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Abstract: This paper addresses the problem of tracking constant references for linear systems
subject to control saturation. Considering an unitary output feedback loop, containing an
integral action, conditions in LMI form are proposed to compute a state feedback and an
integrator anti-windup gain. These conditions ensure that the trajectories of the closed-loop
system are bounded in an invariant ellipsoidal set, provided that the initial conditions are taken
in this set and the references and the disturbances belong to a certain admissible set. Based
on these conditions, optimization problems aiming at the maximization of the invariant set of
admissible states and/or the maximization of the set of admissible references/disturbances are
proposed.
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1. INTRODUCTION

Saturation can be source of various well-known problems
in control theory. Motivated by this kind of problem, a
large amount of works have been published in the last
decade (see for instance Kapila and Grigoriadis (Editors)
[2002], Hu and Lin [2001], Tarbouriech et al. [2007] and
references therein). In particular, we can find approaches
to design stabilizing control laws taking into account a
priori the possibility of saturation occurrence. However,
most of these methods are concerned only with the reg-
ulation problem. For a given equilibrium point (consid-
ered without loss of generality as the origin), the global
Sussmann et al. [1994], semiglobal Lin and Saberi [1993]
or local (regional) Gomes da Silva Jr. and Tarbouriech
[2001] asymptotically stability can be ensured. Hence,
in the semi-global and local contexts, the control law is
associated to a region of stability which is contained in
the actual basin of attraction of the equilibrium point.
The reference input signal is in this case considered as
zero. On the other hand, we can find the works dealing
with the so called anti-windup approach. Considering a
pre-computed dynamic output feedback controller whose
design neglected the possibility of input saturation, the
idea in this case consists of feeding the controller with the
difference between the actuator input and output, through
a static or dynamic compensator. The aim of the anti-
windup compensation is to correct the controller state in
order to recover, as much as possible, the nominal perfor-
mance of the system under saturation (see for instance
Kothare et al. [1994], Grimm et al. [2003], Gomes da
Silva Jr. and Tarbouriech [2005] and references therein).
However, most of the proposed techniques in this context
deals with external representations of the system (transfer
functions) and the effect of initial states and nonlinear
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behaviors associated to the nonlinear state trajectories
cannot be fully analyzed.

Regarding a practical perspective, the output tracking of
reference signals (particularly constant ones) is of major
interest in control systems. As pointed in Turner et al.
[2000], relatively few works concentrate their attention
on the constrained tracking schemes. In particular, in
Turner et al. [2000] a control structure, composed by a
nonlinear state feedback and a reference feedforward, is
proposed to address the set-point tracking problem in the
presence of control saturation. On the other hand, from the
internal model principle, it is well known that in a unitary
output feedback scheme, for “robust” perfect tracking
and disturbance rejection, the controller (or the controlled
plant) should present the reference unstable modes. Hence,
the importance of integration actions for tracking constant
reference signals (and/or rejecting constant disturbance) is
clear. In the presence of control saturation, however, this
is not a sufficient condition to ensure perfect tracking. In
this case, additional issues should be taken into account:
some reference signals can lead the trajectories to converge
to equilibrium points that does not assure zero tracking
error or can lead to divergent state trajectories. These
particular issues are in part addressed in Tarbouriech et al.
[2000] and Cao et al. [2004]. In Tarbouriech et al. [2000],
considering the introduction of an integral action and
a called “intelligent” windup loop (Krikelis and Barkas
[1984]) in a unitary output feedback scheme, both a
stabilizing state feedback and an integrator anti-windup
gain are synthesized in order to ensure that the closed-
loop system trajectories do not leave an ellipsoidal set,
provided that the initial condition is taken in this set
and the references and the disturbances belong to a
certain admissible set. Furthermore, it is ensured that the
equilibrium point associated to the perfect tracking (zero
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error) is inside the linear operating region of the closed-
loop system. Following the same ideas, but using a less
conservative polytopic differential inclusion to represent
the saturation effects, these results are improved in Cao
et al. [2004]. The main drawback of those approaches is
that the theoretical conditions are in the form of nonlinear
matrix inequalities. In order to solve them, iterative LMI
problems (where some variables should be fixed at each
step) are proposed. Another issue not addressed regards,
for the given set of admissible references/disturbances, the
possibility of existing other equilibria, not contained in the
linearity region and not leading to zero tracking error.

