk = 0
E{bk|(sk, tk);xk} if sk > 0

It is also shown that the observer’s decision to use the
channel to transmit a source measurement or not is based
purely on the current observation, bk, and its past actions
only through (sk, tk). As a result, the optimal observer
policy must be of the form:

µk(Ie
k) =

{

bk if bk ∈ F(sk,tk)

NT if bk ∈ F c
(sk,tk)

where F(sk,tk) is a measurable set on B, and is a function
of (sk, tk). The complement of this set is with respect to
B: F c

(sk,tk) = B\F(sk,tk).

Two salient points emerge in these results. The first is that
the optimal policy for the estimator/observer pair is to
decouple the past from the present (and future). A related
point is that the error incurred after time k, i.e.,

ek = E

{

N−1
∑

n=k

D
∑

i=1

(bni − E{bn|(sn, tn);xn}i)
2

}

also depends only on bk and (sk, tk).

Let (sk, tk) = (s, t), and e∗(s,t) denote the optimal value

of the estimation error when the decision horizon is of
length t and the observer is limited to s channel uses,
where s ≤ t. Supposing the value of bk is unknown,
the estimation error can be expressed recursively using
a dynamic programming (DP) approach [10]: depending
on what bk turns out to be, the remaining (t − 1)-stage
estimation error is either e∗(s−1,t−1) or e∗(s,t−1). In the

D = 1 case, therefore, we may write

e∗(s,t) = min
F(s,t)

{

e∗(s−1,t−1)

∫

b∈F

f(b)db + e∗(s,t−1)·
∫

b∈Fc

f(b)db +

∫

b∈Fc

[b − E{b|b ∈ Fc}]2 f(b)db

}

The second important point is that the optimization over
the observer policies is equivalent to optimization over
the sets F(sk,tk) for all k such that max{0,M} ≤ sk ≤
min{tk,M}. The approach taken in [3] as well as in this
paper is to restrict our search to sets F that are in the
form of simple intervals, i.e., F c

(s,t) = [α(s,t), β(s,t)]. By

rewriting the above integral in terms of only F c
(s,t), we can

differentiate with respect to the endpoints of the integral
to obtain their optimal values (in terms of (s, t)).
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Similar results hold for a slight variant of this problem in
which the source process is Markov, as indicated above.
Intuitively we can understand that the past and present
will not be decoupled as opposed to the i.i.d. case but will
be linked by a variable connecting the two. To make this
formal, in [3] it was established that for the Gauss-Markov
problem indicated above that the optimal estimator is

µ̂k(Id
N−t) =

{

E{bN−t} = ArbN−t−r if s = 0
E{bN−t|(r, s, t);xN−t, xN−t−r} if s > 0

It was also established that the observer’s decision whether
to use the channel to transmit a source measurement or not
is based on the current observation, bk, and its past actions
only through (r, s, t). As a result, the optimal observer
policy must be of the form:

µk(Ie
N−t) =

{

b if b ∈ F(r,s,t)

NT if b ∈ F c
(r,s,t)

Three main problems are solved for the 1-dimensional case
in [3]. First an error recursion is developed and decision
regions are derived for the case in which bk is a Gaussian,
i.i.d. process. Then similar results are derived for the case
when measurements are corrupted by noise. Finally, the
recursion and decision region is found for the case when
bk is a Gauss-Markov process.

3. HIGHER ORDER GAUSS-MARKOV CASE

In this section, we discuss the case when the source process
is a multi-step Markov process, i.e. the dependence of the
current state is on more than one previous state; in other
words, there is further depth into the past:

bk+1 + a0bk + ... + an−1bk−n+1 = wk

where wk is zero mean, i.i.d. Gaussian with variance σ2
w.

Additionally, each transmission is able to make use of n
channels, each of which is noiseless. Just as in the Gauss-
Markov case, the past and the present are linked. In order
to utilize the method of Sect. IV of [3], we want to keep
track of one variable that represents this link so that as
before, the observer estimator pair has to keep track of
(rk, sk, tk). Here r is the number of time units since the
last transmission, s is the number of transmissions left,
and t is the number of time units left. To this end, we
introduce the following framework:

ηk = ( bk−n+1 . . . bk )
T

ηk+1 =









0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

−a0 −a1 −a2 . . . −an−1









ηk +









0
...
0
1









wk

yk = ( 0 . . . 0 1 ) ηk =: Cηk

where we shall henceforth denote the system matrix pre-
multiplying ηk by A. In this new framework, we consider
the problem of optimally transmitting the vector ηk, and
also note that yk = bk. Since optimal estimation of the
vector is equivalent to optimal estimation of each of the
components, we can determine the best estimate for ηk

and then use this to get the best estimate for bk. Also, the
results of [3] tell us that if a transmission is to be made at
time k, the transmission should be ηk itself. Note also that
to send the most information about current and future
values of the process, we must transmit the most recent

measurements that determine the future. In our case, that
corresponds to vector ηk. Hence, use of the state space
model is justified. Reasoning in the same way as in Sect.
IV of [3], for s ≥ 1 the optimal estimator has the form

