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Abstract: 10 years ago, K.J. Åström proposed that the essence of the complex control problem
originated by the joint of the pilot–&–aircraft can be captured on labs, by means of unstable
underactuated mechanical systems. Thus, the unactuated part describes the autonomous aircraft
dynamics and the actuated the piloted one. In this constructive approach we propose a nonlinear
controller based on classical feedback linearization and singular perturbation theory, which
has a compact and explicit expression, providing the designer a handle to address transient
performance and robustness issues to dominate undesirable friction and/or drag effects, even
in the unactuated coordinates. Further, partial differential equations need not to be solved. A
multivariable example and successful experiments on the Furuta’s pendulum are reported. To
the best of authors’ knowledge it has the largest attraction basin experimentally tested so far.

1. INTRODUCTION

In applications where an operator is present the design of
controllers is commonly carried out through the asympto-
tic stability of the reference velocities defined by the ope-
rator. Thus, operator’s mission is to stabilize the system in
a small neighborhood of the desired position. This occurs
in piloted vehicles applications such as cars, ships and
aircraft, where the pilot imposes the reference velocities.
In aeronautics, stability and control augmentation systems
are introduced to improve handling (or flying) qualities on
the aircraft, defined in terms of those characteristics of the
dynamic behavior of the aircraft that allow precise control
with low pilot workload. In this way, control augmentation
systems are sometimes additionally required to provide a
particular type of response to pilot’s set points, i.e., trac-
king of velocities and rates commands. The flight control
system is mission critical because in some flight conditions
the unstable mode is so fast that a pilot cannot stabilize
the system. The flight control system should thus fulfill the
dual task of stabilizing the aircraft without restricting the
maneuverability unnecessarily. A typical example is the
control of a VTOL aircraft where the roll angle and rate,
and the horizontal and vertical velocities are the output
feedback variables Bates and Postlethwaite [2002]. In this
way, the proposed approach deals with the control of these
piloted vehicles whose behavior is modeled by means of
unstable underactuated mechanical systems motivated by
Åström and S. [1997], Åkesson and Åström [2001] and Isi-
dori [2003]. The applicability reveals a great benefit for un-
derstanding and testing the control of open–loop unstable
aircraft. The maneuverability of these aircraft is higher in
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certain flight conditions. Unfortunately the unstable flight
conditions include landing and take off. For the automatic
control the presence of a pilot is a complication because the
pilot may also drive the system unstable through manual
control actions. The design of control strategies for such
situations is a significant challenge as was pointed out in
Stein [1989]. Thus, the complex dynamics induced by the
joint pilot–&–aircraft makes the manufacturers encounter
severe difficulties to the control problem. The usual so-
lution adopted is to try to divide the available control
authority between control and stabilization by means of
hybrid control. In this approach a nonlinear controller
is proposed whose nonlinear behavior decides the control
authority autonomously.

We use the classical geometric framework of feedback
linearization from Isidori [1995] to construct an output
for the whole class. The main difference with the actual
approaches is that the non–conservative forces are ta-
ken into account, like the friction and drag forces, which
make the system be non minimum–phase. The usual ap-
proach/methodologies relies on solving a set of partial
differential equations, like Controlled Lagrangians, IDA–
PBC, Forwarding and first integrals, and in all of them the
solution yields conservative quantities which in practise
cannot be fulfilled. In the present approach the output
redesign allows to dominate the non–conservative forces
yielding a minimum–phase system and all based on sin-
gularly perturbed theory. Moreover the solution for the
whole class is explicitly given in a compact form.

Research history and outline: in Acosta and López-
Mart́ınez [2007a] we showed an explicit solution of a class
of underactuation mechanical systems of underactuation
degree one. After that, in Acosta and López-Mart́ınez
[2007b] we generalize that result for the underactuation
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degree larger than one. Thus, in section 2, we briefly men-
tion all necessary previous results of Acosta and López-
Mart́ınez [2007b], without proofs. Nevertheless, since most
of results referenced here are an extension to the case
of underactuated mechanical systems of underactuation
degree one, we refer to readers to Acosta and López-
Mart́ınez [2007a]. Then, in Section 3 and 4, we extend
the class solved in Acosta and López-Mart́ınez [2007b] by
means of the singularly perturbed theory, removing and
relaxing some of the assumptions. Section 5 deals with the
applications and examples and successful experimental re-
sults on the available Furuta pendulum are given. Finally,
a conclusion section.

