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Abstract: It is well-known that high gain observers exist for nonlinear systems that are
uniformly observable and globally Lipschitzian. Under the same conditions, we show that
these systems admit semi-global and finite-time converging observers. This is achieved with
a derivation of a new sufficient condition for local finite-time stability, in conjunction with
applications of geometric homogeneity and Lyapunov theories.

1. INTRODUCTION

The first approach to observer design for nonlinear sys-
tems, as already contained in the early works is the ex-
tended Kalman and Luenberger observers (Zeitz [1987])
where linear algorithms are applied to the systems lin-
earized around the estimated trajectory.

The research on nonlinear observers has achieved remark-
able progress, since the formal introduction of the concept
and the Lyapunov approach based results of existence and
design in (Thau [1973]). With the advance of the nonlin-
ear observability theory (Hermann and Krener [1977]) in
the differential geometric framework (Isidori [1995]), quite
some early works are devoted to establishing the linkage
between nonlinear observer and nonlinear observability.
The existence of exponential observers is closely related
the observability of the linearized system (Kou et al.
[1975], Xia and Gao [1988]). Uniform observability of a
nonlinear system results in a triangular structure useful
for observer design (see (Gauther et al. [1992], Gauthier
and Kupka [1994]) and their other works). The linearized
observability is a standing assumption for both the Lya-
punov based approach (Raghavan and Hedrick [1994]) and
the observer canonical form approach (Krener and Isidori
[1983], Bestle and Zeitz [1983]). High-gain observers are
very much associated with the triangular structure derived
from uniform observability of nonlinear systems (Gauther
et al. [1992], Gauthier and Kupka [1994]). New develop-
ments of all three design methods have been carried out
in various directions. For instance, the Lyapunov based
approach, under the assumption of linearized observabil-
ity and Lipschitzian nonlinearity, finds its relations to
the unobservability distance (Rajamani and Cho [1998]),
the multiple output case of the observer canonical form
method are studied in (Krener and Respondek [1985],
Xia and Gao [1989]). Another method is to seek a direct
coordinate transformation and by making use the Lya-
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punov auxiliary theorem (Kazantzis and Kravaris [1998]).
The application of high gain observers in the nonlinear
output stabilization problem can be seen in (Teel and
Praly [1994], Khalil and Esfandiari [1993], Atassi and
Khalil [1999]). More results can be found in recent books
(Nijmeijer and Fossen [1999], Besancon [2007]).

Retrospecting these results, there seems to realize the
importance of the Lipschitzian condition on the nonlinear-
ities. The most well-known conclusion in this regard is the
existence of a global high gain observers for uniformly ob-
servable and globally Lipschitzian systems (Gauther et al.
[1992], see also a multi-output extension with semi-global
convergence in (Shim et al. [2001])).

Observers with finite-time convergence have a certain
advantages and therefore are desirable in some situations
of control and supervision. There exist a series of methods
that achieve finite-time convergence, e.g., sliding mode
observers (Haskara et al. [1998]), moving horizon observers
(Michalska and Mayne [1995]). Some of these observers,
such as the sliding mode observers, are not continuous.
The continuity property and its importance in finite-time
stability are realized in (Bhat and Bernstein [2000, 2005]).
It is also interesting to point out that continuous observers
are noted to be different and unique in the nonlinear
context (Krener [1986], Xia and Zeitz [1997]). For instance,
the linearized observability is no more necessary for the
existence of a continuous observer (Xia and Zeitz [1997]).

For linear control systems, it has become now clear that
observability implies existence of finite-time continuous
observers. A first approach to design such an observer is a
dedicated introduction of time-delay in the observers (En-
gel and Kreisselmeier [2002]). This approach was extended
to linear time-varying systems in (Menold et al. [2003])
and to nonlinear systems that can be transformed into the
observer canonical form (Menold et al. [2003]). Sauvage et
al (Sauvage et al. [2007]) also proposed a nonlinear finite-
time observers for a class of nonlinear systems, with a time-
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delay in the observers. A finite-time observer for a class of
observer error linearizable systems is recently constructed
in (Moulay et al. [2007]) by making use of the geometric
homogeneity theory of (Bhat and Bernstein [2005]).

