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Abstract: This paper deals with a fault detection method taking into account model uncertainties 

described by bounded variables. A parity space approach is used for generating testable redundancy 

relations in which each uncertain parameter is defined by an interval containing all its feasible 

values. Consistency tests consist in evaluating these set-membership relations and lead to convex 

sets containing the feasible free-fault behaviours of the supervised system. The objective is to 

improve fault detection performance by taking into account constraints on variations of uncertain 

parameters, which do not randomly vary. 
 

 

1. INTRODUCTION 

Fault Detection (F.D.) methods often use analytical 

redundancy based on a mathematical model of the supervised 

physical system (Patton et al., 1989; Rajaraman et al., 2004; 

Frank, 1990; Staroswiecki et al., 1991). Redundancy relation 

generation consists in structuring model equations in order to 

make this information exploitable in the form of relations 

sensible to faults which must be detected. A major drawback 

lies in the fact that a model only defines an approximate 

description of the physical system because of modeling 

errors. Thus, to avoid confusing a modeling error with a fault, 

the model inaccuracy, represented in our case by structured 

parameter uncertainties, has to be taken into account. 

The knowledge of some model parameters is often not 

complete. Instead of representing an uncertain parameter by a 

constant nominal value, it is defined as a bounded variable. In 

other words, its real value is unknown, but it belongs to a set 

of feasible values defined as an interval whose bounds are 

known. Because of model inaccuracy, residuals may thus be 

different from zero in the fault free case and describe a set of 

behaviors representing the normal operation domain of the 

supervised system. Built by using interval analysis according 

to uncertainty amount, this domain naturally defines the 

adaptive thresholds of the F.D. method by determining 

whether sensor observations are consistent with the reference 

model. An inconsistency thus reveals a fault. 

More important is model inaccuracy, larger are uncertainties 

and worse is fault detection quality. In previous works (Adrot 

et al., 2000a, 2000b; Ploix et al., 2006), only supports of 

uncertain model parameters are taken into account. 

Concerning variations of these parameters, only two opposite 

cases can be treated. These cases correspond respectively to 

uncertain constant parameters which do not vary in model 

time horizon and to uncertain time-variant parameters which 

can vary randomly on their interval supports. In the second 

case, this means that a parameter can be equal to one of its 

bound at time t, and can be equal to the other one (or any 

value belonging to this interval) at next time. Model 

parameters having a physical meaning generally have slower 

variations and do not randomly vary on their supports. To 

take into account the way in which uncertain parameters vary 

enables to increase fault detection quality. 

Principles of analytical redundancy relation (A.R.R.) 

generation and consistency tests are presented in section 2 

and 3. The section 4 explains how to consider uncertain 

parameter variations. An example illustrates the proposed 

method in section 5. 

2. A.R.R. GENERATION 

2.1. Model presentation 

Uncertain structured models take into account the lack of 

knowledge on a physical system by indicating which 

parameters are uncertain. These uncertainties are described 

by normalized bounded variables, whose bounds are equal to 

−1 and 1. For example, a parameter υ whose value belongs to 

an interval defined by a lower bound υ  and an upper bound 

υ , will be written: 

 ( ) ( ) [ ]( )   1  i.e.  1 1c w , ,= + ≤ ∈ −υ υ υ θ θ θ , 

 with ( )
2

υυ
υ

+
=c  and ( )

2

υυ
υ

−
=w . 

In the fault free case, considered dynamic systems are 

described by the general following linear discrete-time state 

equations: 

 
( ) ( )

( )
1k k k k k

k k k

, ,

,
+ = +

 =

x A x B u

y C x

θ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑ
θ ϑθ ϑθ ϑθ ϑ

, (1) 

 yx u
ss s s s

R , R , R , R , Rθ ϑθ ϑθ ϑθ ϑ∈ ∈ ∈ ∈ ∈x u yθ ϑ . 

The terms xk , uk  and yk , respectively define the state, 

actuator input and sensor output vectors at time k. Since the 

chosen parity space approach leads to mathematical relations 
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with a finite time horizon, it is quite usual to consider that 

some uncertain parameters can be time-invariant over this 

time horizon. Thus, the bounded vectors kθθθθ  and ϑϑϑϑ contain 

respectively uncertain time-variant parameters and uncertain 

parameters, which can be considered as constant. In this 

section, the components θ k
i

 of θθθθ k  are represented by 

independent random variables with bounded realizations. At 

two different instants k and t, it is assumed that a same 

uncertain parameter iθ  is represented by two independent 

variables i
kθ  and θ t

i
 with the same bounds. Moreover, the 

matrices A, B and C are assumed to be linear in uncertainties.  

