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Abstract: This paper presents a new approach to solve synchronization problem of a large class of discrete 

chaotic systems. The chaotic systems can be reformulated as an appropriate class of linear parameter 

varying (LPV) systems. Then, based on the LPV representation, a neural network observer-based approach 

is proposed to solve the synchronization problem. The simulation results show the advantages of 

combining the LPV techniques and the neural networks to determine the appropriate observer gain within 

the context of chaotic system synchronization. 

 

1. INTRODUCTION 

The possibility of synchronization of two coupled chaotic 

systems was first shown by Pecora and Carrol (1990) . The 

importance of this discovery was quickly appreciated by He 

(1992), and soon this topic aroused great interest as a 

potential mean for communications (kolumban et al, 1997; 

Tse et al,2003 ). In recent years a great deal of effort has 

been devoted to extend the chaotic communication 

applications to the field of secure communications. A 

detailed survey of chaotic secure communication systems is 

presented by Yang (2004). As the chaos synchronization 

problem can be reformulated as an observer design problem, 

the observer-based approach becomes one of the most 

attractive techniques for chaotic systems. This kind of 

approach has extensively been investigated in the recent 

research works by Grassi and Mascolo (2002); Morgul 

(1996) and Solak (1997) ; Nijmeijer and Mareels (1997); 

Ushio (1999); Celikovsky and Chen (2002). 

Neural networks (NNs) have been recognized as valuable 

tools that offer simple solutions to difficult problems in 

various science and engineering fields due to their inherent 

adaptability and universal approximation properties 

(Suykens, 1996; Luo et al, 1997; Cherkassky et al, 1998). 

Especially in the area of control, neural networks have 

experienced an increased interest in the last decade. The 

later works on this field have mostly focused on the 

application of recurrent neural networks for system 

identification and observer design for general nonlinear 

systems. Zhu et al (1997) focus on the application of 

dynamic recurrent neural networks (DRNN) as observers for 

nonlinear systems. They consider a class of single-input-

single-output (SISO) nonlinear time-varying systems in their 

work, where they prove the bounded ness of the observer 

error and the DRNN weights during adaptation using 

Lyapunov stability theory and the well-known universal 

approximation theorem for neural networks (Zhu et al ,1997; 

Hornik et al ,1989). With an alternative approach, Wang and 

Wu (1994) exploit the multiplayer recurrent neural networks 

to synthesize linear state observers in real-time application. 

There are also examples of static feed forward neural 

network applications to observer and controller design. 

Ahmed and Riyaz (2000) consider an off-line training 

scheme for an MLP based observer design for nonlinear 

systems. They note that although the NN observer requires 

more computation in the training phase, it is more 

computational efficient compared to the EKF in the 

implementation phase. An interesting approach is presented 

by Vargas and Hemerly (2000), where they employ linearly 

parametrized neural networks (LPNN) for the design of an 

adaptive observer for general nonlinear systems. LPNN 

include a wide class of networks including radial-basis - 

function (RBF) networks, adaptive fuzzy systems, and 

wavelet networks. Fretheim et al (2000) utilize the feed 

forward MLP in the observer design problem with a little 

twist. They formulate the problem as a multi-step prediction, 

and exploit the extrapolation capabilities of the MLP to 

obtain the state estimates. Erdogmus et al (2002) investigate 

the use of adaptive extended Luenberger state estimators for 

general nonlinear and possibly time-varying systems. The 
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association between dynamic neural networks and the 

Luenberger observer leaded to an obvious modification on 

the proposed observer scheme that would allow handling 

state estimation for those systems. On the other side, some 

researchers followed a more conservative approach to 

nonlinear observer design for the class of nonlinear discrete-

time chaotic systems. An extended Kalman filtering was 

proposed by Cruz and Nijmeijer (1999); while extended 

observers are used by Huijberts (2001); Lilge (1999). Linear 

parameter-varying (LPV) techniques were also used 

successfully in the context of chaotic systems 

synchronization (Bara et al  ,2005 ). Based on their results, a 

sufficient condition was given in order to design the 

observer gain with guaranteed stability of the 

synchronization error. This condition was expressed as an 

LMI (linear matrix inequalities) solvability problem. In such 

a case, one needs to solve the (LMI) in order to find the 

observer gain if the LMIs are feasible. Therefore, NN based 

techniques as described above seems more general and 

easier to implement. In this paper, a new approach is 

proposed for the synchronization of discrete-time chaotic 

systems. This approach is based on the fact that many 

chaotic systems can be transformed into LPV systems when 

the output signal is chosen appropriately. Then the 

synchronization problem is reformulated as an observer 

design. In order to find the observer gain, one seeks the 

connection between the designed observer and Grossberg's 

additive model (J.C. Principe ,1999) for dynamic neural 

networks (DNN). The proposed DNN uses the on-line 

training algorithm to train observer gain and finds the 

weights of the network such that the synchronization of this 

class of chaotic systems is achieved.    

