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Abstract: For switched dynamical systems, switching signals usually undergo perturbations
and disturbances due to various reasons. A well-behaved switched system might not work
properly when its switching signal is perturbed. In this work, we investigate the switching
robustness for a class of switched linear systems. For this, we first define the distance between
two switching signals by means of their switching matrices chains. Then, we prove that, if
a periodic switching path steers the switched system exponentially stable, then any slightly
perturbed switching signal also makes the system stable.

1. INTRODUCTION

The study of switched and hybrid dynamical systems
has attracted much attention since 1990s. A switched
dynamical system is a hybrid system which consists of
several continuous subsystems and a switching signal that
orchestrates the switching among them. The importance of
the study on switched dynamical systems stems from the
facts that the system framework represents a wide class
of practical systems, and the two-level system structure
provides an effective multiple-controller based switching
control approach.

As a primary issue, the stability of switched systems
has been extensively investigated in the literature. For
the guaranteed stability, it was proved that the stability
under arbitrary switching is equivalent to the existence
of a common Lyapunov function for the subsystems Lin
et al. [1996], Dayawansa & Martin [1999]. Accordingly,
the Lyapunov-based tools, such as the multiple Lyapunov-
like function approach and the linear matrix inequality
approach, were proposed for stability analysis Branicky
[1998], Hespanha [2004]. For the stabilizing switching
design, no general constructive approach is available so far,
but quite much development has been made for special
classes of switched systems Wicks et al. [1994], Feron
[1996], Bacciotti [2004]. The reader is referred to Decarlo
et al. [2000], Savkin & Evans [2002], Liberzon [2003], Sun
& Ge [2005] for surveys of recent developments.

It is well recognized that the interactions between the
subsystem dynamics and the switching signal are quite
involved. On one hand, different switching strategies may
produce totally different global system behaviors. A well-
known example is the switched server system composed
by rather simple local models that could produce chaos
Chase et al. [1993], multiple limit cycles Savkin & Matveev
[2001], and other complex global behaviors. On the other
hand, under the same switching strategy, a nominal system
and its (slightly) perturbed system may generate different
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switching signals. For example, even the nominal system is
well-behaved, the perturbed system might be ill-behaved
due to the chattering of the switching signal Sun [2004a].
This means that a small perturbation in subsystem dy-
namics leads to a remarkable switching derivation.

For a switched system, a system perturbation can be im-
posed on the subsystem dynamics, or the switching mech-
anism, or both. For a switched system whose subsystems
undergo structural perturbations, the stability issue has
been addressed in Sun [2004b]. It was proved that any
asymptotically stable system is also structurally stable.
For structural stability in terms of the switching mecha-
nism, the issue has not been discussed in the literature. By
structural stability in terms of the switching mechanism,
we mean a ‘perturbation’ of a normal stabilizing switching
signal and its influence in system stability. Intuitively, for
a robustly stabilizing switching signal, a small perturbed
switching signal should also make the switched system sta-
ble. A problem thus arises naturally: How to characterize
the distance between two switching signals? As switching
signals are defined over infinite time horizon, it is not a
trivial task to formulate a reasonable measure Sun & Ge
[2006].

The study of the stability with respect to switching per-
turbation is well motivated and practiced for the reasons
below. First, in practice we cannot implement a switching
signal precisely. For example, time delay is unavoidable in
may practical situations. Second, the switching device may
mismanipulate in certain cases. For instance, the system
should activate the ith subsystem, but it activates the
jth instead. Third, component (subsystem) failures lead
to displacement of switching signals. Finally, from the
design viewpoint, we prefer to choose a switching signal
which still works (for the stability purpose) under small
perturbations.

2. PRELIMINARIES

Let Rn be the nth-dimensional Euclidian real space, R+

the set of nonnegative real numbers. Let ‖ · ‖ denote the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11526 10.3182/20080706-5-KR-1001.1390



standard 2-norm for a vector in Rn and the induced norm
for a matrix in Rn×n. For Θ ⊂ R, meas Θ denotes its
Lebesgue measure. # denotes the cardinality of a set. Let
M = {1, 2, · · · ,m} be a finite index set.