µ̂((r, s, t);ηN−t)

=

{

ηN−t if yN−t ∈ F(r,s,t)

E{ηN−t|yN−t ∈ F c
(r,s,t)} if yN−t ∈ F c

(r,s,t)

We take the last component of the vector µ̂ to get the
desired estimate, yN−t. The quantity E{ηN−t|yN−t ∈
F c

(r,s,t)} can be computed using the Kalman Filter. We

will denote this quantity, the best estimate for ηN−t, by
η̂N−t|N−t−r. First we note that η̂N−t|N−t−r = ArηN−t−r,
where ηN−t−r is known because it was transmitted r time
units ago. To determine the optimal observer structure
and error recursion, we now make use of the following
information, where N denotes the Gaussian distribution:

bN−t = yN−t ∼ N (CArηN−t−r, CΣN−t|N−t−1C
T )

Here ΣN−t|N−t−1 is the error matrix associated with
estimating the vector ηN−t using information until time
N − t − 1. As verified below, this relevant information
consists of the last transmission and the number of time
units since that last transmission was made.

Claim 1. ΣN−t|N−t−1 can be expressed in terms of A, r

and σ2
w.

This can be seen by analyzing the Kalman Filter expres-
sions. Carrying out the necessary calculations reveals that

ΣN−t|N−t−1 =
r

∑

k=1

Ak−1







0 . . . 0
...

. . .
...

0 . . . σ2
w






(AT )k−1

Next we derive the error recursion:

e∗(r,s,t) = min
F(r,s,t)

(

e∗(1,s−1,t−1)P1 + e∗(r+1,s,t−1)P2+

∫

bN−t∈Fc
(r,s,t)

(bN−t − µ̂N−t((r, s, t); η̂N−t))
2·

fbN−t
(bN−t)dbN−t

)

where P1 = Pr[bN−t ∈ F(r,s,t)] and P2 = Pr[bN−t ∈
F c

(r,s,t)]. Clearly P1 + P2 = 1. Substituting known quanti-

ties, we can simplify the above expression:

e∗(r,s,t) = min
Fc

(r,s,t)

(

e∗(1,s−1,t−1) − (e∗(1,s−1,t−1) + e∗(r+1,s,t−1))·
∫

bN−t∈Fc
(r,s,t)

fbN−t
(bN−t)dbN−t+

∫

bN−t∈Fc
(r,s,t)

(bN−t − CArηN−t−r)
2
fbN−t

(bN−t)dbN−t

)

We conduct this optimization by restricting F c
(r,s,t) to be

in the form of a simple interval: F c
(r,s,t) = [α(r,s,t), β(r,s,t)].

We assume the simplifying symmetry α(r,s,t) + β(r,s,t) =
2CArηN−t−r. The result of simply differentiating and
obtaining optimal thresholds is
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α = CArηN−t−r −
√

e∗(1,s−1,t−1) − e∗(r+1,s,t−1)

β = CArηN−t−r +
√

e∗(1,s−1,t−1) − e∗(r+1,s,t−1)

Substitution of these optimum thresholds yields:

e∗(r,s,t) = e∗(1,s−1,t−1)−
[

e∗(1,s−1,t−1) − e∗(r+1,s,t−1) − CΣN−t|N−t−1C
T
]

·
[

2Φ

(
√

e∗(1,s−1,t−1) − e∗(r+1,s,t−1)

CΣN−t|N−t−1C
T

)

− 1

]

−

2√
2π

√

CΣN−t|N−t−1C
T ·

√

e∗(1,s−1,t−1) − e∗(r+1,s,t−1)e
−

e∗
(1,s−1,t−1)

−e∗
(r+1,s,t−1)

2CΣN−t|N−t−1CT

This recursion is defined for r ≥ 1 and 0 ≤ s ≤ t with
boundary conditions given by

e∗(r,t,t) = 0

e∗(r,0,t) =
r+t−1
∑

l=r

l
∑

k=1

CAk−1







0 . . . 0
...

. . .
...