Notation: Throughout the paper all vectors are column
vectors, even the gradient operator ∇x = ∂

∂x , and the
hessian ∇2

x = ∂2

∂x2 . For vector functions F : R
n �→ R

m,
we define the matrix ∇xF (x) = [∇xF1(x), . . . ,∇xFm(x)].
When clear from the context the subindex of the operator
∇ and the arguments of the functions will be omitted.
For matrices M � 0, M ∈ R

m×n, means symmetric and
positive definite. Acronyms used: r.h.s. means right hand
side; i.e. means that is.

2. PRELIMINARY RESULTS

In order to present clearly the class of systems we address
in this paper, we will star from a classical Lagrange’s for-
mulation for a general underactuated mechanical system.
After that, we will impose the required assumptions to
show the considered class. Thus, let (q, q̇) ∈ R

n × R
n

the generalized coordinates and velocities, respectively. We
address the control problem of underactuated mechanical
systems, i.e. there are fewer control inputs than degrees of
freedom. The Lagrange’s equations read

M(q)q̈ + C(q, q̇)q̇ +D(q̇) + ∇U(q) = [O Im]� τ (1)
where M ∈ R

n×n is the symmetric and positive definite
inertia matrix, U ∈ R is the potential function, τ ∈ R

m

the number of independent control inputs, the matrix
C ∈ R

n×n contains the Coriolis and centrifugal forces,
and it can be calculated as

C(q, q̇)q̇ =
[
∇q(Mq̇) − 1

2
∇q(Mq̇)�

]
q̇, (2)

and the matrix D(q̇) ∈ R
n is the vector of friction

and/or drag forces. We now proceed to define the class
of mechanical systems for which we can explicitly solve
the control problem. In fact, the class considered refers to
systems with underactuation degree n−m, m ≥ 1. Then,
we partition intuitively the set of generalized coordinates
q = (q1, q2) ∈ R

n−m × R
m, where the unactuated degree

of freedom is represented by the q1–coordinate and the
actuated ones by the set of the generalized q2–coordinates.
After this partition the Lagrange’s equations of motion can
be written as[

M11 M
�
12

M12 M22

]
q̈ +

[
F1(q, q̇)
F2(q, q̇)

]
=

[
0
Im

]
τ, (3)

where now M11 ∈ R
(n−m)×(n−m), M12 ∈ R

m×(n−m),
M22 ∈ R

m×m and we have introduced the scalar and
vector functions F1(q, q̇) ∈ R

n−m and F2(q, q̇) ∈ R
m,

respectively. The first step of the approach presented here
is to linearize partially the equations of motion (1), as
done in Spong [1998] where it was called collocated partial

feedback. Indeed, after some simple calculations following
the ones given in Spong [1998], it is easy to see that
the partially feedback–linearized system takes the affine
in control form:

F (q, q̇) �
[
−M−1

11 F1(q, q̇)
O

]
, G(q) �

[
−M−1

11 M
�
12

Im

]

q̈ = F (q, q̇) +G(q)u, (4)

and the vector function F1(q, q̇) was defined as

F1(q, q̇) � (In−m O)[C(q, q̇)q̇ +D(q̇) + ∇U(q)]. (5)
Remark 1. Notice that, from equations (1) to (4) some
implicit assumptions were needed in Spong [1998], usually
satisfied for simple mechanical systems, but we will put
them in order anyway. On one hand, the matrix M11

need to be uniformly positive definite, and then invertible.
On the other hand, the elements of the sub–matrix M12

are different from zero at least in a neighborhood at the
origin. This fact was defined in Spong [1998] as Strongly
Inertially Coupled rank condition and so we assume
rank(M12) = n−m.

The assumptions for the class were:

A.1 (Definition of the class)
- The elements of the inertia matrix M11 and M12

do not depend on the actuated coordinates and
the matrix M22 either it is a constant matrix or
a function of the actuated coordinates.

- The potential function is of the form

U(q) � V (q1) + ϑ(q2). (6)
- The vector function defining the nonlinear fric-

tion and/or drag forces D1(q̇)q̇ ≥ 0 with D1(q̇) �
(In−m O)D(q̇), satisfies the linear growth bound
only on the unactuated coordinates

‖D1(q̇)‖ ≤ γ‖q̇1‖, ∀q̇1 ∈ D ⊆ R
n−m (7)

where γ ≥ 0 is a positive constant.
A.2 (Rank condition) m ≥ (n−m).
A.3 (Underactuated coordinates) The unstable equilibria

of the unactuated coordinates are isolated in Ω, i.e.
∇2V (q1�) < 0 and ∇V (q1) �= 0, ∀q1 ∈ Ω \ {q1�}.