In this paper we follow similar ideas to the ones proposed
in Tarbouriech et al. [2000] and Cao et al. [2004]. We use,
however, the modified sector condition proposed in Gomes
da Silva Jr. and Tarbouriech [2005] to consider the satura-
tion effects. Based on this representation, LMI conditions
are directly derived, avoiding therefore the necessity of
applying iterative schemes. These LMI conditions can be
obtained both for the “classical” and “intelligent” windup
structure (used in Krikelis and Barkas [1984] Tarbouriech
et al. [2000] and Cao et al. [2004]). Based on these condi-
tions, optimization problems aiming at the maximization
of the invariant set of admissible states and/or the max-
imization of the set of admissible references/disturbances
are proposed. It is also shown, by means of an example,
that the obtained results are less conservative than the
ones presented in Tarbouriech et al. [2000] and Cao et al.
[2004]. On the other hand, a study about the possibility
of existence of other equilibria inside the invariant set is
carried out. For the mono-input case, we show that this
is only possible if the open-loop system is asymptotically
stable. In this case, in order to avoid convergence to these
points, additional constraints on the admissible references
to be tracked should be considered.

Notations: The ith component of a vector x is denoted
by x(i). A(i) denotes the ith row of a matrix A ∈ R

n×n

and AT denotes its transpose. diag{x} denotes a diagonal
matrix obtained from vector x, Im denotes the m-order
identity matrix and conv{} denotes the convex hull.

2. PRELIMINARIES

2.1 Control Structure

Consider the continuous-time system subjected to actua-
tor saturation described by

ẋ(t) = Ax(t) +Bsatu0(u(t)) +Bdd
y(t) = Cx(t)
e(t) = y(t) − r

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input, y(t) ∈ R

p is the output, d ∈ R
k is a vector

of constant disturbances, r ∈ R
p is a constant reference to

be tracked and e(t) ∈ R
p is the tracking error. Matrices

A, B, Bd and C are constant real matrices of appropriate
dimensions. Each component of the saturation term in (1)
can be defined, ∀i = 1, . . . ,m, as

satu0(i)
(u(i)(t))

△
= sign(u(i)(t))min(

∣

∣u(i)(t)
∣

∣ , u0(i)). (2)

Pairs (A,B) and (C,A) are assumed to be controllable and
observable, matrices B, Bd and C are assumed to be full

rank, the number of inputs is supposed to be greater than
or equal the number of outputs (m ≥ p) and the relation

rank

([

A B
C 0

])

= n+ p hold.

In order to ensure the output constant reference tracking
in steady state, an integral action is considered as follows:

ξ̇(t) = e(t) + Ec(satu0(u(t)) − u(t)). (3)

The term Ec(satu0(u(t)) − u(t)) corresponds to an inte-
grator anti-windup term introduced in order to reduce
any undesirable effects caused by the actuator saturation.
Ec ∈ R

p×m is the anti-windup gain matrix.

As in Krikelis and Barkas [1984], we introduce the error
coordinates representation with a new state vector z(t) =
[

e(t)T x2(t)
T ξ(t)T

]T
∈ R

n+p, with x2(t) ∈ R
n−p

defined by x2(t) = M1x(t) and M1 ∈ R
(n−p)×n being

chosen such that M2 =

[

C
M1

]

is non-singular. Thus the

system (1) can be re-written as

ż(t) = Az(t) + B1satu0(u(t))

+B2(satu0(u(t)) − u(t)) + B3q, (4)

with q = M2AM
−1
2 Er +M2Bdd,

A =

[

M2AM
−1
2 0n×p

ET 0p×p

]

, E =

[

Ip
0(n−p)×p

]

,B1 =

[

M2B
0p×m

]

B2 =

[

0n×m

Ec

]

= VEc, V =

[

0n×p

Ip

]

, B3 =

[

In
0p×n

]

.