Consider a switched linear system given by

ẋ(t) = Aσ(t)x(t), (1)

where x ∈ Rn is the system state, σ(t) ∈ M is the
switching signal, and Ak ∈ Rn×n, k ∈ M are known real
constant matrices.

Given a time interval [t0, tf ) (other types of intervals can
be considered in a similar manner), a switching path over
the interval is a piecewise constant function p that maps
[t0, tf ) to M (denoted p[t0,tf ) in short). Suppose that its
discontinuous (jump) time instants are t1 < t2 < · · · <
ts < · · · < tf , we refer to the sequence

DSp = {(p(t0), t1 − t0), (p(t1), t2 − t1), · · · ,

(p(ts−1), ts − ts−1), · · ·}

as its duration sequence. In particular, the sequence
t0, t1, t2, · · · is referred to as switching time sequence. It is
clear that p and DSp are equivalent in the sense that one
can determine the others and vice-versa. The switching
path p[t0,tf ) is said to be well-defined if the number of
switches is finite in any subinterval of a finite length. Given
a subinterval [t1, t2) of [t0, tf ), the sub-path of p[t0,tf ) over
[t1, t2) is denoted by p[t1,t2).

The switching signal σ is usually a function of the time
and the state. It is said to be well-defined with respect to
the switched system, if for each initial state x, it generates
a well-defined switching path, denoted σx, that defined
over [0,∞). In this way, a well-defined switching signal
can be equivalently expressed by a set of switching paths
{σx

[0,∞):x ∈ Rn}.

Let φ(t; t0, x0, σ) denote the motion of system (1) at time
t starting from x0 at t0 along switching signal σ.

3. SWITCHING DISTANCE

In this section, we are to characterize the distance between
two switching signals. For this, we first consider the
simplest case, that is, define the distance between two
switching paths.

3.1 Distance Between Switching Paths

As the state transition matrix is multiple multiplication of
matrix function of the form eAt, the system stability de-
pends heavily on the asymptotic properties of the infinite
chain of matrix multiplications

eAi0
(t1−t0) | eAi1

(t2−t1)eAi0
(t1−t0) | · · · |

eAik
(t−tk) · · · eAi1

(t2−t1)eAi0
(t1−t0) | · · · (2)

which is referred to as transition (matrices) chain. Indeed,
suppose that the above matrix chain is convergent (to the
zero matrix), the corresponding switching path makes the
state convergent for all initial states, and vice-versa. On
the other hand, a variation of a switching path means

a variation of the duration sequence, which can also be
seen as a variation of the transition chain. This simple
observation provides a basic insight into the way for
characterizing the distance between two switching paths.

Let ∆ be the set of intervals of the form [a, b) with
0 ≤ a < b, and any union of such intervals. Given π ∈ ∆,
we can define a diffeomorphism ψπ : R+ \ π 7→ R+ by

ψπ(t) = t − meas{s ≤ t : s ∈ π}, t ∈ R+ \ π.

Given two switching paths p1[t1,t2) and p2[t3,t4), p1 is said
to be a child-path of p2, or p2 is a parent-path of p1,
denoted by p1 ¹ p2, if there is a π ∈ ∆ and a time
transition δ ∈ R, such that

[t1, t2) = ∪t∈[t3,t4)\π{ψπ(t) − δ},

p2(t) = p1(ψπ(t) − δ), ∀ t ∈ [t3, t4) \ π. (3)

Correspondingly, let ∆p2

p1
be the set of π that satisfies (3).

It should be stressed that, set ∆p2

p1
may contain more than

one element.

For two switching paths p1 ¹ p2, define the distance to be

|p2 − p1| = inf
π∈∆

p2
p1

meas π. (4)

It is clear that |p2 − p1| = 0 iff p1 is a pure time transition
of p2, that is, t4 − t3 = t2 − t1 and p1(t1 + s) = p2(t3 + s)
for all s ∈ [0, t2−t1). In this case, we denote p2 = p 7→t3−t1

1 .

Given switching paths p1, p2, and p3, p3 is said to be a com-
mon parent-path of p1 and p2, denoted p3 ∈ CP (p1, p2),
if p1 ¹ p3 and p1 ¹ p3. It can be seen that, for any two
switching paths, there must exist a common parent-path.
Indeed, suppose that

DSpj
= {(ij0, h

j
0), (i

j
1, h

j
1), (i

j
2, h

j
2), · · ·}, j = 1, 2

then, the switching path

DSp3
= {(i10, h

1
0), (i

2
0, h

2
0), (i

1
1, h

1
1), (i

2
1, h

2
1),

(i12, h
1
2), (i

2
2, h

2
2), · · ·}

is a common parent-path of p1 and p2.