2.2. Parity space approach 

A major drawback of interval analysis is its explosive nature 

in case of set-membership recursive models (Armengol et al., 

1999). In order to avoid this problem known as wrapping 

effect, a parity space approach is chosen (Chow et al., 1984; 

Massoumnia et al., 1988; Nguang et al., 2006). It consists in 

reformulating the dynamic model equations in the form of 

algebraic relations on a chosen time horizon s∈N. By 

stacking sensor observations on the time window [k,k+s] 

according to initial state vector xk, a static representation is 

obtained where it is no need to integrate model equations in 

order to generate A.R.R. (Adrot et al., 2000a): 

 ( ) ( ) 1k ,s
k ,s k k ,s

k ,s
, ,θ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑ −  = −     

u
O x H I

y
, (2) 

 

{ }
�

k

k ,s

k s, ,θθθθ +∈

 
 =
  z u y

z
z

z
⋮ ,  ( ) 1

1

k

k k
k ,s

k s k s k

, +

+ + −

 
 

=  
  

C
C A

O

C A A
⋮
…

θ ϑθ ϑθ ϑθ ϑ  

( )
1

2 1 2 1

11 1 1

0 0 0
0 0

0
k k

k k k k kk ,s

k s k sk s k s k k s k s k

,
+

+ + + +

+ + −+ + − + + − +

 
 
 =
 
 

C B
C A B C BH

C BC A B C A B

⋯
⋯
⋯

⋮
⋯⋯ ⋯

θ ϑθ ϑθ ϑθ ϑ

( ) ( ) ( )
1 1

identityy y u y ys s n s s s.s s s
R , R , R

+ × + × ×
∈ ∈ ∈O H I  

 with ( ) ( ) ( )k k k k k k, , , , ,= = =A A B B C Cθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑ  

In the previous equality (2), the term on the left depends on 

unknown state variables whereas the term on the right groups 

together measured outputs and known inputs. In order to 

eliminate the unknown state vector xk, an uncertain parity 

matrix ( )k ,s ,θ ϑθ ϑθ ϑθ ϑW  orthogonal to ( )k ,s ,O θ ϑθ ϑθ ϑθ ϑ is sought: 

 ( ) ( ) 0k ,s k ,s, , =W Oθ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑ . (3) 

The parity matrix can be written in the form of a polynomial 

matrix in uncertainties whose symbolic expression is given in 

(Adrot et al., 2000b). A numeric method for parity matrix 

calculation is also given in (Ploix et al., 2006). After 

multiplying the static form (2) by W, the vector rk of 

analytical redundancy relations is deduced: 

 ( ) ( ) ( )

( )

1

k ,s

k ,s
k k ,s k ,s k ,s

k ,s

,

, , ,

θ ϑθ ϑθ ϑθ ϑ

θ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑ −  = −     
P

u
r W H I

y�������������
,(4) 

where ( )k ,s ,θ ϑθ ϑθ ϑθ ϑr  is polynomial in uncertainties and linear in 

known inputs and outputs. Moreover, this expression depends 

on all the uncertainties which initially affect the state 

representation (1). 

The existence of redundancy relations depends on the 

existence of a parity matrix W satisfying (3) and so on the 

determination of a relevant time horizon s. If this horizon is 

too small, W can not be constructed or some relations miss 

and fault detection performance is limited. If the horizon is 

too large, the amount of computations increases without any 

benefits. The right determination of s is a key issue. An 

uncertain system defined by (1) is called regularly observable 

(Ploix et al., 2006) if, for all s∈N
+
, the rank of its observable 

subspaces ( )k ,s ,θ ϑθ ϑθ ϑθ ϑO  is independent of uncertainties. 

Assuming the system (1) is regularly observable, the method 

provided by the deterministic theory (Chow et al., 1984; 

Massoumnia et al., 1988) may be used to determine s. In this 

way, if the observation matrix Ck is full row rank, there are sy 

redundancy relations: 
( )1y y ys s s s

kR , R
× +

∈ ∈W r . 