In order to stabilize system (4), we will consider the state
feedback u(t) = Fz(t), F ∈ R

m×(n+p), which leads to the
following closed-loop system:

ż = (A + B1F )z(t) − (B1 + B2)Ψu0(Fz(t)) + B3q (5)

where Ψw0(w(t)) = w(t) − satw0(w(t)) is a decentralized
deadzone nonlinearity. The considered control structure is
depicted in Figure 1.

Fig. 1. Controller structure

2.2 Equilibrium point

We suppose that the equilibrium point associated to per-
fect tracking is inside the region of linearity for the closed-
loop system (5), i.e. ze ∈ S(F, u0) with

S(F, u0)
△
= {z ∈ R

n+p;
∣

∣F(i)z
∣

∣ ≤ u0(i), i = 1, . . . ,m}. (6)
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In the region of linearity, system (5) admits the following
linear model:

ż(t) = (A + B1F )z(t) + B3q. (7)

Hence, if (A + B1F ) is Hurwitz,

ze = −(A + B1F )−1B3q (8)

is the unique equilibrium point in S(F, u0)(see Tarbouriech
et al. [2000]).

In order to have ze ∈ S(F, u0), relation

∣

∣−F(i)((A + B1F )−1B3q)
∣

∣ ≤ u0(i), i = 1, . . . ,m (9)

must be verified. Note that relation (9) imposes a con-
straint on the admissible signals q.

From the integral action and asymptotic stability of the
system (7), the equilibrium point ze ∈ S(F, u0) assumes
the following form

ze =

[

0
x2e

ξe

]

, (10)

which results in perfect reference tracking since it is
ensured e(t) = 0.

2.3 Problem Statement

Let Z0 be a set of admissible initial conditions and Q0

a set of admissible references/disturbances for the system
(5). Based on these sets, the following problem can be
formulated:

Problem 1. Compute the gain matrices F and Ec such
that, ∀z(0) ∈ Z0 and ∀r, d such that q ∈ Q0 the equilib-
rium point ze ∈ S(F, u0) is locally asymptotically stable
and y(t) → r when t→ ∞.

An implicit optimization problem regarding Problem 1
concerns the determination of F and Ec in order to max-
imize the size of the admissible sets Z0 and Q0 for which
is possible to ensure that the reference will be tracked. In
this work, we will consider Z0 and Q0 as ellipsoidal sets
defined as follows:

Z0 = Ω(P, 1) = {z ∈ R
n+p; zTPz ≤ 1}, P = PT > 0,

Q0 = Ω(R, 1) = {q ∈ R
n; qTRq ≤ 1}, R = RT > 0.

3. MAIN RESULT

Consider a matrix G ∈ R
m×(n+p) and the polyhedral set

S(F −G, u0)
△
= {z ∈ R

n+p;
∣

∣(F(i) −G(i))z
∣

∣ ≤ u0(i),

∀i = 1, . . . ,m}(11)

The following Lemma can be stated.

Lemma 1. (Gomes da Silva Jr. and Tarbouriech [2005]) If
z(t) ∈ S(F −G, u0) then relation

Ψu0(Fz(t))
TT [Ψu0(Fz(t)) −Gz(t)] ≤ 0 (12)

is verified for any matrix T ∈ R
m×m diagonal positive-

definite.

Consider now a quadratic Lyapunov candidate function

V (z(t)) = z(t)TPz(t). (13)

The following Theorem can therefore be stated.