A.4 (Integrability condition) Let ∇mi = (∇mi)� with
mi(q1), i = 1...m, are the rows of the matrix M12.

The physical meaning of the above assumptions has
been thoroughly described in Acosta and López-Mart́ınez
[2007b], and omitted here due to page limitations.

Under the above assumptions we proved among other re-
sults that the composite smooth–static–feedback controller
given by

u= ∆−1(K1(−M12M
−1
11 F1 + Ṁ12q̇1) +K2M12q̇1 − ν)(8)

ν =−K3 (M12q̇1 +K4η̃) , (9)

with ∆ � K1M12M
−1
11 M

�
12 − Im, and the constant and

full–rank (m×m)–matrices satisfying the conditions

C1. K1 � 0, and such that the matrix M̄(q1) � 0 for all
q1 ∈ Ω ⊆ R

n−m, where M̄ � M�
12K1M12 −M11;

C2. K2 � 0 and k2 > γ, with k2 the minimal eigenvalue
of the full–rank matrix M�

12K2M12, ∀q1 ∈ Ω;
C3. K3 � 0, and diagonal; and
C4. K4 � 0,
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ensure that, for all (Z, η) ∈ Ω ×D × R
m, the closed–loop

system is partially state feedback input–output lineariza-
ble through the output 1

η̃ � [K1M12 Im]q̇ +K2

∫ q1

q1�

M12(µ) · dµ− η� (10)

In fact, the Assumptions A.1 and A.2 played a critical
role in the stabilization problem and we called to this
class of systems the “constructive class”. The requirements
imposed by these assumptions allowed us to find out
an energy–like Lyapunov function for the zero dynamics.
Thus, these conditions does not play a key role for the
(local) stabilization and then we use this fact to extend
the class. We will show that the proposed controller
renders a (local) asymptotical and exponential stability
of the desired equilibrium of the extended class, i.e. the
singularly–perturbed one. In some sense, we can say that
the controller designed for the “constructive” class is
robust to the nonlinearity introduced by this “new” class.
Remark 2. Let us denote throughout the paper, for com-
pactness and also to help the reader to identify quickly the
zero dynamics, the state space of these zero dynamics as
Z = (q1, q̇1)� and its equilibrium as Z�.

The control problem. Recalling that the main control
objective is to maneuver manually the set point in aircraft
flying, i.e. a pilot manual operation, then the state space
will be, from now on, (Z, η)� and, in this way the control
problem to be addressed, at first, will be to stabilize
the equilibrium (Z�, η�)�. Other control problems will be
posed further.

3. THE SINGULARLY PERTURBED CLASS

In this section we prove that through the same output
(10) the equilibrium of the extended class, i.e. the so–called
singularly–perturbed class can be also stabilized. Then, this
singularly–perturbed class relax the assumptions A.1 and
A.2 in the following sense:

A.1’ on one hand, in A.1 the matrix M22 can be function
of the unactuated coordinates; and

A.2’ on the other hand, the A.2 is completely removed.

Only an additional assumption is needed, to generalize this
result:

Assumption A.5
[∂M22(q1)

∂q1

]
q1=q1�

= 0.

The above Assumption is necessary to assure that the
desired equilibrium of the zero dynamics Z� is not modified
at least locally, for an arbitrary set point η�. It is also
noticeable that in the particular case of regulation at
η� = O this assumption is not needed at all, but we will
state the general case.
Proposition 3. Consider the underactuated mechanical
system (4) under the Assumptions A.1–A.5 with the re-
laxations made in A.1’ and A.2’, and with the matrices
Ki, i = 1, ..., 4 satisfying the conditions C1–C4. Then, the
following assertions hold:

1 Notice that, since q1 is a vector we have introduced some abuse
of notation, only for compactness. See the TCP example further to
clarify the computation in the case of a MIMO system.

(i) the closed–loop system is partially state feedback
input–output linearizable in the set (Z, η) ∈ Ω ×
D×R

m through the output (10). The smooth–static
linearizing controller is given by (8).

(ii) the external controller (9) assures that there exits a
real number k�

3 > 0 such that, for k3 > k�
3 the sys-

tems is singularly perturbed and so, all trajectories
starting in a compact ball remain bounded, where
k3 stands for the maximal eigenvalue of the matrix
K3. Moreover, the desired equilibrium (Z�, η�) is
(locally) asymptotically (exponentially) stable.