3. CONSISTENCY TESTS 

3.1. Principle 

Let us note υυυυk the vector composed of all normalized 

bounded variables contained in rk: 
T

T T
k k ,s

 =
 

υ θ ϑϑϑϑ . At a 

given instant k, the physical system is normally operating if at 

least one value υυυυ of the uncertain vector υυυυk exists such that: 

- the model is consistent with measurements, that implies 

rk(υυυυ) = 0, 

- υυυυ is a feasible value in the sense that 1
∞

≤υ . 

To check consistency between sensor observations and model 

(1) consists in evaluating redundancy relations (4) according 

to model uncertainties and testing whether obtained set-

membership residuals can be equal to zero. According to (4) 

and by noting the origin of the residual space O, consistency 

analysis leads to test if: 

 ( )k∈ rO S  with ( ) ( ){ }1k k k k/υ υυ υυ υυ υ
∞

= ≤r rS . 

The value set S(rk) defines all the feasible values of the 

uncertain residual vector rk , which are consistent with the 

chosen model according to sensor observations and 

constraints 1≤
∞kυ . Thus, a fault is detected if the origin O 

of the residual space does not belong to S(rk), since in this 

case rk can not be equal to zero. 

Thus, the objective is to compute the value set of rk. Since rk 

is non-linear in bounded variables υυυυk, to exactly evaluate 

S(rk) is generally impossible. The proposed solution is to 

compute an overestimation of S(rk) by using the method 

detailed in (Adrot et al., 2000b), which enables to obtain 

redundancy relations linear in uncertainties. Briefly, the 

principle is to replace each monomial of bounded variables 

occurring in rk by a new independent variable with an 

adequate support. For example, by noting i
kυ  the i

th
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component of υυυυk, monomials ji
k k

υ υ  and ( )
2

i
kυ  are replaced by 

µ k
j  and 0 5 0 5. .+ µ k

l , where µ k
j  and µ k

l  defines the j
th

 and l
th

 

components of a normalized bounded vector µµµµ k . All 

occurrences of a given monomial are replaced by the same 

component of µµµµ k . This linearization is guaranteed because 

the value set S(rlin,k) of the linearized residual vector rlin,k 

always contains the theoretic domain S(rk) (Fig. 1). 

By noting µµµµk a vector composed of all normalized bounded 

variables appearing in the linearized residual vector, rlin,k is 

written as follows where the certain matrix Rµ  and the vector 

r0  are linear in measurements: 

 r R y u r y ulin k k k s k s k k s k s, , , , ,, ,µµµµ µµµµb g c h c h= +− −µ 1 0 1 . 

Since rlin,k is linear in µµµµk, S(rk) is overestimated by a convex 

zonotope S(rlin,k) centered in 0r  and whose shape is imposed 

by Rµ . In other words, this zonotope is a domain delimited in 

the residual space by two by two parallel hyperplanes which 

can be defined by a set of inequality constraints. Therefore, 

S(rlin,k) can be exactly described by an inequality system: 

 ( ) ( )1 1k ,s k ,s lin,k k ,s k ,s, ,− −≤M y u r n y u , (5) 

where the matrix M and the vector n are certain and can be 

computed by the method detailed in (Adrot et al., 2000b). In 

this way, consistency tests for fault detection consist in 

verifying whether the inequality ( )10 k ,s k ,s, −≤ n y u  holds. 

All these steps are resumed in Fig. 1. 

 
Fig 1. Steps of the fault detection method  

Since S(rlin,k) is pessimistic and necessarily contains S(rk) 

which represents all fault free behaviors, this method does 

not generate any false alarms other than those due to the no-

completeness of the model. Thus, if the model is initially 

complete, an inconsistency necessarily guarantees the 

presence of a fault. On the contrary, a consistency does not 

assure the absence of a fault which may be masked by some 

uncertainties (problem only due to model inaccuracy) or by 

the use of S(rlin,k) instead of S(rk) (pessimism due to 

linearization).  

The interest of this method is that: 

- the linearization can be done a priori, 

- the computation of inequalities (5) is very fast, 

- consistency tests are simple and very fast.  