Theorem 1. If there exist matrices W ∈ R
(n+p)×(n+p)

and R ∈ R
n×n symmetric positive definite, matrices

Y ∈ R
m×(n+p), X ∈ R

(n+p)×m, M ∈ R
p×m, a diagonal

positive-definite matrix L ∈ R
m×m and a scalar λ > 0

satisfying 1





Λ(W,Y ) ∗ ∗
−LBT

1 −MTVT +XT −2L ∗
BT

3 0 −λR



 < 0

(14)
[

W ∗
Y(i) − (XT )(i) u

2
0(i)

]

≥ 0, i = 1, . . . ,m (15)









(

−B3B
T
3 (AW + B1Y )

−(AW + B1Y )T B3B
T
3

)

∗ ∗

BT
3 λR ∗

Y(i) 0 λ−1u2
0(i)









≥ 0,

i = 1, . . . ,m (16)

with Λ(W,Y ) = WAT + AW + B1Y + Y T BT
1 + λW ,

then gains F = YW−1 and Ec = ML−1 are such that,
∀q ∈ Ω(R, 1), the ellipsoid Ω(P, 1) is a positively invariant
region for system (5) and (8) is the only equilibrium point
inside S(F, u0).

Proof. Computing the time-derivative of (13) along the
trajectories of the system (5), we get

V̇ (z(t)) = z(t)T ((A + B1F )TP + P (A + B1F ))z(t)

+2z(t)TPB3q − 2z(t)TP (B1 + B2)Ψu0(Fz(t)).

From Lemma 1, it follows that

V̇ (z(t))≤ V̇ (z(t)) − 2Ψu0(Fz(t))
TTΨu0(Fz(t))

+2Ψu0(Fz(t))
TTGz(t), ∀z ∈ S(F −G, u0).

The set Ω(P, 1) will be invariant if V̇ (z(t)) < 0 is ensured,
for all z(t) and q such that z(t)TPz(t) ≥ 1 and qTRq ≤
1. Using the S-procedure (Boyd et al. [1994]), this is
accomplished if there exists a positive scalar λ > 0, such
that

z(t)T ((A + B1F )TP + P (A + B1F ))z(t)
− 2z(t)T (P (B1 + B2) −GTT )Ψu0(Fz(t))
− 2Ψu0(Fz(t))

TTΨu0(Fz(t)) + 2z(t)TPB3q

+ λz(t)TPz(t) − qTλRq < 0

(17)

and provided that Ω(P, 1) ⊂ S(F −G, u0).

Now, write the left hand side of (17) in the form

[

z(t)T Ψu0(Fz(t))
T qT

]

M

[

z(t)
Ψu0(Fz(t))

q

]

,

1
∗ denotes symmetric elements.
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M =





Γ̄(P, F ) −P (B1 + B2) +GTT PB3

∗ −2T 0
∗ ∗ −λR



 (18)

with Γ̄(P, F ) = (A + B1F )TP + P (A + B1F ) + λP .
Recalling that B2 = VEc, pre- and post-multiplying (18)
by diag{P−1, T−1, I} and considering W = P−1, X =
P−1GT , Y = FP−1, L = T−1 and M = EcT

−1, it follows
that (14) is equivalent to M < 0, which implies that (17)
holds. On the other hand, the satisfaction of relation (15)
implies that Ω(P, 1) is included in S(F −G, u0) as needed
to the satisfaction of the sector condition (12).

In Tarbouriech et al. [2000] is proved that (16) implies the
satisfaction of (9). Due to space restrictions, this proof will
not be presented here.

Theorem 1 ensures that, provided q ∈ Ω(R, 1) and z(0) ∈
Ω(P, 1), the closed-loop trajectories do not leave Ω(P, 1).
Furthermore, it is ensured that the equilibrium point as-
sociated to zero tracking error is contained in the linear-
ity region. However, it should be pointed out, that it is
not eliminated the possible existence of other equilibria
associated to q ∈ Ω(R, 1). Note that this possibility was
not considered in the previous related results presented in
Tarbouriech et al. [2000] and Cao et al. [2004].