This paper is organized as follows. In Section 2, the class of 

systems under study and the chaos synchronization problem 

are described.  Formulation of the observer-LPV form is also 

presented in this section. Section 3 presents the main 

contribution of this paper which consists of a new LPV 

neural network observer-based approach for the problem.  In 

order to demonstrate the validity of the approach two 

numerical examples including discrete-time Henon and 

Lorenz systems are presented in Section 4. This paper 

concludes in Section 5. 

 

2. PROBLEM FORMULATIOM 

Consider the class of chaotic systems described by the 

following nonlinear state equations: 
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Where nkx ℜ∈)(  is the state vector and ℜ∈)(ky  is the 

scalar output signal. A and C are constant matrices of 

appropriate dimensions and nnf ℜ→ℜ×ℜ×ℜ +:  is a 

nonlinear function. The pair (A, C) is assumed to be 

detectable (Polderman et al, 1998). 

Given the chaotic drive-system (1), the chaos 

synchronization problem consists of finding a response 

system (also called a slave-system) whose state )(ˆ kx  

converges towards the drive-system state )(kx using the 

transmitted signal )(ky .  

The synchronization problem for the discrete-time LPV 

chaotic systems using neural network observers is 

investigated. As it is showed by Bara et al (2005), the 

following assumptions can lead to the reformulation of the 

chaotic system as an LPV one. Note that these assumptions 

are not restrictive. In fact, the class of systems satisfying 

these conditions includes an extensive variety of chaotic 

systems such as the discrete-time version of the Henon’s or 

the   Rossler's and Lorenz's systems (Liao et al , 1999). 

A1: For a particular choice of the output matrix C, the 

nonlinear part can be rewritten as: 

)),(()()),(()),(),(( 21 kkygkHxkkygkkykxf +=        (2) 

Where nnH ×ℜ∈ , ℜ→ℜ×ℜ +:1g and ng ℜ→ℜ×ℜ +:2
.   

A2: It is assumed that the function ))),((1 kkyg is bounded 

when y(k) is bounded. Note that this assumption is not 

restrictive because the state vector x(k) and the transmitted 

signal y(k) of a chaotic system are always bounded. Now, 

the following notations are introduced: 
( )

( )bHkAkA

akkygk

3)())((
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ρρ
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=  

Using Equation (2) and the notations in  (3),  system (1) can 

be rewritten as: 
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Using the output measurement, one can compute )(kρ  at any 

instant k. Hence, )(kρ  is considered as a known time-

varying parameter and system (4) can be seen as a linear 

parameter varying (LPV) system with a nonlinear term. A 

state observer corresponding to (4) is given by: 
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Where )(ˆ kx  denotes the estimate of the state )(kx  . 

 

3. MAIN RESULTS 

The most widely used dynamic neural network is the so 

called additive model by Grossberg. The state dynamics of 

the additive model is described by 

 

)(.))(.()(.)1( kIWkxWkxTkx Is ++−=+ σ          (6) 

Usually, it is desired to identify the weights matrix 
IW  

multiplying the input vector )(kI . The passive decay matrix 

T is commonly a diagonal positive definite matrix and the 

interactions between states are provided through 
sW   and the 

nonlinearity of the neurons, (.)σ . But these may not be 

always the case. A special case of interest is when the 

nonlinearity of the neurons in (6) is chosen to be a linear 

function. For the choice aa =)(σ  , (6) is reduced to a linear 

dynamic neural network whose dynamics are of the form 
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)(.))().()1( kIWkxTWkx Is +−=+           (7) 

One may express the designed observer (5) in the form of 

the additive model. Then it is possible to generalize this 

equation as (8), with a sufficient number of neurons and a 

proper choice of the weight matrix : 
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Then, with a proper adaptation of parameters in (8), one may 

design a stable observer for this discrete class of chaotic 

systems as it is described below. 

Suppose a network is to be trained to find the gain matrix L 

such that the synchronization error, 

)(ˆ)()( kxkxke −=         (9) 

converges asymptotically toward zero. If the system under 

consideration is observable and LTI, off-line training of the 

network is readily led to a globally asymptotically stable 

observer. However, for nonlinear and time-varying systems, 

off-line training is not much useful. Instead, invoking an on-

line training algorithm called Widrow's stochastic gradient 

adaptation algorithm is very promising (Widrow et al, 1985). 