Definition 1. For any switching paths p1 and p2, the
(absolute) distance bewteen them is defined as

d(p1, p2) = inf
p3∈CP (p1,p2)

|p3 − p1| + |p3 − p2|. (5)

Proposition 1. The distance between switching paths pos-
sesses the following properties:

1) (positive definiteness) d(p1, p2) ≥ 0, and d(p1, p2) =
0 iff p1 = p 7→s

2 for some s ∈ R;
2) (symmetricalness) d(p1, p2) = d(p2, p1); and
3) (triangular inequality) d(p1, p2) ≤ d(p1, p3)+d(p2, p3).

Proof. Properties 1) and 2) straightforwardly follow from
the definition. To prove property 3), let ε be an arbitrar-
ily small positive real number. By definition, there is a
common parent-path p4 of paths p1 and p3, such that

d(p1, p3) ≥ |p4 − p1| + |p4 − p3| − ε.

Similarly, there is a common parent-path p5 of paths p2

and p3, such that
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d(p2, p3) ≥ |p5 − p2| + |p5 − p3| − ε.

On the other hand, we can find a common parent-path p6

of paths p4 and p5, such that

|p6 − p4| ≤ |p5 − p3|, and |p6 − p5| ≤ |p4 − p3|.

As p6 is also a common parent-path of p1 and p2, we have

d(p1, p2) ≤ |p6 − p1| + |p6 − p2|

≤ |p6 − p4| + |p4 − p1| + |p6 − p5| + |p5 − p2|

≤ |p5 − p3| + |p4 − p1| + |p4 − p3| + |p5 − p2|

≤ d(p1, p3) + d(p2, p3) + 2ε.

Due to the arbitrariness of ε, the triangular inequality
holds. ♦

It follows from the proposition that, the set of switching
paths forms a metric space with the distance defined here.

3.2 Distance Between Two Switching Signals

Suppose that σ1 and σ2 are two well-defined switching
signals for the switched system. Accordingly, for each
initial state x, they generate the switching paths σx

1 and
σx

2 , respectively.

Definition 2. (1) for a time τ and initial state x, the τ -
distance at x between switching signals σ1 and σ2 is

Dτ
x(σ1, σ2) = d(σ1

x
[0,τ ], σ2

x
[0,τ ]), ; (6)

(2) the relative distance at x between switching signals
σ1 and σ2 is

RDx(σ1, σ1) = lim sup
τ→∞

1

τ
Dτ

x(σ1, σ2); (7)

(3) the supremal relative distance between switching sig-
nals σ1 and σ2 is

SRD(σ1, σ2) = lim sup
x∈Rn

RDx(σ1, σ2). (8)

Remark 1. The τ -distance measures the absolute distance
between the the switching signals with respect to an initial
state over interval [0, τ ]. The relative distance measures
the average distance in time over an infinite horizon,
and the supremal relative distance measure the largest
possible relative distance for all initial states. It should be
stressed that the relative distance is more subtle than the
(absolute) τ -distance in characterizing the distant between
two switching signals. In fact, for any two switching paths
defined on an infinite horizon, the absolute ∞-distance
must be infinite if the relative distance is positive, but
the reverse is not necessarily true.

Theorem 1. The distance between switching signals satis-
fies:

1) (positive definiteness) SRD(σ1, σ2) ≥ 0 with
SRD(σ1, σ1) = 0;

2) (symmetricalness) SRD(σ1, σ2) = SRD(σ2, σ1); and
3) (triangular inequality) SRD(σ1, σ2) ≤ SRD(σ1, σ3)+

SRD(σ2, σ3).