Proof. The first claim follows directly following the usual
procedure of calculating the derivative of (10), and beco-
mes

˙̃η = [K1M12 Im]q̈ +K1Ṁ12q̇1 +K2M12q̇1

=−K1M12M
−1
11 F1 − ∆u+K1Ṁ12q̇1 +K2M12q̇1 = ν,

and isolating the controller u we get (8).

To prove the second claim, we first need to prove that
the zero dynamics associated to the proposed output is
locally exponentially stable. The zero dynamics can be
obtained after expanding the first (n − m) equations of
(4) using the controller derived in (8) with ν = 0. Thus,
tedious but straightforward calculations show that under
the assumptions made the linearized zero dynamics round
the equilibrium becomes
M̄�δq̈1 + (M�

12K2M12 −∇D1 + Γ)�δq̇1 −∇2V�δq1 = O,

where we defined the matrix Γ � ∇(M�
12q̇2)−∇(M�

12q̇2)
�

and the variables for the linearization of the zero dynamics
as δq1 � q1 − q1�, and we used the notation (·)� for the
matrices evaluated at the equilibrium Z�. Since by C2 we
fix M�

12K2M12 > γ and by assumption A.1 ‖∇D1‖ < γ
then the the damping matrix, i.e. M�

12K2M12 −∇D1 � 0.
Additionally, M̄� � 0 and by A.3 (−∇2V )� � 0. Thus,
since Γ is skew–symmetric and all the remaining matrices
are positive definite then, from the results of linear theory
Roseau [1987], Merkin [1996] we know that for these
second order and linear dynamics the equilibrium Z� of the
zero dynamics is locally asymptotically and exponentially
stable 2 .

Now, we are in position to prove the last part regarding
to the singular perturbations theory, using the external
controller given by (9), just invoking the result given in
[Khalil, 2002, Th. 11.4] 3 . For, we rewrite the closed–loop
dynamics qualitatively in the following way

Ż = ψ(Z, η̃) (11)

ε ˙̃η =−(O M12)Z −K4η̃, (12)

where ψ(·) is a smooth function, the small parameter ε �
1/k3 was defined as the minimal eigenvalue of the matrix
K−1

3 , which is the corresponding maximal eigenvalue of the
matrix K3. When ε = 0 the roots of (12) are η̃ = h(Z) =
−K−1

4 M12q̇1 with h(O) = O. Thus, the boundary–layer
system can be obtained defining the variable y � η̃−h(Z),
and then the equations (11)–(12) in the new coordinates
become
2 Locally Exponentially Stable (LES).
3 This result is an extension to infinite interval of time of the well–
known Tikhonov’s Theorem.
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dZ
dt

= ψ(Z, y − h(Z)) (13)

dy

dτ
=−K4y + O(ε), (14)

with τ = (t − t0)/ε the new time scale. First notice that,
on the one hand the reduced system (ε = 0), in this case,
is exactly the zero dynamics which we actually know that
its equilibrium is LES, and, on the other hand the so–
called boundary–layer system is described by (14) and its
equilibrium is also LES uniformly in Z. Therefore all the
conditions from [Khalil, 2002, Th. 11.4] are satisfied, and
then there exists an ε∗ > 0 such that for all ε < ε∗ the
equilibrium of the entire system is LES on the compact
ball where all the conditions are satisfied.
Remark 4. Notice that, in the proposition 3, we could not
invoke the well–known results from Isidori [1995] because
we cannot use the crucial fact that the dynamics on the
η̃–coordinate is linear, and so neither in the ν–coordinate.

4. ASYMPTOTIC OUTPUT TRACKING

The propositions 3 assure that, at least, the equilibrium
of the whole system is LES. This result is very promising
because that means certain robustness to small disturban-
ces. In this way, with a slight modification of the external
controller (9) we can also assure a bounded asymptotic
output tracking to a prescribed reference function η�(t).
We state this result with only a sketch of the proof because
is based on the one given in [Isidori, 1995, Prop. 4.5.1].
Proposition 5. Consider the underactuated mechanical
system (4) under the Assumptions A.1–A.5 with the re-
laxations made in A.1’ and A.2’, and with the matrices
Ki, i = 1, ..., 4 satisfying the conditions C1–C4. Suppose
further that η�(t) and η̇�(t) are defined for all t ≥ 0 and
bounded. Then, the smooth–static–feedback controller (8)
and the external controller

ν = r.h.s. (9) −K3K4K3

∫ q1

q1�

M12(µ) · dµ+ η̇�(t) (15)

assure a bounded asymptotic output tracking Isidori
[1995].