In the sequel, considering the mono-input case, we focus
on the analysis of possible existence of other equilibria in
Ω(P, 1). With this aim, consider the system (4) and let
zeo be a possible equilibrium point outside the linearity
region. Then, the following equations must be verified:

0 = Â

[

ee

x2e

]

+M2Bsatu0(Fzeo) + q, (19)

0 =ET

[

ee

x2e

]

+ Ec(satu0(Fzeo) − Fzeo), (20)

where Â = M2AM
−1
2 . Note that equation (20) is equiva-

lent to

ee = EcΨu0(Fzeo). (21)

Define now the following open-loop transfer functions:

Gv(s) =
y(s)

v(s)
Gd(s) =

y(s)

d(s)

with v(t) = (satu0(u(t)). For a sake of simplicity, we
suppose that Gv(0) > 0.

The analysis of existence of zeo is carried out bellow
considering 3 cases related to the eigenvalues of matrix A.
We suppose that the conditions of Theorem 1 are satisfied.

Case 1: Matrix A have all the eigenvalues with negative
real part (i.e. the open-loop system is asymptotically
stable).

Corollary 1. If the open-loop system is asymptotically
stable and the reference r and the disturbance d are
constant and verifies

∣

∣

∣

∣

[I −Gd(0)]

[

r
d

]∣

∣

∣

∣

≤ Gv(0)u0, (22)

then the equilibrium point ze ∈ S(F, u0) is the unique
stable equilibrium point inside the ellipsoid Ω(P, 1).

Proof. Suppose that r > 0 and Ec < 0. Considering
Gv(0) > 0, if the equilibrium point zeo exists, by construc-
tion, the control must be saturated in the upper bound,
i.e., ψ(Fzeo) > 0 and eeo = Ecψ(Fzeo) = yeo−r < 0. Note
that in this case yeo = Gv(0)u0 +Gd(0)d. Hence, it follows
that r −Gd(0)d > Gv(0)u0 which contradicts (22).

Suppose now that r < 0 and Ec < 0. It follows that
ψ(Fzeo) < 0 and eeo = Ecψ(Fzeo) = yeo − r > 0. Note
that in this case yeo = −Gv(0)u0+Gd(0)d. Hence it follows
that r −Gd(0)d < −Gv(0)u0 which also contradicts (22).

Note that if Ec > 0, by construction there is no possibility
of existence of zeo, since (21) does not have possible
solution in this case.

Case 2: Matrix A is nonsingular and has at least one
eigenvalue with positive real part.

Corollary 2. If the open-loop system (1) is exponentially
unstable, then the equilibrium point ze ∈ S(F, u0) is the
unique stable equilibrium point inside the ellipsoid Ω(P, 1).

Proof. The augmented system (4) can be re-written as

ż(t) = Ãz(t) + B̄satu0(Fz(t)) + B3q (23)

where Ã = A − B2F and B̄ = B1 + B2. At a supposed
equilibrium point zeo outside the linear region we must
have

zeo = Ã−1(−B̄ue − B3q),

where ue is the lower or upper saturation level. Considering
the variable change z̄(t) = z(t) − zeo one gets

˙̄z(t) = Ãz̄(t) + Ãzeo + B̄satu0(F z̄ + Fzeo) + B3q,

˙̄z(t) = Ãz̄(t). (24)

From the structure of A and B2, it is easy to see that, if
A is unstable then A−B2F is also unstable. Hence, if zeo

exists, it is an unstable equilibrium point.

Case 3: Matrix A has at least one null eigenvalue

Corollary 3. If the open-loop system (1) has eigenvalues at
zero, then the equilibrium point ze ∈ S(F, u0) is the unique
stable equilibrium point inside the ellipsoid Ω(P, 1).

