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Abstract: The anisotropy-based approach to robust control in stochastic systems occupies a
unifying intermediate position between the H2 and H∞-optimal control theories. Initiated at
the interface of Information Theory and Robust Control about fourteen years ago, the approach
employs the a-anisotropic norm of a linear system as its worst-case sensitivity to input random
disturbances whose mean anisotropy is bounded by a nonnegative parameter a. The latter
quantifies the temporal “colouredness” and spatial “non-roundness” of the signal by its minimal
relative entropy production rate with respect to Gaussian white noises with scalar covariance
matrices. Revisiting the underlying definitions, the paper emphasizes the role of feedback in
the construct of mean anisotropy of signals and discusses propagation of the latter through
various filter connections. The results can be used to support physical and engineering intuition
for a “rational” choice of the mean anisotropy level a in the design of anisotropy-based robust
controllers. Copyright c©2008 IFAC.
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1. INTRODUCTION

Performance analysis and optimal design of control sys-
tems and signal processing devices substantially rely on
the statistical characteristics of the underlying random
disturbances. The inevitable uncertainty in the knowledge
of these last is a standard motivation for stochastic mini-
max settings in Robust Control.

The anisotropy-based approach to stochastic robust con-
trol occupies a unifying intermediate position between
the H2 and H∞-optimal control theories. Initiated about
fourteen years ago at the interface of Information Theory
and Robust Control, the approach employs the concepts
of mean anisotropy of signals and anisotropic norm of
systems (Semyonov et al. [1994], Vladimirov et al. [1995,
1996]).

The mean anisotropy of a multidimensional random sig-
nal is defined via its relative entropy, or historically, the
Kullback-Leibler informational divergence, with respect
to Gaussian white noises with scalar covariance matrices
(Vladimirov et al. [2006]). It therefore quantifies both tem-
poral correlations, that is, “colouredness” or predictability,
of the signal and its spatial “non-roundness”.

A similar, though different, approach using the relative
entropy to describe statistical uncertainty in stochastic
control systems can be found in (Petersen et al. [2000],
Petersen [2006]).

The a-anisotropic norm of a system is the worst-case
sensitivity of its output measured by the largest root
mean square gain of the system with respect to input

random disturbances whose mean anisotropy is bounded
by a nonnegative parameter a.

The anisotropy-based approach to controller design em-
ploys the a-anisotropic norm of the closed-loop system as
a performance index which is to be minimized, with the
magnitude of the parameter a governing the robustness,
and hence, conservativeness of the controller.

Since the exogenous perturbations are often caused by
superposition of various effects from other interacting sys-
tems, the present paper provides a collection of results on
the changes in the mean anisotropy of signals propagating
through filter connections.

In this context, a leading part is played by feedback since
the latter constitutes a universal vehicle for creating the
temporal correlations in a signal via “recycling” its past
history. Furthermore, the role of feedback for the mean
anisotropy of signals is closely related to the Kolmogorov-
Szegö formula (Ibragimov and Rosanov [1978]) for the
Shannon entropy production rate in a stationary Gaussian
sequence.

Revisiting the underlying definitions in Section 2, the
paper dedicates Section 3 to the role of feedback in the
construct of mean anisotropy of signals and discusses the
propagation of the latter through various types of filter
connections in Section 4.

The results of the paper can be used to support physical
and engineering intuition for a “rational” choice of the
anisotropy level a in the design of anisotropy-based robust
controllers.
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2. MEAN ANISOTROPY AND ANISOTROPIC NORM

Let V = (vk)k∈Z be an m-dimensional discrete-time
Gaussian white noise, that is, a sequence of independent
Gaussian random vectors with zero mean Evk = 0 and
identity covariance matrix E(vkvT

k ) = Im. Here, Z is the
set of integers which label equidistant moments of discrete
time.

Consider the m-dimensional stationary Gaussian signal
W = (wk)k∈Z = GV generated from V by a linear discrete
time invariant causal system G with impulse response
function 0 ≤ k 7→ gk ∈ R

m×m as

wj =

+∞∑

k=0

gkvj−k .

The generating filter G is identified with its matrix transfer
function

G(z) =

+∞∑

k=0

gkzk (1)

which is assumed to be in the Hardy space Hm×m
2 , en-

dowed with the H2-norm

‖G‖2 =

√∑

k≥0

‖gk‖2
2 =

√
E(|wj |2),

extending the Frobenius norm ‖M‖2 =
√

Tr(MMT ) of
a finite-dimensional real matrix M . The mean anisotropy
(Vladimirov et al. [1995]) of the signal W = GV is defined
by

A(G) = − 1

4π

π∫

−π

ln det

(
mĜ(ω)(Ĝ(ω))∗

‖G‖2
2

)
dω (2)

where Ĝ(ω) = limρ→1− G(ρeiω) is the angular boundary
value of the transfer function (1), with the limit under-

stood in the sense of the L2-norm, so that Ĝ is the Fourier
transform of the impulse response function.