4. UNCERTAINTIES WITH BOUNDED VARIATIONS 

4.1. Principle 

In the method proposed in section 2, the support of a time-

variant and uncertain model parameter θ 
i
 is known a priori or 

identified (Adrot et al., 2006), but its variations are not 

constrained (provided that it belongs to its interval support). 

In this way, θ 
i
 can randomly vary on the time horizon s of 

redundancy relations (4) since it is represented by 

independent bounded variables i
k jθ + , j∈{0,…,s} on the time 

horizon [k,k+s]. This means that the bounded parameter iθ  

can be equal to one of its bound at time k+j, and can be equal 

to the other one (or any value belonging to [−1,1]) at time 

k+j+1. Generally, model parameters having a physical 

meaning (or any combination of them) have slower variations 

and do not vary randomly on their support. For example, two 

bounded parameters with bounded variations delimited by 

dashed lines are illustrated in Fig. 2. To take into account the 

way in which uncertain parameters vary, enables to increase 

fault detection quality by forbidding operating points which 

can not be physically reached, i.e. by reducing S(rk). 

 

-1 

0 

1 
Time variant bounded variable 

with bounded variations 

Time invariant bounded variable 

k k+sk+1 

+ 

* 

×××× 

×××× 

×××× 
×××× 

×××× 
××××

+ + + + +

* 

* 

* 

*

Time variant bounded variable 

 
Fig. 2. Different types of bounded variables 

The original objective of this work consists in considering 

that the variation of the parameter iθ  is limited (bounded in 

our case) between two consecutive instants. For a discrete 

time variable i
kθ , this leads to impose the constraint: 

 1 1 1
T

i i i i i i i i *
k k k k k k, , Rθ θ δ ε θ θ ε δθ θ δ ε θ θ ε δθ θ δ ε θ θ ε δθ θ δ ε θ θ ε δ +

+ +
∞

 = + ≤ ∈
 

.(6) 

Geometrically, equation (6) defines a zonotope (grey zone) in 

the ( )i
k

i
k 1, +θθ -space: 

Inequality system 

( ) ( )1 1k ,s k ,s lin,k k ,s k ,s, ,− −≤M y u r n y u  

Redundancy relations: kr  

Linearization: lin,kr   

( )krS  ? 
( )

( )

lin,k

k

r

r
∪

S

S

 

 xxx
xxx
xxx

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx( )lin,krS

+ O 

Consistency test: decision making 

( )10 k ,s k ,s, −≤ n y u  not satisfied ⇒ fault 

Two-sides inequalities 
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Fig. 3. Constraint on parameter variation 

Remark. The case δ 
i
 = 0 is already treated by ϑϑϑϑ.  

Remark. As shown in Fig. 3, to take a width δ 
i
 larger than 2 

leads to a zonotope which corresponds to the box 

[−1,1]×[−1,1]. In other words, the constraint (6) becomes less 

restrictive than the constraint due to the normalization of 

bounded variables because a bounded parameter can be equal 

to one of its bound at time k, and can be equal to the other 

one at time k+1. In this case, equation (6) does not provide 

any additional information for fault detection. 

For beginning, let us consider the following real function rnv 

(‘nv’ standing for normalized variables) depending of an 

uncertain parameter θ expressed at two consecutive instants:  

 ( ) kkkknvr θθθθ −= ++ 11, . (7) 

The bounded variables θk and θk+1 being normalized, the 

value set of rnv given by: 

 ( ){ }1 11 1nv nv k k k kr , / ,θ θ θ θθ θ θ θθ θ θ θθ θ θ θ+ += ≤ ≤S , (8) 

is evaluated by interval analysis (Moore, 1979; Neumaier, 

1990) and leads to interval [−2,2].  

Taking into account constraint (6) gives a new expression rbv 

(‘bv’ standing for bounded variation) of the function rnv: 

( ) kkkkkbvr θδεθεθ −+=, . A well-known cause of 

pessimism of interval analysis comes from the multiple 

occurrences of bounded variables in a real function. Interval 

analysis can not take into account the dependence between 

several bounded variables (Moore, 1979; Neumaier, 1990) 

because it works on their bounds (supports) where this 

dependence does not appear. A solution consists in putting 

together identical bounded variables before using interval 

analysis: ( ) kkbvr δεε = . The evaluation of the value set of rbv:  

 ( ){ }1
*

bv bv k kr / , Rε ε δε ε δε ε δε ε δ += ≤ ∈S  (9) 

leads to interval [−δ,δ]. In case the value of δ is less than 2, 

constraint on parameter variations leads as expected to a 

more conservative set Sbv than Snv. 