The aim of this paper is to prove a general result: uniformly
observable and globally Lipschitzian nonlinear systems
admit semi-global finite-time observers. This paper reports
only the result of SISO systems. Thorough out the paper,
Rn denotes n-dimension real space and Rn

+ denotes n-
dimension positive real space. Let dxcα = |x|αsign(x),
∀x ∈ R.

2. PRELIMINARIES

Let us begin by introducing some terminologies given in
(Bhat and Bernstein [2000, 2005]). Consider the following
system

ẋ = f(x(t)), f(0) = 0, x ∈ Rn, x(0) = x0, (1)

where f : D → Rn is continuous on an open neighbour-
hood D of the origin x = 0.
Definition 1. (Bhat and Bernstein [2000]). The zero solu-
tion of (1) is finite-time convergent if there is an open
neighborhood U ⊆ D of the origin and a function T :
U\{0} → (0,∞), such that ∀x0 ∈ U , the solution
ψ(t, x0) of system (1) with x0 as the initial condition
is defined and ψ(t, x0) ∈ U\{0} for t ∈ [0, T (x0)), and
limt→T (x0) ψ(t, x0) = 0. Then, T (x0) is called the settling
time. If the zero solution of (1) is finite-time convergent,
the set of point x0 such that ψ(t, x0) → 0 is called the
domain of attraction of the solution.
Definition 2. (Bhat and Bernstein [2000]). The zero solu-
tion of (1) is finite-time stable if it is Lyapunov stable and
finite-time convergence. When, U = D = Rn, the zero
solution is said to be globally finite-time stable.

To illustrate finite-time stability further, as well as for later
use, we consider a scalar system as follows.
Example 1. The scalar system

ẏ(t) = −ldy(t)cα + ky(t), y(0) = x, (2)

where l, k > 0, α ∈ (0, 1), is continuous everywhere and
locally Lipschitzian everywhere except at the origin. Hence
every initial condition in R\{0} has a unique solution. If
|x|1−α < l

k . Multiplying (2) by e−kt, we can obtain

d(e−kty(t))
dt

= −l|y(t)e−kt|αe(α−1)ktsign(y(t)),

The solution trajectories are unique and described by

µ(t, x) =





sign(x)ekt

[
|x|1−α − l

k
+

l

k
ek(α−1)t

] 1
1−α

,

t <
ln(1− k

l |x|1−α)
k(α− 1)

, x 6= 0,

0, t ≥ ln(1− k
l |x|1−α)

k(α− 1)
,

0, t ≥ 0, x = 0.

(3)

Clearly, all the solutions converge to the origin in finite
time.

Lemma 1. Suppose there is a C1 positive definite function
V (x) defined on a neighborhood U ⊂ Rn of the origin, such
that

V̇ (x) ≤ −lV (x)α + kV (x), ∀x ∈ U \ {0}. (4)

Then, the origin of system (1) is finite-time stable. The
domain of attraction of the origin is given by

Ω =
{

x|V (x)1−α <
l

k

}
∩ U. (5)

The settling time satisfies

T (x) ≤ ln(1− k
l V (x)1−α)

k(α− 1)
, x ∈ Ω. (6)

Proof. Note that the following inequality holds:

V̇ (x) ≤ −lV (x)α

(
1− k

l
V (x)1−α

)
< 0, ∀x ∈ U \ {0}.(7)

Since V is positive definite and V̇ takes negative values
on U \ {0}, x = 0 is the unique solution of (1) satisfying
x(0) = 0. Thus every initial condition in U has a unique
solution in forward time. Consider x ∈ U \ {0}, ψ(t, x) is
the unique solution of (1) (it is obviously that ψ(t, x) ∈ U),
we have

V̇ (ψ(t, x)) ≤ −lV (ψ(t, x))α + kV (ψ(t, x)). (8)

Next, applying the comparison lemma to the differential
inequality (8) and (2) yields