0 . . . σ2
w






(AT )k−1CT

For n = 1, these results reduce to those of Sect. IV of
[3], which corresponds to a one step Markov process for
which we have one channel available for transmission. The
generalization allows for an n step Markov process with the
caveat that each transmission allows us to send a vector
of n dimensions. If we have less than n channels, Claim 1
is no longer valid, and we cannot proceed with a DP ap-
proach. Note also that all optimal transmission/estimation
problems dealing with a Markov process must begin with
a transmission at the first time step.

4. DUPLICATION ACROSS D CHANNELS

Here we discuss a series of related problems. Consider
a scalar random process, for example a Gaussian i.i.d.
process with bounded variance. Now suppose the observer
makes measurements of D such i.i.d. processes. Optimal
policies for the observer/estimator pair, (O,E ), can be
deduced by modeling the D processes as independent
components of a vector random process. We first carry out
the formal derivations for the Gaussian i.i.d. case. Then we
reconsider the problem if each of the D processes is again
Gaussian i.i.d., but also corrupted by noise. Finally we
suppose that each of the processes is Gauss-Markov or nth

order Gauss-Markov. Note that the solution is not trivial
- to minimize the error criterion, we should consider all
components of the vector, i.e. applying the known solution
in one dimension to the first component will not be optimal
in general. Also, simply considering sequences that are
D times as long as the original sequence (with D times
the number of transmissions) will not work. There is the
additional constraint that if a vector is sent at a particular
time, we must send all components at once.

This problem can be applicable to network problems in
which one may have a centralized scheduler at the source.

4.1 i.i.d. Gaussian case

Suppose each of our D identical and independent zero
mean Gaussian processes has variance σ2

b . Then we may
represent the processes, b1, ..., bD, as components of a vec-
tor process b with statistics b ∼ N (0,Σb) where Σb = σ2

b I,
since the processes are independent and of equal variance.
We denote the corresponding pdf by f(b1, ..., bD). From
the previous results, we see that the optimal estimator is

µ̂k((s, t);xk) =

{

xk if bk ∈ F(s,t)

E{bk|bk ∈ F c
(s,t)} if bk ∈ F c

(s,t)

where xk is now a vector version of the same variable in
Fig. 1 (it represents what is received by the estimator).
As before, we assume a certain degree of symmetry in the
decision region F c

(s,t). We allow the D dimensional region

to be in the shape of a symmetrical hypercube. That is,
for each axis i, we allow F c

(s,t),i = [−αi, αi]. Proceeding as

above by developing the error recursion, we obtain:

e∗(s,t) = e∗(s−1,t−1) + min
Fc

(s,t)

(

− (e∗(s−1,t−1) − e∗(s,t−1))· (2)

∫ α1

−α1

. . .

∫ αD

−αD

f(b1, . . . , bD)db1 . . . dbD

+ w1

∫ α1

−α1

. . .

∫ αD

−αD

(b1)2f(b1, . . . , bD)db1 . . . dbD + . . .

+ wD

∫ α1

−α1

. . .

∫ αD

−αD

(bD)2f(b1, . . . , bD)db1 . . . dbD

)

where for now, w1, ..., wD are equal to 1. We want to
minimize the quantity globally with respect to F c

(s,t). We

first take partial derivatives with respect to αk:

∂e∗(s,t)

∂αk
=

2e

−α2
k

2σ2
b

(2πσ2
b )

D/2

D
∏

j=1,j 6=k

(

∫ αj

−αj

e

−(bj)2

2σ2
b dbj

)

·
{

−
(

e∗(s−1,t−1) − e∗(s,t−1)

)

+ α2
k+

D
∑

i=1,i 6=k

∫ αi

−αi
(bi)2e

−(bi)2

2σ2
b dbi

∫ αi

−αi
e

−(bi)2

2σ2
b dbi











Upon inspecting this quantity, we arrive at the following
main result of this subsection:

Theorem 2. e∗(s,t) has a unique global minimizing decision

region, F c
(s,t) when restricted to sets of the form F c

(s,t),i =

[−αi, αi] with 1 ≤ i ≤ D and αi > 0. This minimizer is
given by αi = α, where α > 0 satisfies

0 = −
(

e∗(s−1,t−1) − e∗(s,t−1)

)

+ α2

+ (D − 1)






σ2

b − 2σbαe
−α2

2σ2
b

√
2π(2Φ

(

α
σb

)

− 1)






,

where Φ is the standard Gaussian error function.