Let us note rext (‘ext’ standing for extended) the vector 

composed of rnv and rbv. The value set of rext satisfying both 

constraints on parameter supports (7) and constraints on 

parameter variations (8) given as: 

 
( )

( )
11

1 1

1

k knv k k
ext *

bv k k

,r ,

r , R

++
+

 ≤ ≤  
=    ≤ ∈   

θ θθ θ
ε ε δ

S , 

is an interval vector (box) [−2,2]×[−δ,δ] because no bounded 

variable appears simultaneously in both component of rext.  

The same principle can be used for a vector of redundancy 

relations. Let us consider the following vector field rnv: 

 ( ) 1 1
1

1 12
k k k k

nv k k
k k k k

, + +
+

+ +

+ + =  − + 
r

θ θ θ θ
θ θ

θ θ θ θ
. 

Constraint (6) leads to: 

 ( ) ( )
( )

2

2

2

2 2

k k k k k
bv k k

k k k k

,
 + + +
 =
 + + 

r
θ δε θ δθ ε

θ ε
δε θ δθ ε

. 

By using the linearization method explained in section 3, the 

linearized vectors are respectively expressed as: 

 ( )












+−

++
=

+

+
+ 1

1

1
11

1,
2

,,

kkk

kkk
kkklinnv

µθθ

µθθ
µθθr  

( ) ( )2 3
2 3

2 3

2 0 5 1

1 2

k k k k
bv,lin k k k k

k k k

.
, , ,

 + + + +
 =
 + + + 

r
θ δε µ δµ

θ ε µ µ
δε µ δµ

 

where all bounded variables are independent and normalized. 

The value set Sext of the vector rext: 

 
T

T T
ext nv,lin bv,lin

 =
 

r r r , 

is a zonotope in R
4
-space. Some projections in different 

( i
extr , j

extr )-spaces are shown on Fig. 4, where i
extr  is the i

th
 

component of rext. The value set Sext is generally a zonotope 

instead of a box. Working without limited parameter 

variations leads to consider only the left-up zonotope. 

 
Fig. 4. Projections of Sext 

Therefore, the principle is to construct additional redundancy 

relations associated to constraints on bounded parameter 

variation, and then to simultaneously apply consistency tests 

on all A.R.R. 

4.2. Proposed fault detection method 

The method initially proposed in section 2 enables to 

construct redundancy relations (4) satisfying constraints on 

parameter supports: 

 ( ) ( ) ( ) 1k ,s
nv,k k ,s k k ,s k ,s

k ,s
, , , − 

= =   

u
r r P

y
θ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑθ ϑ θ ϑ θ ϑ .(10) 

-1 
-1 

1 

1 

i
kθ  

-δ 
i
 

δ 
i
 

i
k 1+θ   

-4 -2 0 2 4 -4

-2
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-4 -2 0 2 4 -2
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-4 -2 0 2 4 -4 
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1
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2
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3
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4
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1
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In order to take into account bounded parameter variations, it 

is needed to generate additional redundancy relations from 

previous equations (10) by means of constraints (6). Each 

bounded variable 
i

jk +θ  of k ,sθ  (2) is expressed according to 

i
kθ  (beginning of time window) and new independent 

normalized variables i
k h+ε , h∈{0,…,j−1}: 

 1   with ,

1

0

≤+= +

−

=

++ ∑ i
hk

j

h

i
hk

ii
k

i
jk εεδθθ . 

In this way, all variations of the uncertain parameter i
kθ  are 

taken into account on the time horizon s of the static 

representation (2).  