V (ψ(t, x)) ≤ µ(t, V (x)), (9)

where µ is given by (3). It follows from (3) and (9), and
the positive-definiteness of V that

ψ(t, x) = 0, t ≥ ln(1− k
l V (x)1−α)

k(α− 1)
, ∀x ∈ Ω. (10)

Thus, the conclusion holds.
Remark 1. Lemma 1, when choosing k = 0, reduces to
Theorem 4.2 (Bhat and Bernstein [2000]). Compared with
Theorem 4.2 (Bhat and Bernstein [2000]), Lemma 1 is
sometimes more handy to test, with a clear indication of
the domain of attraction.

3. FINITE-TIME OBSERVERS

3.1 Finite-time observers

Let the dynamics of a physical system be described by the
following equation:

ẋ = f(x, u), (11)

where x ∈ Rn, u ∈ Rk are the states and inputs of the
system, respectively. f : Rn × Rk → Rn is assumed to
be smooth enough, and f(0, 0) = 0. The state variables
x(t) are not available for direct measurement, only outputs
y(t) ∈ Rm are available:

y = h(x), (12)

where h : Rn → Rm and smooth enough. We give the
following definition.
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Definition 3. Let a dynamical system be described by
ż = g(z, y, u), (13)

in which z ∈ Rn. g : Rn × Rm × Rk → Rn is contin-
uously differentiable. Denote the solution of (11), (13)
with respect to the corresponding input functions and
passing through x0 and z0 respectively as x(t, x0, u) and
z(t, z0, y, u), respectively. If no confusion arises, we denote
x(t, x0, u) simply by x(t), and z(t, z0, h(t, x0, u), u) by z(t).
If

(i) z0 = x0 implies z(t) = x(t), t ≥ 0, for all admissible u;

(ii) there exist an open neighborhood U ⊂ Rn of the origin
such that e0 = z0 − x0 ∈ U implies z(t)− x(t) ∈ U and a
function T : U \ {0} → (0,∞), such that

‖z(t)− x(t)‖ → 0, as t → T (e0), (14)

Then, the system (13) is called a finite-time observer of
the system (11) and (12). In this case, all points e0 = z0−
x0 such that (14) holds constitute a domain of observer
attraction. If the open set U can be chosen as the whole
space Rn, then (13) is called a global finite-time observer.
If for any given compact W ⊂ Rn containing the origin,
there exists a finite-time observer of the form (13), such
that W is contained in the domain of observer attraction,
then the system (11) and (12) is said to admit semi-global
finite-time observers.

3.2 Review of high gain observers design

Consider an SISO nonlinear system on Rn

Γ :
{

ẋ = f(x) + g(x)u,
y = h(x). (15)

If (Γ) is uniformly observable for any input (Gauther
et al. [1992]). Then, a coordinate change can be found to
transform the system (15) into the form




ẋ1 = x2 + g1(x1)u,
ẋ2 = x3 + g2(x1, x2)u,
...

...
ẋn−1 = xn + gn−1(x1, · · · , xn−1)u,
ẋn = ϕ(x1, · · · , xn) + gn(x1, · · · , xn−1, xn)u,
y = x1 = C0x,

(16)

where C0 = [1 0 · · · 0], ϕ and gi (i = 1, · · · , n) are
continuous functions with ϕ(0) = 0, gi(0, · · · , 0) = 0. If in
addition, gi(i = 1, · · · , n) and ϕ satisfy the global Lipschitz
condition with Lipschitz constants L, high gain observers
of the system (16) can be designed as follows:




˙̂x1 = x̂2 + s1e1 + g1(x̂1)u,
˙̂x2 = x̂3 + s2e1 + g2(x̂1, x̂2)u,
...