Proof. Properties 1) and 2) are straightforward. To prove
3), note that

SRD(σ1, σ2)

= lim sup
x∈Rn

RDx(σ1, σ2)

= lim sup
x∈Rn

lim sup
τ→∞

1

τ
Dx(σx

1 , σx
2 )

≤ lim sup
x∈Rn

lim sup
τ→∞

1

τ
(Dx(σx

1 , σx
3 ) + Dx(σx

2 , σx
3 ))

≤ lim sup
x∈Rn

lim sup
τ→∞

1

τ
Dx(σx

1 , σx
3 )

+ lim sup
x∈Rn

lim sup
τ→∞

1

τ
Dx(σx

2 , σx
3 )

= SRD(σ1, σ3) + SRD(σ2, σ3).

4. ROBUST SWITCHING

For robust switching, we mean that a stabilizing switching
signal still works when it is slightly perturbed. For techni-
cal reasons, we focus on a special class of switched linear
systems.

A switched linear system is consistently exponentially
stabilizable, if there exists a switching path p such that

‖φ(t; t0, x0, p)‖ ≤ β exp(−α(t − t0))‖x0‖,

∀ t ≥ t0, x0 ∈ Rn

for some positive real numbers α and β. It was proved
that consistent exponential stabilizability is equivalence to
the existence of a stabilizing periodic switching path Sun
[2004b], which is the start point of the following result.

Theorem 2. Suppose that periodic switching path p ex-
ponentially stabilizes the switched system. Then, there is
a positive real number γ, such that any switching signal
σ with SRD(p, σ) ≤ γ also exponentially stabilizes the
switched system.

Proof. Suppose that T is the period of p. Then, it can be
seen that the state transition matrix Φ(T, 0, p) is Schur
stable. As a result, for any fixed real number δ ∈ (0, 1),
there is a natural number k, such that

‖Φ(kT, 0, p)‖ = ‖Φ(T, 0, p)k‖ ≤ δ.

Fix a real number ρ ∈ (δ, 1). By the continuity of the state
transition matrix with respect to the switching path, there
is a positive real number µ, such that

‖Φ(kT, 0, p̄)‖ ≤ ρ, ∀ |p̄ − p| ≤ µ. (9)

On the other hand, let x be any given but fixed state, ǫ
be any given positive real number, and σx is the switching
path generated by switching signal σ at x. Recall that
SRD(p, σ) < γ means that RDx(p, σx) < γ, which
further means that the τ -distance between the perturbed
switching and the nominal switching is upper bounded by
τ(γ + ǫ) for sufficiently large τ . That is, there is a τ0, such
that

Dτ
x(p, σx) ≤ τ(γ + ǫ), ∀ τ ≥ τ0.

Now choose γ = ǫ = µ̟ where ̟ is a positive real number
to be determined later. Fix an arbitrarily given natural
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number N such that NkT ≥ τ0. By the definition of the
distance between switching paths, we can partition time
interval [0, NkT ) into N (possibly empty) subintervals
[0, NkT ) = ∪N

i=1[ti−1, ti), such that

DNkT
x (p, σx) =

N
∑

i=1

d
(

p[(i−1)kT,ikT ), σ
x
[ti−1,ti)

)

. (10)

Define

N1 = #
{

i ≤ N : d
(

p[(i−1)kT,ikT ), σ
x
[ti−1,ti)

)

> µ
}

,

N2 = N − N1.

It can be seen that

N1 ≤ ⌈2N̟⌉,

N2 ≥ ⌊N(1 − 2̟)⌋,

where ⌈a⌉ (⌊a⌋) denotes the smallest (largest) integer equal
or greater (less) than a. Based on the above facts, routine
calculation gives

‖Φ(NkT, 0, σx)‖ ≤ µN2ηN1µ ≤
ηµ

µ

(

µ1−2̟η2̟
)N

, (11)

where η = max{e‖A1‖, · · · , e‖Am‖}.

Finally, let ̟ = − ln µ
4(ln η−ln µ) , which is clearly independent

of τ0. Let α = − ln µ
2kT

, and β = ηµ

µ
. Then, it can be seen

from Inequality (11) that

‖Φ(NkT, 0, σx)‖ ≤ βe−αNkT ,

which clearly exhibits that σx makes the switched system
exponentially convergent from the initial state x.

5. CONCLUDING REMARKS

In this work, we first introduced the notion of distance
between two switching paths, then extended the notion to
relative distance between two switching signals. By means
of the distance notions, we established a robust switching
property for a class of switched linear systems.
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