Additional redundancy relations are expressed as: 

 ( ) ( ) 1
1 1

k ,s
bv,k k k ,s k k ,s

k ,s
, , , , −

− −
 

=   

u
r P

y
θ ε ϑ θ ε ϑθ ε ϑ θ ε ϑθ ε ϑ θ ε ϑθ ε ϑ θ ε ϑ .    (11) 

Finally, consistency tests proposed in section 3 are directly 

applied on the extended vector rext,k:  

 ( ) ( )
( )1

1

nv,k k ,s
ext ,k k ,s k ,s

bv,k k k ,s

,
, ,

, ,

θ ϑθ ϑθ ϑθ ϑ
θ ε ϑθ ε ϑθ ε ϑθ ε ϑ

θ ε ϑθ ε ϑθ ε ϑθ ε ϑ−
−

 
=  
  

r
r

r
. 

By construction, since rext,k contains all redundancy relations 

(4), the proposed fault detection method in this section can 

not lead to results worse than for the initial method resumed 

in section 2 and 3.  

5. EXAMPLE 

In order to illustrate previous developments, let us consider 

the following discrete-time free fault state space model: 

2 21

11 1

2

0 8 1 0
10 0 2

0 051 0    with 
0 1 0 1

k k k k k k
k

kk k k k

.
u u

.

.

.

+
   = + = +   +   

  =+= =   = 

x A x B x

y C x x

ρ θ

ρρ θ
ρ

.(12) 

Normalized bounded variables i
kθ , i∈{1,2}, describe 

multiplicative uncertainties. The chosen time horizon (i.e. the 

smallest integer s for which the matrix ( )k ,s ,O θ ϑθ ϑθ ϑθ ϑ  is not full 

row rank) is s = 1. The static representation (2) is given as: 

 

( )

111
1 1

1 1 1 1
1 1 1

2 2

0

1 0
0

0 1 0
0 8 1 1 0

1
0 0 2

kk
k

k ,kk k

k

k
k k

k k k

k

u

u
.

.

++

+ + +

      = −           
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Let us note w
T
 a generic row of the parity matrix W: 

 
1 2 3 4T

w w w w =
 

w . 

Constraint (3) leads to: 

 
( ) ( )

( ) ( )

1 1 1 1 1 3
1

2 1 1 2 2 4
1 3

0 8 1 1

1 0 2

k k

k k

w . w

w w . w

+

+

 = − + +


= − + − +

ρ θ ρ θ

ρ θ ρ θ
. 

Since the rank of the matrix ( )0 0,O  is equal to 2, two 

redundancy relations must be generated. By choosing two 

arbitrary values of the pair (w
3
,w

4
): 

 ( ) ( )3 1 1 4 3 4
1 0   and  0 1kw ,w w ,w= + = = =ρ θ , 

the following uncertain parity matrix  

( )
( ) ( )( )

( )

1 1 1 1 1 1 1 1
1 1

1 2 2

0 8 1 1 1 1 0

0 0 2 0 1

k k k k

k ,

k

.
,

.
θ ϑθ ϑθ ϑθ ϑ

+ +
 − + − + + +
 =
 − +
 

W
ρ θ ρ θ ρ θ ρ θ

ρ θ
 

is obtained. Finally, A.R.R. are given as:  

 ( ) ( )1 1
1

0
0
0
1

k
nv,k k , k , k

k
, , uθ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑθ ϑ θ ϑ

+

  
   = −        

y
r W

y
.(13) 
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r

ρ θ

ρ θ ρ θ θ

ρ θ

⋯

⋯ . 

Then the linearization procedure is applied: 
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2
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r

ρ ρ ρ
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with 1nv,kµµµµ
∞

≤ , where the bounded variables 
i
nv,kµ , 

i∈{1,…,4}, represent the monomials 
1 1 1 1 2

1 1, , , k k k k k+ +θ θ θ θ θ . 

In equation (13), the first uncertain parameter 1
kθ  appears at 

times k and k+1. A constraint on its variations is imposed:  

 
1 1 1 1 1 1

1  1  0 1k k k k, , .+ = + ≤ =θ θ δ ε ε δ . 

Additional redundancy relations are expressed as: 
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ρ θ ρ δ θ ε

ρ θ

⋯

⋯ ⋯

⋯

 

By representing respectively the monomials ( )
2

1 1 1
, , k k k ,θ ε θ  

1 1 2
, k k kθ ε θ  by the bounded variables 

i
bv,kµ , i∈{1,…,5}, the 

linearization procedure leads to: 
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Figure 5 represents the variables simulated in this example. 