Proof: Using the usual rules of integration for Gaussian
pdf’s, it is easily shown that the given decision region is
indeed a stationary point. This is done by noting that the
choice causes all partial derivatives to be equal to zero.
In the expression above, we focus on the part inside the
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curly braces (the part multiplying it is always positive).
Substituting αi = α in this expression, we get exactly
the expression on the RHS above. To show that this
admits a unique solution, and that this solution is the
unique minimum sought, we proceed as follows. First
note at the point αk = 0, the expression approaches a
strictly negative value. However, as αk becomes large, the
expression becomes strictly positive. Finally, at any point
where the expression is zero, moving an arbitrary amount
to the right increases the quantity and moving to the left
decreases the quantity. Hence we see that a solution exists
and is unique, with all αk’s the same and positive. ⋄
We may now wrap up the problem by rewriting the
error recursion in terms of α. This is done, as above, by
substitution of the optimal thresholds into the recursion:

e∗(s,t) = e∗(s−1,t−1) − (e∗(s−1,t−1) − e∗(s,t−1))·
(

2Φ

(

α

σb

)

− 1

)D

+ D

(

2Φ

(

α

σb

)

− 1

)D−1

·
[

σ2
b

(

2Φ

(

α

σb

)

− 1

)

− 2σbα√
2π

e
− α2

2σ2
b

]

The recursion is defined for 0 ≤ s ≤ t with boundary
conditions given by e∗(t,t) = 0 and e∗(0,t) = Dσ2

b t.

4.2 Noisy i.i.d. Gaussian case

Suppose each of the D i.i.d. zero mean Gaussian processes
has variance σ2

b and the observations are corrupted by
i.i.d. zero mean Gaussian noise of variance σ2

v . We may
write: zk = bk + vk where bk is defined as in the previous
subsection, vk is a mean zero Gaussian noise vector with
covariance matrix σ2

vI and bk and vk are independent. The
following distributions are also known:

fzk
∼ N

(

0, (σ2
b + σ2

v)I
)

fbk|zk
∼ N

(

σ2
b

σ2
b + σ2

v

zk,

(

σ2
bσ2

v

σ2
b + σ2

v

)

I

)

After reasoning in the usual manner, we obtain the optimal
estimator and observer structures:

µ̂k((s, t);xk) =

{

σ2
b

σ2
b
+σ2

v

xk if bk ∈ F(s,t)

E{bk|zk ∈ F c
(s,t)} if bk ∈ F c

(s,t)

µk((s, t); zk) =

{

ẑk if zk ∈ F(s,t)

NT if zk ∈ F c
(s,t)

The optimal decision regions are given by F c
(s,t),i =

[−σ2
b+σ2

v

σ2
b

α,
σ2

b+σ2
v

σ2
b

α] where the subscript i is used to index

the components of our vector and α > 0 is the solution to

0 = −
(

e∗(s−1,t−1) − e∗(s,t−1)

)

+ α2 + (D − 1)

(

σ2
b

σ2
b + σ2

v

)

·








σ2
b − 2

√

σ2
b + σ2

vαe

−
√

σ2
b
+σ2

v

2(σ2
b
)2

α2

√
2π(2Φ

(√
σ2

b
+σ2

v

σ2
b

α

)

− 1)









Finally, the error recursion is given by

e∗(s,t) = e∗(s−1,t−1) + D
σ2

bσ2
v

σ2
b + σ2

v

− (e∗(s−1,t−1) − e∗(s,t−1))·
(

2Φ
(α

σ̃

)

− 1
)D

+ D
(

2Φ
(α

σ̃

)

− 1
)D−1

·
[

σ̃2
(

2Φ
(α

σ̃

)

− 1
)

− 2α√
2πσ̃

e−
−α2

2σ̃2

]

where σ̃ =
σ2

b√
σ2

b
+σ2

v

. The recursion is defined for 0 ≤ s ≤ t

with boundary conditions given by e∗(t,t) = D
σ2

bσ2
v

σ2
b
+σ2

v

t and

e∗(0,t) = Dσ2
b t. This reduces to the result of the previous

subsection when the noise variance is taken to zero.

5. NON-UNIFORM VARIANCES AND
NON-UNIFORM CHANNEL COSTS

We now consider a generalization of the given problem.
Suppose that over each of D channels we have a mean
zero Gaussian process bi but each process has a possibly
different variance, σ2

bi for 1 < i < D. Suppose also that we
wish to weight the cost of using each channel differently,
that is, the cost of using channel i is wi. In the above
problems, we took wi = 1 for all i. The problem is
developed in the same way as in subsection 4.1. We again
assume a certain degree of symmetry in the decision region
F c

(s,t) and allow the D dimensional region to be in the

shape of a symmetrical hypercube. That is, for each axis
i, we allow F c

(s,t),i = [−αi, αi]. Proceeding as above by

developing the error recursion, we obtain (2) (this time
weighting the channel costs, and again using f for the
corresponding joint pdf). Taking partial derivatives gives