Suppose one is to train the network to find an optimal L 

based on the minimization of instantaneous squared error 

(ISE). The ISE may be considered as a stochastic 

approximation to the mean square error (MSE) which was 

used in the off-line training.  It should be noted that one may 

use other performance criteria instead of ISE. The learning 

algorithm used in this paper is the steepest descent algorithm. 

The gradient the stochastic cost function (i.e. ISE) with 

respect to the weights was computed to get Widrow’s 

stochastic gradient for MSE. Though the cost function 

depends only on the instantaneous value of the error, the error 

recursion still exhibits a back propagation property and it is 

easy to oversee this. One may use the actual gradient 

expression computed with full consideration of the recursive 

structure of the topology or use an approximate version of the 

gradient, which is very accurate if the learning rate is chosen 

to be a small value.  The stochastic cost function and its 

approximate gradient are simply computed using (10) and the 

current value of the observer gains: 
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 Here J is the cost function, η  is the learning rate and 

ones(n) is an all ones matrix of the size of the state vector. 

With this algorithm, the weights converge toward optimal 

solution and the synchronization of the LPV chaotic system 

is possible.  
 

 

3.1 Approximation Improvement 

As it was mentioned the algorithm (10) is close to the actual 

gradient when the step size in steepest descent is small. The 

advantage of using the approximate gradient is that it is 

computationally much simple. However, it requires the use of 

smaller step size values for stability of the weights. This is 

investigated in below. 

Suppose we assign a time index to each gain vector during 

the adaptation process in the following manner (we will drop 

the input and time indexes from the expressions for 

simplicity): 
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Now we may use the chain rule to express 
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Notice that when the step size is small, the second term on 

the right hand side of (12) will be approximately one(or 

identity matrix). This is the approximation that links this 

actual gradient expression to the approximated one given in 

(10). To avoid this approximation, one may use the steepest 

descent update rule to determine this second derivative. The 

matrix we seek is the inverse of 
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In summary, the actual gradient expression can be computed 

by iterating the equations presented in (11-13). This 

modification provides faster convergence rates at the cost of 

increased computational requirements. For example if one 

supposes that 1
1

2 =
∂

∂

−

−

k

k

L

L  and substitutes this into the algorithm 

(11) with consideration of (12) and (13),  it leads to the 

following algorithm: 
(14) 
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3.2 Remarks on stability 

From the assumption A2 and the definition of )(kρ , we 

deduced that the parameter )(kρ  is bounded. Then, assume 

the notations 

))((max))((min kk
kk

ρρρρ ==
−       (15) 

 Now, consider the quadratic Lyapunov function: 

)()()( kePkekV
T=                  (16) 

 

According to the Lyapunov stability theory, the error (9) 

converges exponentially towards zero if and only if: 

 

1. The function V (k) is positive definite. 

2. )()1()( kVkVkV −+=∆                                                (17)   

is negative definite 

for all 0)( ≠ke  and all possible trajectories )(kρ . 

The achievement of the first condition can be done by 

choosing P as the positive definite matrix. The second 

condition is satisfied if and only if : 

 

0]_))(())([( ≤−+−+ PLCHkAPLCHkA
T ρρ             (18) 

   

This can be proved as bellow.  The variation of this 

Lyapunov function is )()1( kJkJJ −+=∆  

)(]_))(())()[(( kePLCHkAPLCHkAke
TT −+−+= ρρ  

 

The parameter dependence of the inequality (18) implies an 

infinite number of inequalities to satisfy. In order to reduce 

this infinite number to a finite one, we apply the convexity 

principle. Then, since (18) is affine with respect to the 

parameter )(kρ , the in ],[)( ρρρ
−

∈k equality (18) is satisfied 

for all possible trajectories if it is satisfied on the vertices 

of ],[ ρρ
−

. This condition yields the inequality conditions (19) 

and (20): 

 

0]_)()[( ≤−+−+
−−

PLCHAPLCHA
T ρρ

                    (19) 

0]_)()[( ≤−+−+ PLCHAPLCHA T ρρ                     (20) 

 

These conditions determine a bounded range for L which 

guaranties the convergence of the synchronization error to 

zero and in this range we have: 

0)( →ke  

Then considering the system described by (1) we deduce: 

 

0)()(ˆ)()( →=−= keCkykykeo  
Therefore it is obvious that the cost function 

kJ converges 

asymptotically toward zero for this range of the weight 

matrix L. Now one can invoke the proposed algorithms to 

find the optimal L. This is done by restricting the search for 

optimum weights of the network to this bounded region. The 

following case studies show the applicability of the proposed 

approaches. 