Note that (2) extends to systems G ∈ Hm×r
2 of full

row rank m ≤ r. More precisely, 0 ≤ A(G) < +∞ iff

rank Ĝ(ω) = m for almost all ω ∈ [−π, π], in which case
the mean anisotropy A(G) is completely specified by the

singular values of Ĝ; otherwise, A(G) = +∞.

Furthermore, A(G) = 0 iff G is an all-pass system up to a

nonzero constant scalar multiplier, that is, Ĝ(ω)(Ĝ(ω))∗ =
λIm for almost all ω ∈ [−π, π] for some λ > 0, or
equivalently, iff W is a Gaussian white noise with scalar
covariance matrix E(wkwT

k ) = λIm.

In general, the mean anisotropy A(G) can be equivalently
defined as the minimal relative entropy production rate of
W = GV with respect to the family of Gaussian white
noises with scalar covariance matrices (Vladimirov et al.
[2006], pp. 1266–1269). More precisely,

A(G) = lim
N→+∞

minλ>0 D(PN‖QmN,λ)

N
.

Here, PN is the probability distribution of the mN -
dimensional random vector (wk)0≤k<N , the fragment of
the signal W on the time interval {0, . . . , N − 1}, and
Qr,λ is the r-variate Gaussian probability measure with

zero mean and covariance matrix λIr , whose probability
density function is given by

qr,λ(w) = (2πλ)−r/2 exp

(
−|w|2

2λ

)
, w ∈ R

r.

Accordingly, writing pN for the density of PN with respect
to the mN -variate Lebesgue measure,

D(PN‖QmN,λ) =

∫

RmN

pN(w) ln
pN (w)

qmN,λ(w)
dw

is the relative entropy, or Kullback-Leibler informational
divergence, of PN with respect to QmN,λ.

For a given anisotropy level a ≥ 0, the a-anisotropic norm
of a linear discrete time invariant system F ∈ Hp×m

∞ is
defined by

|||F |||a = sup
G∈H

m×m

2
: A(G)≤a

‖FG‖2

‖G‖2
. (3)

The quantity |||F |||a is nondecreasing and concave in a ≥ 0,
with

‖F‖2√
m

= |||F |||0 ≤ lim
a→+∞

|||F |||a = ‖F‖∞,

so that the standard H2 and H∞-norms are the limiting
cases of the anisotropic norm.

A more detailed account on the properties of the mean
anisotropy (2) of stationary Gaussian sequences and the
anisotropic norm (3) of linear time invariant systems can
be found in Diamond et al. [2001], Vladimirov et al.
[2005].

3. FEEDBACK IN MEAN ANISOTROPY

Although it is not obvious from (2), the construct of mean
anisotropy incorporates feedback as a universal mechanism
for creating temporal correlations in a signal via “recy-
cling” its past history. The property originates from the
Kolmogorov-Szegö formula for the Shannon entropy pro-
duction rate in a stationary Gaussian sequence (Ibragimov
and Rosanov [1978]).

To this end, a signal W = GV generated by a system
G ∈ Hm×m

2 as described in Sec. 2 is split into a W -

predictable component Ŵ = (ŵk)k∈Z and an innovation

W̃ = (w̃k)k∈Z as

W = Ŵ + W̃ . (4)

Here,
ŵk = E(wk | (wj)j<k)

is the one-step predictor of W based on its past history
by time k, with E(· | ·) standing for the conditional
expectation. Therefore,

Ŵ = SW, W̃ = MV, (5)

where S is a strictly causal system, and M ∈ R
m×m is a

constant matrix interpreted as a memoryless system. From
(4) and (5), the generating filter is representable as

G = (Im − S)−1M, (6)

so that S specifies the feedback law whereby the past
history of W is processed prior to getting “mixed” with
the innovation signal MV ; see Fig. 1.