Two faults are considered. A bias of magnitude 0.5 affects 

the first sensor between times 10 and 40 and a second one of 

magnitude 0.15 affects the second sensor between times 60 

and 90 (grey areas). The difference between the state variable 
1
kx  and its measurement 1

ky  in fault free case comes from 

influence of uncertain parameter 1
kθ  on matrix Ck (12).  
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Fig. 5. States variables and measurements 
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Fig. 6. Consistency tests 

Variations of uncertain parameters and results of consistency 

tests are shown on Fig. 6. During F.D., only supports of 

uncertain parameters (and their variations) are assumed to be 

known. For consistency tests, the values 0 and 1 indicate 

respectively abnormal and normal behaviours. Since a time 

horizon is used (s = 1), tests can not be performed at the fist 

sample (value equal to −1). Initial and proposed methods 

correspond respectively to work on rnv,link,k and on the 

extended vector composed of rnv,link,k and rbv,link,k. Abnormal 

behaviour is detected when a fault is really present. Faults are 

still detected out of the faulty time period (at times 41, 91) 

because of time horizon equal to one sample time. The first 

fault is only detected by the proposed method. The second 

fault is perfectly detected by both methods. Miss-detections 

are essentially due to uncertainties (±5%, ±50%), which may 

mask a fault, but to take into account uncertainty variations 

increases fault detection performance (grey areas). 

6. CONCLUSION 

The objective of this paper is to improve previous works on 

fault detection using interval analysis (section 2) for handling 

uncertain dynamic systems where uncertainties can be 

multiplicative. A new method based on constraints on 

uncertainty variations (section 4) is explained. In case model 

parameters do not randomly vary on their support, this 

information leads to additional redundancy relations which 

may reduce miss-detections.  

7. REFERENCES 

Adrot O., D. Maquin and J. Ragot, (2000a). Bounding 

approach to the fault detection of uncertain dynamic 

systems, Safeprocess2000.  

Adrot O., D. Maquin and J. Ragot, (2000b). Diagnosis of an 

uncertain static system, 39th Conference on Decision 

and Control CDC’2000. 

Adrot O., J-M. Flaus and J. Ragot, (2006). Estimation of 

Bounded Model Uncertainties. Journal of Robotics and 

Mechatronics, vol.18, no.5. 

Armengol, J., L. Travé-massuyès, J. Vehi, and M. A. Sainz 

(1999). Semiqualitative simulation using modal interval 

analysis. 14th World Congress of International 

Federation of Automatic Control, Beijing, China. 

Chow E.Y. and A.S. Willsky, (1984). Analytical Redundancy 

and the Design of Robust Failure Detection System. 

IEEE Trans. Aut. Control, AC-29 (7), 603-614. 

Frank P.M., “Fault Diagnosis in Dynamical Systems Using 

Analytical and Knowledge based Redundancy - a Survey 

and Some New Results“, Automatica, Vol. 26, N
o
 3, 

pp 459-474, (1990). 

Massoumnia M.M. and W.E. Van der Velde (1988). 

Generating parity relations for detecting and identifying 

control system component failures, Journal of guidance, 

control and dynamics, vol. 11 n°1, 60-65. 

Moore, R.E., (1979). Methods and applications of interval 

analysis, SIAM, Philadelphia. 

Nguang S. K., P. Zhang and S.X. Ding, (2006), Parity 

relation Based fault estimation for nonlinear systems: an 

LMI approach, Safeprocess2006. 

Neumaier A. (1990). Interval methods for systems of 

equations, Cambridge University Press, Cambridge. 

Patton R.J., P.M. Frank and R.N. Clark, (1989). Fault 

diagnosis in dynamic systems, Prentice Hall, Englewood 

Cliffs. 

Ploix S. and Adrot O., (2006). Parity relations for uncertain 

dynamic systems. Automatica, vol 42, p 1553-1562. 

Rajaraman S., J. Hahn and M.S. Mannan, (2004). A 

methodology for fault detection, isolation, and 

identification for nonlinear processes with parametric 

uncertainties. Industrial & Engineering Chemistry 

Research, 43(21), 6774-86. 

Staroswiecki, M., V. Cocquempot and J. P. Cassar (1991). 

Observer based and parity space approaches for failure 

detection and identification. IMACS-IFAC International 

Symposium, Lille, France. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7343