4. THE CASE STUDIES 

Example1. Consider the discrete-time Henon chaotic system:  
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The chaotic behaviour of this system is depicted in the phase 

plot of Fig. 1(a), with the initial conditions [ ]Tx 11)0( = .  One 

may rewrite this system as in (4) with )(kA  defined by 

(3b) with 

[ ]T
kkygkykTH 01)),((,)()(,

00

04.1
2 ==







−
= ρ  

The Fig. 1(b) shows the evolution of parameter )(kρ  which 

is identical to the system output. From this figure one can 

see that )(kρ  is bounded: 2728.12846.1 =−=
−

ρρ  

 Using the proposed algorithms (10) and (14), one can 

readily compute the results as shown in Table1. This table 

contains the initial value of L ( 0L ), the learning rate (η ), 

the training algorithm which was used (Alga.), number of 

epochs to find the optimal observer gain (L) and its value. 

Fig. 3 shows simulation results for Henon system (Table 1, 

case 3). As it is seen from the figures, the synchronization 

achieved quite fast and with almost zero error. As it was 

stated in Section 3, for small learning rates the algorithms 

given by (10) and (14) give the same results (see Table 

1,case 1 and 2) but if η  increases then the algorithm (14) 

provides faster convergence rates (see Table1,case 4 and 5) . 

In this example, it is impossible to find L such that 

conditions (18) and (19) are satisfied. This means that 

although one cannot guarantee the stability of the system 

(see Table1, case 6) but the synchronization can be  

achieved for some values of initial conditions (Table 1,  case 

1-5) . Such values of initial conditions can be worked out by 

trial and error or judicious selection based on satisfaction of 

at least some of the conditions in (18) and (19). 

Table1.Simulation results for Henon map  

(Minimum cost equal is to 1e-9) 

C

a

s

e 

0L
 

η  Alg. Epoc

hs 

L 

1 T]15.1[

 

.02 10 72 T]3338.3314[.

 

2 T]15.1[

 

.02 14 72 T
]3335.3156[.

 

3 T]15.1[

 

.03 10 28 [ ]T
3140.3222.

 

4 T]15.1[

 

.035 10 24 T]1277.5419[.

 

5 T]15.1[

 

.035 14 19 T]1125.5934[.

 

6 
T]178.2[−

 
.03 10, 

14 

max No result 
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Example 2. Consider the discrete-time version of the Lorenz 

chaotic system [30]. This discrete-time version is obtained 

by using the Euler discretization method with a sampling 

period of T = 0:01. The system is described by: 
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The chaotic behaviour of this system is depicted in the phase 

plot of Fig.2, with the initial conditions [ ]Tx 1.022)0( −= .  

One may rewrite this system as in (4) with )(kA  defined by 

(3b) with 
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Using the proposed algorithms (10) and (14) one can readily 

compute the results as given in Table 2. Fig. 4 shows 

simulation results for Lorenz attractor (Table 2, case 1). As 

it is seen from the figures, the synchronization achieved 

quite fast and with almost zero error. As it was stated in 

Section 3, for small learning rates the algorithms given by 

(10) and (14) give the same results (see Table 2, case 1 and 

2) but if η  increases then the algorithm (14) provides faster 

convergence rates (see Table 2,case 3 and 4). 

Table2.Simulation results for Lorenz system 

 (Minimum cost is equal to 1e-9) 
C

a

s

e 

0L  η  Alg. Epoch

s 
L 

1 T]8.15.1[

 
.5 10 149 [ ]T5988.8418.0794.1

 

2 T]8.15.1[

 
.5 14 149 [ ]T7468.9589.3597.1

 

3 T]8.15.1[

 
2 10 78 [ ]T

4191.8047.67.

 

4 T]8.15.1[

 
2 14 54 [ ]T5427.7976.4649.1

 

5. CONCLUSION 

 This paper presented a new approach to solve 

synchronization problem of a large class of discrete chaotic 

systems. The idea was to reformulate the chaotic system as an 

appropriate class of linear parameter varying (LPV) systems. 

Then, based on the LPV representation, a neural network 

observer-based approach was proposed to solve the 

synchronization problem. The simulation results for two 

typical chaotic system examples showed effectiveness of the 

proposed approach. 
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Fig.2. The Lorenz chaotic system..  
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(b) The scalar signal )(kρ  

Fig.1. The Henon chaotic system. 
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Fig.3. Henon states, estimates and synchronization errors 
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Fig.4. Lorenz states, estimates and synchronization errors 
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