Proof. In this case, we have an open-loop integrator
system. It is well known from the linear systems theory
that, for a system with a null eigenvalue subjected to a
constant input, y(t) → ∞ when t→ ∞. Suppose now that
the system is in equilibrium at zeo with |Fzeo| > u0 and

Bue + Bdd = B̃d̃ 6= 0 , with ue = u0 or ue = −u0 Hence,
it follows that

ẋ(t) = Ax(t) + B̃d̃

Hence, since (A,B) and (A,C) are supposed to be control-

lable and observable respectively, if Bue + Bdd = B̃d̃ the
system output y(t) = Cx(t) diverges, and in consequence,
e(t) = y(t) − r also diverges, which contradicts the fact
that there exists the equilibrium. Note that, otherwise,
there is enough control to cancel the disturbance effect,
and the equilibrium point is in the linear region, since it
is achieved with BFze = −Bdd.
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4. CONVEX OPTIMIZATION PROBLEM

Based on Theorem 1, we can propose a convex optimiza-
tion problem to obtain the feedback gain F and the anti-
windup gain Ec in order to maximize the size of sets
Ω(P, 1) and Ω(R, 1).

The size of Ω(P, 1) and Ω(R, 1) can be evaluated with
respect to polyhedral shape sets XR = conv{x1, x2, . . . , xl}
and DR = conv{d1, d2, . . . , ds}, where the vertices xi ∈
R

n+p, i = 1, . . . , l and dj ∈ R
n, j = 1, . . . , s correspond

to directions in which the sets should be maximized and
are known a priori. Hence, our objective is to maximize
scalars α > 0 and β > 0 in order to ensure αXR ⊂ Ω(P, 1)
and βDR ⊂ Ω(R, 1). The solution of this problem can be
addressed by solving the following optimization problem:

PO1: min (1 − ǫ)γ + ǫδ

subject to
[

γ x
′
i

xi W

]

≥ 0, i = 1, . . . , l (25)

d
′
jRdj ≤ δ, j = 1, . . . , s (26)

Relations (14), (15) and (16).

Considering α = 1√
γ

and β = 1√
δ
, the minimization of

γ and δ causes the maximization of α e β. The scalar
0 ≤ ǫ ≤ 1 can be tuned accordingly our priority in
maximizing Ω(P, 1) or Ω(R, 1).

Note that, for a given λ, relations (14) and (16) are LMIs.
Problem PO1 can then be easily solved considering the
solutions of LMI problems on a grid in λ.

5. ILLUSTRATIVE EXAMPLES

5.1 Example 1

Our first illustrative example is the double integrator
considered in Tarbouriech et al. [2000] and Cao et al.
[2004], i.e.,

A =

[

0 1
0 0

]

, B =

[

0
1

]

, Bd =

[

1
1

]

,

C = [ 1 0 ] , u0 = 0.3.

In order to compare our results with those from Cao et al.
[2004] and Tarbouriech et al. [2000], we will split our
example in three different control objectives. We consider
M1 = [0 1] such that M2 = I2.

Is important to notice that M2AM
−1
2 E = 0. This implies

that the reference r does not appear in q neither in Ω(R, 1).
In this case, r is only determined by the size of the ellipsoid
Ω(P, 1).

a) Reference Maximization. In this case, the control
objective is to maximize the reference the system out-
put can track without disturbances and considering that
x2(0) = 0 and ξ(0) = 0. Since M2AM

−1
2 E = 0, this

can be accomplished by maximizing Ω(P, 1) considering
XR = conv{x1} with x1 = [1 0 0]T and ǫ = 0. Note that
in this case we maximize |e(0)| = |r|.

Different from what has been presented in Cao et al. [2004],
for the convex optimization problem PO1, we do not have

any a priori controller to compare with, so we have the
freedom to redesign the controller. The results obtained
are

Ec = −1.4020, F = [−0.4168 −21.6875 −0.0064 ]

and rmax = 891.3698. This result is much less conservative
than Cao et al. [2004] and Tarbouriech et al. [2000].

If we set Ec = 1, as done in Cao et al. [2004] and Tar-
bouriech et al. [2000], optimization PO1 leads to αopt =
803.5 which is also less conservative than the value ob-
tained in those previous works.

c) Constant Disturbance Maximization. If we set the
maximum admissible reference rmax = 1, the new control
objective is to find the largest constant disturbance ‖d‖ <
d0 that our system still tracks the reference. As in Cao
et al. [2004], we set XR = conv{x1} with x1 = [1 0 0]T ,
DR = conv{d1} with d1 = [1 0.1]T and ǫ = 1. Again, we
consider Ec as a free parameter in optimization PO1. The
results are presented in Table 1.