Proof. [Sketch] We define a new output χ � η̃ +
K3

∫ q1

q1�
M12(µ)dµ, which is a (local) diffeomorphism to η̃,

and then the external η̃–dynamics becomes χ̇ = −K3K4χ,
remaining the zero dynamics unchanged. Since the closed–
loop system is in the form given in [Isidori, 1995, Prop.
4.5.1] and all the conditions stated there are satisfied then
same arguments hold here.

5. EXAMPLES AND EXPERIMENTS

We test the approach via simulations in one example and
via experiments in the available laboratory equipment.
Since, the applicability of the approach include also multi
input/output systems we include a two–coupled pendula
as an example, while the laboratory equipment that has
been used for the experiments is the Furuta pendulum.
It should be notice that the two–coupled pendula is of
underactuation degree two in contrast with the last appli-
cation we propose, the rotary pendulum or so–called the
Furuta pendulum, which is of underactuation degree one.

In addition, when designing controllers for model–based
underactuated systems usually the proposed controllers
are based on models neglecting the friction forces, even
in the unactuated coordinates. However, in Gómez-Estern
et al. [2004] the importance of the friction to stabilize this
system was shown. So, in the approach proposed here,
the friction forces can be taken into account easily in
the dynamical model. Notice that we only are interested
to stabilize the upper position of the pendulum, not to
swing-up from any position, whose solution was reported
in Acosta et al. [2001] and Gordillo et al. [2003]. To
the best of the authors knowledge the solution proposed
by singular perturbations enlarges the largest region of
attraction obtained so far, even with friction. In theory,
this solution could stabilize the upper position from any
point over the upper half plane. The excellent performance
and the large region of attraction has been tested in the
actual laboratory pendulum and reported here. Table 1
presents a summary of the relevant physical parameters
of the systems related to the potencial function and the
inertia matrix. The outputs η, internal control laws u and
external controllers ν are obtained by substituting in the
equations (10), (8) and (9), respectively. Otherwise, the
change of coordinates given by (Z, η) � (Z, Ẋ) is a
(global) diffeomorphism we present the examples in the
latter intuitive physical coordinates.
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Fig. 1. Simulations of Two–Coupled Pendula.

5.1 The Two–Coupled Pendula (TCP)

This system consists of a platform than can be moved on
the plane x-y, and two pendula which are mounted on
the platform. The pendula are positioned with an angle
shift of 90o respect to z-axis and orientated respect to
the x-axis with an angle of 30o. In table 1, the following
parameters have been defined a = cos 30o, b = sin 30o,
the masses of the pendula are m = 1 kg, the lengths are
l1 = 10 m, l2 = 1 m, the viscous friction constants of the
unactuated degrees of freedom are F = 1 N ·m/(rad/s)
and g = 10 m/s2. The system has 4 degrees of freedom,
the x and y coordinates and the angles of each pendulum
respect to the z-axis, ϕ1 and ϕ2. This platform can be
actuated with two forces orientated in x-axis and y-axis
respectively. In this way, the system has two unactuated
degrees of freedom ϕ1 and ϕ2, which will be denoted
as z1 and z2 respectively. The control gains have been
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Dynamical DOF Potential U(q) Inertia Matrix M(q)
System n V (q1) ϑ(q2) M11(q1) M�

12(q1) M22(q)

TCP 4 mg(l1cz1 + l2cz2) - m

[
l
2
1 0

0 l
2
2

]
m

[
l1cz1a l1cz1b

l2cz2b l2cz2a

]
(M + 2m) I2

FP 2 mglcz - Jp mrlcz Ja + mr2 + Jps2z

Table 1. Physical Parameters of the Systems

selected as follows: K1 = 30I2, K2 = 100I2, K3 = I2 and
K4 = I2. The redesign of the output has been calculated
by introducing the following line integral in (10) as

∫ (z1,z2)