...
˙̂xn−1 = x̂n + sn−1e1 + gn−1(x̂1, · · · , x̂n−1)u,
˙̂xn = sne1 + ϕ(x̂1, · · · , x̂n) + gn(x̂1, · · · , x̂n)u,

(17)

where [s1 s2 · · · sn]T = S−1(θ)CT
0 . S(θ) has the following

properties.
Lemma 2. (Gauther et al. [1992]). S(θ) satisfies

−θS(θ)−AT
0 S(θ)− S(θ)A0 + CT

0 C0 = 0, (18)

S(θ) ≥ δI, (19)

and

[S(θ)]i,j = [S(1)]i,j
1

θi+j−1
, (20)

where A0 =




0 1 · · · 0
...

...
. . .

0 0 · · · 1
0 0 · · · 0


.

3.3 Linear finite-time observers

For observable linear systems, the above high gain ob-
servers design technique plus some homogeneity result in
finite-time observers. The construction of homogeneity and
proof are similar to those in (Moulay et al. [2007]), which
are actually rooted in (Bhat and Bernstein [2005]). With-
out loss of generality, consider the following observable
linear systems:

{
ẋ = Ax + Bu,
y = Cx,

(21)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and

A =




a1 1 0 · · · 0

a2 0 1
. . .

...
...

...
. . .

...
...

...
...

...
. . . 1

an · · · · · · · · · 0




, B =




b1

b2

...
bn


 , C =




1
0
...
0




T

.

Construct the following observer for the linear system (21)




˙̂x1 = a1y1 + x̂2 + s1de1cα1 + b1u,
˙̂x2 = a2y1 + x̂3 + s2de1cα2 + b2u,
...
˙̂xn = any1 + snde1cαn + bnu.

(22)

where αi = iα − (i − 1), ei = xi − x̂i, i = 1, · · · , n and
[s1, · · · , sn]T = S−1(θ)CT . Let ei = xi − x̂i, the error
dynamics is then given by





ė1 = e2 − s1de1cα1 ,
ė2 = e3 − s2de1cα2 ,
...

...
ėn−1 = en − sn−1de1cαn−1 ,
ėn = −snde1cαn .

(23)

Lemma 3. (Moulay et al. [2007]). For α > 1 − 1
n−1 , the

system (23) is homogeneous of degree α − 1 with respect
to the weights {(i− 1)α− (i− 2)}1≤i≤n.

Lemma 4. There exists ε1 ∈ (1 − 1
n−1 , 1] such that for

all α ∈ (1 − ε1, 1], the system (23) is globally finite-time
stable.

Proof. Consider the following differentiable positive def-
inite function

Vα(e) = yT S(θ)y, (24)
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where y = ( de1c 1
r de2c

1
α1r · · · denc

1
αn−1r )T , e = (e1 e2

· · · en)T , r =
n−1∏
i=1

[(i− 1)α− (i− 2)] is the product of the

weights. It is obvious that Vα(e) is homogeneous of degree
1/r2 with respect to the weights {(i− 1)α− (i− 2)}1≤i≤n.
Let fα denote the vector field of system (23). For each
α > 0, the vector field fα is continuous. When, α = 1,
system (23) can be rewritten as follows:

ė = (A− S−1(θ)CT C)e. (25)

Then,
d

dt
V1(e) = 2eT S(θ)ė = 2eT S(θ)Ae− 2eT CT Ce

By the fact that S(θ) is the solution of (18), we have
d

dt
V1(e) = −θeT S(θ)e− eT CT Ce < 0. (26)

LetA = V −1
α ([0, 1]) and S = V −1

1 ({1}). Then,A and S are
compact. Define ϕ : (0, 1]×S → R by ϕ(α, e) = Lfα

Vα(e).
Then ϕ is continuous and satisfies ϕ(1, e) < 0 for all e ∈ S,
that is, ϕ({1} × S) ⊂ (−∞, 0). Since S is compact, there
exists ε1 > 0 such that ϕ((1 − ε1, 1] × S) ⊂ (−∞, 0).
Thus, for α ∈ (1 − ε1, 1], Lfα