Table 1. Results for Maximum Constant Dis-
turbance.

βopt λopt

Cao et al. [2004] 1.7275 0.0238

Optimization PO1 5.8349 0.0340

It is easy to see that our results are less conservative
than the ones presented in Cao et al. [2004]. If we set
Ec = 1 and solve optimization PO1, the obtained results
are βopt = 4.1852 and λopt = 0.0290.

5.2 Example 2

In this example we aim at showing the possibility of exis-
tence of an equilibrium point inside the ellipsoid Ω(P, 1)
but outside the linear region, if condition (22) is not taken
into account. Consider an open-loop system defined by:

A =

[

−0.6 1
0 −0.9

]

, B =

[

0
1

]

, C = [ 1 0 ] , u0 = 0.3.

In this case, we consider M1 = [0 1] such that M2 = I2. It
is important to notice that this example does not present
M2AM

−1
2 E = 0. This cause the maximum reference

admissible to be determined by the size of the ellipsoids
Ω(P, 1) and Ω(R, 1).

a) Reference Maximization. As in the previous example,
the control objective is to maximize the reference the
system output can track assuming x2(0) = 0 and ξ(0) = 0.
We set XR = conv{x1} with x1 = [1 0 0]T and DR =
conv{d1} with d1 = [(M2AM

−1
2 E)T 0 0]T . The reference

rmax1 is obtained from the ellipsoid Ω(P, 1) and rmax2 from
the ellipsoid Ω(R, 1).

If the condition (22) is not taken into account, the maximal
admissible reference that ensures the invariance of Ω(P, 1)
in the case that ǫ = 0.5 is r = rmax2 = 245.1580. In Fig. 2
we show the output and control signals for r = 50 at t = 0
and r = −50 at t = 30, far enough from the limit rmax2.

Note that there exist a tracking error and the equilibrium
points are outside the linear region, reached when the
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Fig. 2. Time response of the output y(t) and the plant
input satu0(u(t))

control output remains saturated at both upper and lower
levels. In this case,

P = 10−6

[

0.0532 0.1135 0.0760
0.1135 0.2522 0.1675
0.0760 0.1675 0.1135

]

, zeo =

[

−49.4444
0.3333
32.6793

]

for the reference r = 50, and zeo =

[

49.4444
0.3333
32.6793

]

, for

r = −50. In both cases zT
eoPzeo = 5.5843 × 10−6, which

shows that zeo is indeed inside the ellipsoid Ω(P, 1).

If we consider the condition (22), the perfect tracking is
ensured in fact for rmax = 0.5556. In Fig. 3 we present the
simulation output and the constrained control signal for
r = 0.5 at t = 0 and r = −0.5 at t = 30.
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Simulation Output for r=0.5 at t>0s and r=−0.5 at t>30s 

y(t)
sat(u(t))

Fig. 3. Time response of the output y(t) and the plant
input satu0(u(t))

6. CONCLUSION

The main advantage of the proposed methodology with
respect to similar previous works is the fact that the theo-
retical conditions are given directly in LMI form, avoiding
the necessity of applying iterative schemes to solve the
optimization problems. It is shown, by means of examples,

that less conservative results are therefore obtained. On
the other hand, an analysis concerning the unicity of the
equilibrium point inside the invariant domain has been
carried out. It is worth to emphasize that such kind of
analysis has not been performed in the previous works.
Indeed, if some additional conditions are not considered,
it is shown that, in the case of asymptotically stable open-
loop system, other equilibria which does not lead to zero
error tracking can appear inside the invariant domain. The
extension of this equilibria analysis to the multi-input case
and to open-loop systems presenting imaginary eigenvalues
are under investigation.
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