(z1,z2)�

M12dµ = [a sin(z1) + b sin(z2), b sin(z1) + a sin(z2)]�

5.2 Experimental results on the Furuta pendulum (FP)

The model of the rotary pendulum, or so–called Furuta
pendulum, used in this article is thoroughly described in
Acosta et al. [2001] and Gordillo et al. [2003]. The values
of the physical parameters–summarized in table 1–used in
the experimental framework are: mass of the pendulum
= 0.0679 (Kg), length of the pendulum = 0.28 (m), radius
of the arm = 0.235 (m), mass of the arm = 0.2869 (Kg),
constant torque = 7.4, moment of inertia of the motor
= 0.0012(Kg· m2). The full control system is shown in Fig.
2. The laboratory electro-mechanical system is composed
by: a DC motor (15 Nm / 2000 rpm) with tachometer
that measures the speed of the arm; a power supply (50
VA); a PWM servo-amplifier; a pendulum; an encoder
that measures the angle of the pendulum and a slip ring
that drives the signal to the base. The control system
is composed by: a monitor PC with a target (DS1102)
for control based on DSP (TMS320C31)and a software
(DSPACE) for control, monitoring and supervisor. In this
practical case, since in this approach the friction in the
actuated coordinates can be compensated then, we include
a non–linear compensator based on the LuGre model
de Wit et al. [1995] to dominate the friction forces of the
arm of the pendulum, in the linearizing controller u. The
controller gains for the experiments were K1 = 100, K2 =
500, K3 = 10 (ε = 0.1, from proposition 3) and K4 = 25.
In figure 4 the initial conditions for the angular position
of the pendulum was z(0) = 1.45 rad. To the best of our
knowledge this is the largest region of attraction achieved
in experimental results to stabilize this kind of pendulum.
An approximation to the maximum theoretical value of
z(0) can be obtained through the condition det(∆(z)) = 0,
i.e. K1(mrl/Jp) cos2 z = 1, whose value for the K1 given
is 1.5 rad. In fact, we also would like to compare with
the maximum theoretical values obtained by passivity
methods. In Bloch et al. [1999] the maximum theoretical
z is given by the equation |z| ≤ arcsin(

√
r2/(r2 + l2)). In

Viola et al. [2007] the condition which gives the largest
admissible angle |z| ≤ arccos(1 + (mrl/Jp)2)−

1
2 . In both

cases the formulas are not tunable, since depends only on
the physical parameters, and gives rise in our pendulum
to a maximum z(0) = 0.7 rad and z(0) = 0.9 rad
respectively, which are approximately the half of the value
presented above. In Fig. 3 we show a schematic of the
experimental results obtained with the approach given
z(0) = 1.45 rad; with the passive approach z(0) = 0.82

Fig. 2. Laboratory pendulum.
Rad

2 × 1.45 rad

2 × 0.82 rad

2 × 0.75 rad

Fig. 3. Experimental basin of attraction.

rad; and with an Linear Quadratic Regulator (LQR) where
z(0) = 0.75 rad. The similar results obtained with the
LQR and with the passive method are due to the friction
forces which make the close–loop system non passive
as commented before (see Gómez-Estern et al. [2004],
Woolsey et al. [2004]). Figure 4 shows an experiment where
the initial conditions for velocities are not near to zero.
From the theoretical point of view, the region of attraction
could tend to the horizontal position of the pendulum, by
increasing K1. Unfortunately, the system saturates and
it was not possible enlarge more this practical region of
attraction. The saturation of the input control is shown
for both experiments in the figures. Notice that even with
saturation the objective was achieved. We also report and
experiment tracking an sinusoidal reference in Fig. 5 with
the controller given in the proposition 5.

6. CONCLUSIONS

The complex dynamics induced by the joint of the pilot–
&–aircraft can be described by means of unstable un-
deractuated mechanical systems, where the unactuated
part describes the autonomous aircraft dynamics and the
actuated one the piloted. This paper presents an easy
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Fig. 4. Furuta Pendulum: regulation experiment.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

4

Time (sec.)

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

Time (sec.)

C
on

tr
ol

 u

ηη�

Fig. 5. Furuta Pendulum: tracking experiment.

constructive output to control unstable underactuated me-
chanical systems with underactuation degree larger than
one, yielding a great benefit for understanding and testing
strategies to control the unstable aircraft. The approach
is supported by singular perturbations theory and yields
an explicit controller for a whole class of systems. A
multi input/output example with underactuation degree
larger than one and successful experimental results on the
Furuta pendulum are given. The latter presents, to the
best of authors’ knowledge, the largest attraction basin
experimentally tested so far, which has been compared,
via experiments, with another linear and non linear con-
trollers.
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