Vα takes negative values
on S. Therefore, A is strictly positive invariant under fα

for every α ∈ (1 − ε1, 1]. By Theorem 6.1 in (Bhat and
Bernstein [2005]), the origin is a globally asymptotically
stable equilibrium under fα for every α ∈ (1 − ε1, 1]. By
Theorem 7.1 (Bhat and Bernstein [2005]), we can obtain
that the origin is a globally finite-time stable equilibrium
by noting that α− 1 < 0. Moreover, by Lemma 4.2 (Bhat
and Bernstein [2005]), we have

−c1(α, θ)[Vα(e)]

1
r2 +α−1

1
r2 ≤ LfVα(e)

≤ −c2(α, θ)[Vα(e)]

1
r2 +α−1

1
r2 ,

(27)

where c1(α, θ) = −min{z:Vα(z)=1} LfVα(z) and c2(α, θ) =
−max{z:Vα(z)=1} LfVα(z). Thus, the system (23) is glob-
ally finite-time stable.

The above proof is independent of θ. However, c2(α, θ)
in (27) is a function of θ and has the following property.
Lemma 5. c2(α, θ) satisfies

lim
α→1

c2(α, θ) = θ. (28)

Proof. If follows from (26) that
max

{e:V1(e)=1}
LfV1(e) = −θ. (29)

It is obvious that LfV1(e∗) = −θ, where e∗ = [0 0 · · · 0
1√
snn

]T and snn = [S(θ)]n,n. Since Vα(e) is continuous,
∀z ∈ {e : Vα(e) = 1}, 1 = lim

α→1
Vα(z) = V1(z). i.e.,

z ∈ {e : V1(e) = 1}. Then, we have {e : Vα(e) = 1} ⊂
{e : V1(e) = 1}

max
{e:Vα(e)=1}

LfVα(e) ≤ max
{e:V1(e)=1}

LfVα(e).

Then,
lim
α→1

max
{e:Vα(e)=1}

LfVα(e) ≤ lim
α→1

max
{e:V1(e)=1}

LfVα(e) = −θ.

On the other hand, let e0 =
[
0 0 · · · 0 s

−αn−1r

2
nn

]T

, then

e0 ∈ {e : Vα(e) = 1}, and limα→1 LfVα(e0) = LfV1(e∗) =
−θ. Then, max{e:Vα(e)=1} LfVα(e) ≥ LfVα(e0). Therefore,

lim
α→1

max
{e:Vα(e)=1}

LfVα(e) ≥ lim
α→1

LfVα(e0) = −θ.

Then, we have lim
α→1

max{e:Vα(e)=1} LfVα(e) = −θ. Thus,
the proof is completed.

3.4 Nonlinear finite-time observers

Now we are ready to state our main result.
Theorem 1. Assume that the nonlinear system (15) is
uniformly observable for any input and is globally Lips-
chitzian. Then, it admits semi-global finite-time high gain
observers.

Without loss of generality, assume that the system takes
the triangular structure of the form (16). An observer is
designed as follows:



˙̂x1 = x̂2 + s1de1cα1 + g1(x̂1)u,
˙̂x2 = x̂3 + s2de1cα2 + g2(x̂1, x̂2)u,
...
˙̂xn−1 = x̂n + sn−1de1cαn−1 + gn−1(x̂1, · · · , x̂n−1)u,
˙̂xn = ϕ(x̂1, · · · , x̂n) + snde1cαn + gn(x̂1, · · · , x̂n)u,

(30)

where [s1 s2 · · · sn]T = S−1(θ)CT
0 and α1, · · · , αn are

chosen as in (22).

The dynamics of the observation error e = x − x̂ is given
by 




ė1 = e2 − s1de1cα1 + g̃1,
ė2 = e3 − s2de1cα2 + g̃2,
...

...
ėn−1 = en − sn−1de1cαn−1 + g̃n−1,
ėn = −snde1cαn + ϕ̃ + g̃n, e(0) = e0,

(31)

where g̃1 = g1(x1)u − g1(x̂1)u, g̃2 = g2(x1, x2)u −
g2(x̂1, x̂2)u, · · ·, g̃n−1 = g(x1, · · · , xn−1)u −gn−1(x̂1, · · · ,
x̂n−1)u, g̃n = gn(x1, · · · , xn)u − gn(x̂1, · · · , x̂n)u, ϕ̃ =
ϕ(x1, · · · , xn)− ϕ(x̂1, · · · , x̂n).