∂e∗(s,t)

∂αk
=

2e

−α2
k

2σ2
bk

(2π)
D/2

σb1...σbD

D
∏

j=1,j 6=k

(

∫ αj

−αj

e

−(bj)2

2σ2
bj dbj

)

·
{

−
(

e∗(s−1,t−1) − e∗(s,t−1)

)

+ wkα2
k+

D
∑

i=1,i 6=k

wi

∫ αi

−αi
(bi)2e

−(bi)2

2σ2
b dbi

∫ αi

−αi
e

−(bi)2

2σ2
b dbi











This implies that unlike before, we may not take αi = α for
all i. Rather, we are forced to numerically solve a system
of equations. These equations are obtained by setting the
expression in the braces above to zero for each k, 1 ≤ k ≤
D. In the case of D = 2, they may be decoupled easily. In
other cases, the numerical computation gets increasingly
complex. In the fashion of Theorem 2, it can be shown that
a unique solution exists to the desired minimization (and,
thus, to these equations). After solving for the thresholds
αi, we can plug them back into the recursion to obtain:

e∗(s,t) = e∗(s−1,t−1) − (e∗(s−1,t−1) − e∗(s,t−1))·
D
∏

i=1

(

2Φ

(

αi

σbi

)

− 1

)

[

D
∏

i=1

(

2Φ

(

αi

σbi

)

− 1

)

]

+

D
∑

j=1

wj









σ2
bj −

2σbjαje
−

α2
j

2σ2
bj

√
2π

(

2Φ
(

αj

σbj

)

− 1
)








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The recursion is defined for 0 ≤ s ≤ t with boundary

conditions given by e∗(t,t) = 0 and e∗(0,t) = t
∑D

i=1 wiσ
2
bi.

Note that this development simplifies to the duplication
across D channels case of subsection 4.1 when the weights
wi are taken to be one and when the variances σbi (and
subsequently decision thresholds αi) are independent of i.

6. SIMULATIONS AND EXAMPLES

6.1 A two step noiseless scalar Gauss-Markov process

Consider the following random process

bk+1 − 0.5bk − 0.25bk−1 = wk

where wk is i.i.d. Gaussian with σ2
w = 1. This is a stable

process, with the eigenvalues of the 2-dimensional matrix
of its state space representation being 0.8431 and −0.5931.
Implementation of the algorithm for an event horizon of
N = 30 and varying M over [0, 30] yields an error curve
resembling Fig. 5 from [3]. See the left side of Fig. 2 below.

6.2 Transmitting three i.i.d. Gaussian processes

Suppose we have three random processes, all mean zero
i.i.d. Gaussian with variance σ2

b = 0.8. Say that we are
interested in the process over a horizon of N = 40 time
steps and the observer, as defined above, is allowed M < 40
channel uses to transmit this information to an estimator
agent. A channel use means transmitting the state of
all three processes simultaneously. The right side of Fig.
2 shows the corresponding optimal error vs. number of
allowed channel uses graph.
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Fig. 2. Optimal 40-stage estimation error vs. the number
of allowed channel uses under two scenarios.

Now suppose that rather than having three identical
processes, we have 30 such processes. Plotting the graph
again yields a much straighter curve, which seems to
indicate a trend. As more processes are considered, the
curve becomes a straight line connecting the points (0,32P)
and (40,0) where P is the number of processes. This is a
topic that warrants further investigation.

7. CONCLUSION

We have obtained optimal transmission/estimation strate-
gies for a general n-step Gauss-Markov process with lim-
ited channel usage. We have done this by considering a
state space model and transmitting a vector process over
the channel. We have also obtained the policies for sending
vectors over a channel with limited transmissions, as long
as the components of the vector are independent.

We can generalize the results of 4.1 to the nth-order Gauss-
Markov case where such a process is duplicated over D

channels (identical and independent as in the 0th order
case). The results have not been included due to space
limitations. The form of the solution will be similar to
the developments of 4.1. An important difference surfaces,
however: the decision region is not centered around the
origin, but around the most likely estimate of the process.

A number of open questions remain. An important prob-
lem is to determine optimal strategies when an nth-order
process is to be transmitted over fewer than n channels.
Another interesting case is to consider systems in which
there is a Markov dependency as well as observation noise.
Additionally, both [3] and this paper restrict the analysis
to symmetric decision regions; a formal proof needs to
be obtained to show that there is no loss of optimality
in doing this. One might also consider optimal control
problems in which actuators have limited transmissions
to the plant, and when these transmissions have limited
reliability, along the direction of the work in [5] and [11].
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