The proof the Theorem (1) is divided into the following
several parts.
Lemma 6. (Gauther et al. [1992]). When α = 1, for in-
puts u uniformly bounded by some u0 ≥ 0, there exists a
large enough θ1 ≥ 1, such that if θ ≥ θ1, then system (31)
is exponentially stable.
Lemma 7. For system (31) there exists ε2 ∈ [1 − 1

n−1 , 1)
such that for all α ∈ (1 − ε2, 1], the following inequalities
hold

Vα(e) ≤ SeT
0 e0, ∀t > 0, (32)

and

yT y ≤ S

δ
eT
0 e0, ∀t > 0, (33)

where Vα(e) and y are given by (24), S = maxi,j |S(1)i,j |.
Moreover, for i = 2, · · · , n, k = 1, · · · , i, there exists θ2 > 1
such that if θ > θ2, the following inequalities hold
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|ek(t)|
1

αi−1r

θi
≤ |ek(t)|

1
αk−1r

θk
, (34)

Proof. Let d = eT
0 S(θ)e0, A′ = V −1

α ([0, d]), S ′ =
V −1

1 ({d}). Let f ′α denote the vector field of system (31).
Then, A′ and S ′ are compact. Define ϕ′ : (0, d]× S ′ → R
by ϕ′(α, e) = Lf ′αVα(e). Then ϕ′ is continuous and by
Lemma 6 satisfies ϕ′(1, e) < 0 for all e ∈ S ′, that is,
ϕ({1} × S ′) ⊂ (−∞, 0). Since S ′ is compact, then there
exists ε2 > 0 such that ϕ((1 − ε2, 1] × S ′) ⊂ (−∞, 0).
Thus, for α ∈ (1 − ε2, 1], Lf ′αVα takes negative values on
S ′. Therefore, A′ is strictly positive invariant under fα for
every α ∈ (1− ε2, 1], then,

yT S(θ)y ≤ eT
0 S(θ)e0, (35)

Moreover, Form (19), (20) and (35), we have

δyT y ≤ yT S(θ)y ≤ eT
0 S(θ)e0

=
∑

i,j

e0iS(1)i,je0j

θi+j−1
≤ SeT

0 e0.

Thus, the inequalities (32) and (33) hold. If eT
0 e0 ≤ 1, since

1 ≤ 1
r ≤ 1

α1r ≤ · · · ≤ 1
αn−1r and θ ≥ 1, it is obvious that

inequalities (34) hold. If eT
k (t)ek(t) > 1, it follows from

(33) that e(t) is bounded. Then, there exists θ2 such that
if θ ≥ θ2, the inequalities (34) hold.

Now, calculating the derivative of Vα(e) as defined in (24)
along the solution of system (31) by noting that d

dtdeicαi =
αi|ei|αi−1 (Hong [2002]), we can obtain

d

dt
Vα(e)(31) =

d

dt
Vα(e)(23)

+2yT S(θ)




1
r
|e1| 1r−1g̃1

1
α1r

|e2|
1

α1r−1g̃2

...
1

αn−1r
|en|

1
αn−1r−1(g̃n + ϕ̃)




≤ −c2(α, θ)[Vα(e)]

1
r2 +α−1

1
r2 + 2

[
yT S(θ)y

] 1
2

×

∑

i,j

|S(1)i,j |
θi+j−1

|ei|
1

αi−1r−1
L(u0 + 1)

∑i
k=1 |ek|

αi−1r

× |ej |
1

αj−1r−1
L(u0 + 1)

∑j
k=1 |ek|

αj−1r

] 1
2

.

By Lemma 2.2 of (Qian and Lin [2001]), there exist con-
stants c̄i (1 ≤ i ≤ n), such that the following inequalities
hold.

i∑

k=1

|ei|
1

αi−1r−1|ek|

≤
i∑

k=1

[
c̄i|ei|

1
αi−1r + αi−1r

(
1− αi−1r

c̄i

) 1
αi−1r−1

|ek|
1

αi−1r

]

4
=

i∑

k=1

bi,k|ek|
1

αi−1r , 1 ≤ i ≤ n,

where bi,k are some positive scalars. Let b = maxi,k bi.k.
Then,

d

dt
Vα(e)(31) ≤ −c2(α, θ)[Vα(e)]

1
r2 +α−1

1
r2 + 2bL(u0 + 1)S

1
2

× [
yT S(θ)y

] 1
2


∑

i,j

θ

∑i
k=1 |ek|

1
αi−1r

αi−1rθi

∑j
k=1 |ek|

1
αj−1r

αj−1rθj

] 1
2

≤ −c2(α, θ)[Vα(e)]

1
r2 +α−1

1
r2 +

2bL(u0 + 1)S
1
2

αn−1r

[
yT S(θ)y

] 1
2

×

∑

i,j

θ
i∑

k=1

|ek|
1

αk−1r

θk

j∑

k=1

|ek|
1

αk−1r

θk




1
2

≤ −c2(α, θ)[Vα(e)]

1
r2 +α−1

1
r2 +

2nbL(u0 + 1)S
1
2 θ

1
2

αn−1r
[yT S(θ)

y]
1
2 ×




∑

i,j




i∑

k=1

e
2

αk−1r

k

θ2k




1
2




j∑

k=1

e
2

αk−1r

k

θ2k




1
2



1
2

. (36)

Let ξk = dekc
1

αk−1r

θk , for θ ≥ max{θ1, θ2} > 1, we have

d

dt
V (α, e)(31) ≤ −c2(α, θ)[Vα(e)]

1
r2 +α−1

1
r2

+
2n2L(u0 + 1)bS

1
2 θ

1
2

αn−1r

[
yT S(θ)y

] 1
2

(
n∑

k=1

ξ2
k

) 1
2

. (37)

On the other hand, let ξ = [ξ1, ξ2, · · · , ξn]T , note that
S(θ) ≥ δI, then,

n∑

k=1

ξ2
k ≤

1
δ
ξT S(1)ξ =

1
θδ

∑

i,j

[
deic

1
αi−1r

S(1)i,j

θi+j−1
dejc

1
αj−1r

]

i,j

=
1
θδ

∑

i,j

[
deic

1
αi−1r S(θ)i,jdejc

1
αj−1r

]
i,j

=
1
θδ

yT S(θ)y.(38)

It follows from (37) and (38) that

V̇ (α, e) ≤ −c2[Vα(e)]

1
r2 +α−1

1
r2 + c3Vα(e), (39)

where c3 = 2n2L(u0+1)bS
1
2

αn−1rδ
1
2

.

Now, we can summarize the proof for our main theorem.

Proof of Theorem 1:For any given compact set U ⊂ Rn

containing origin, we can choose ε < min{ε1, ε2} such that
for all α ∈ [1− ε, 1), c2(α, θ) satisfies

c2(α, θ) ≥ θ

2
. (40)

By (39) and Lemma 1, “the domain of the observer
attraction”, by an abuse of terminology, is given by

Ω =
{

e : Vα(e)r2(1−α) <
c2

c3

}
. (41)
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We can choose sufficiently large θ ≥ max{θ1, θ2}, such
that U ⊂

{
e : (SeT e)r2(1−α) < c2

c3

}
. By (32) and (41), we

have U ⊂ Ω. Thus, the system (15) admits semi-global
finite-time observers.
Remark 2. In Theorem (1), if we set α = 1, we can obtain
the results in (Gauther et al. [1992]).

4. CONCLUSION

It is well-known that high gain observers exist for non-
linear systems that are uniformly observable and globally
Lipschitzian. Under the same conditions, we showed that
these systems admit semi-global and finite-time converg-
ing observers. This was achieved with a derivation of a
new sufficient condition for local finite-time stability, in
conjunction with applications of geometric homogeneity
and Lyapunov theories.
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