Theorem 1. Assuming that M ∈ R
m×m is nonsingular,

and that S is a strictly causal contraction in the sense
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+ M
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VW
W
~

G

Fig. 1. The prediction-innovation representation of the
generating filter.

of the H∞-norm ‖S‖∞ < 1, the mean anisotropy of the
generating filter (6) satisfies

A(G)≤− ln

∣∣∣∣det

(√
mM

‖M‖2

)∣∣∣∣

−m

2
ln
(
1 − |||S|||2A(G)

)
. (7)

Proof. At any time k, the predictor ŵk and the innovation
w̃k are independent zero mean Gaussian random vectors
whose covariance matrices, in view of (4), add up to

E(wkwT
k ) = E(ŵkŵT

k ) + E(w̃kw̃T
k ). (8)

The variances of the signals W = GV and Ŵ and the

covariance matrix of W̃ are given by

E(|wk |2) = ‖G‖2
2, (9)

E(|ŵk |2) = ‖SG‖2
2, (10)

E(w̃kw̃T
k ) = MMT , (11)

where we have also used (5). Substituting (9) and (11) into
the Kolmogorov-Szegö type representation of the mean
anisotropy (Vladimirov et al. [1996], Diamond et al.
[2001]) yields

A(G) = −1

2
ln det

(
mMMT

‖G‖2
2

)
. (12)

Now, taking the trace of the covariance matrices on both
sides of (8) and using (9)–(11) gives

‖G‖2
2 = ‖SG‖2

2 + ‖M‖2
2

≤
(
|||S|||A(G)‖G‖2

)2

+ ‖M‖2
2.

Here, the inequality is obtained by applying the definition
(3) to S and implies the upper bound

‖G‖2
2 ≤ ‖M‖2

2

1 − |||S|||2A(G)

, (13)

where the positiveness of the denominator is ensured by
the assumption ‖S‖∞ < 1 and by the property that the
anisotropic norm is always majorized by the H∞-norm.
Substitution of (13) into the right hand side of (12) gives
(7). �

It is worth noting the recursiveness of the inequality
(7) in that the upper bound on the mean anisotropy
A(G) involves the A(G)-anisotropic norm of the prediction
operator S which is a subsystem of the generating filter G;
see Fig. 1. The inequality can be weakened by replacing
the anisotropic norm with ‖S‖∞.

If the feedback is “weak”, ‖S‖∞ � 1, so that the temporal
correlations in the signal W = GV are insignificant, then

its mean anisotropy is due basically to the relative gap
between the extreme singular values of the matrix M .

3.1 State-space representation

As an example of an explicit representation for the afore-
mentioned prediction operator S, let the generating filter
G, which produces W = GV , have an n-dimensional state
X = (xk)k∈Z, and let the signals X and W be governed
by

xk+1 = Axk + Bvk, (14)

wk = Cxk + Dvk. (15)

Here, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n and D ∈ R

m×m

are constant matrices, with A assumed asymptotically
stable, so that its spectral radius satisfies ρ(A) < 1. The
state-space representation (14)–(15) is written as

G =

[
A B
C D

]
. (16)

Theorem 2. Let the matrix D in (15) be nonsingular, and
let both matrices A and A − BD−1C be asymptotically
stable. Then the generating filter (16) is representable in
the prediction-innovation form (6) where the memoryless
part is given by

M = D, (17)

and the prediction operator S is described by the state-
space realization

S =

[
A − BD−1C BD−1

C 0

]
. (18)

The mean anisotropy of the generating filter can be com-
puted as

A(G) = −1

2
ln det

(
mDDT

Tr(CPCT + DDT )

)
, (19)

where P is the controllability gramian of (16) satisfying
the matrix algebraic Lyapunov equation

P = APAT + BBT . (20)

Proof. By (14), the operator V 7→ X is strictly causal
and, therefore, the state signal X is V -predictable. The
nonsingularity of D and asymptotic stability of A −
BD−1C imply that the filter G is invertible, with its
inverse described by

G−1 =

[
A − BD−1C BD−1

−D−1C D−1

]
.

The last state-space realization is obtained by expressing
vk in terms of xk and wk from (15),

vk = −D−1Cxk + D−1wk ,

and then by substituting the equation for vk into (14) and
regrouping the terms,

xk+1 = Axk + B(−D−1Cxk + D−1wk)

= (A − BD−1C)xk + BD−1wk, (21)

which also shows that G−1 and G share the state X .
Hence, the latter is not only V -predictable but is also W -
predictable. Combining (15) with (21), one verifies that
the prediction-innovation decomposition of the signal W
in (4) holds with

Ŵ = CX = SW, W̃ = DV,
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where S is a strictly causal system whose state-space
realization is described by (18). To establish (19), it now
remains to use the Kolmogorov-Szegö type representation
(12) together with (17), and to recall the relation

‖G‖2
2 = E(|ŵk|2 + |w̃k|2)
= Tr(CPCT + DDT ),

which employs the property that the controllability
gramian P of the generating filter (16) is the covariance
matrix of the state signal, P = E(xkxT

k ). �

An alternative state-space representation of the mean
anisotropy can be found in (Diamond et al. [2001], The-
orem 1 on p. 31) which does not require the asymptotic
stability of A − BD−1C but, in addition to (20), employs
the stabilizing solution of a matrix algebraic Riccati equa-
tion.

4. MEAN ANISOTROPY IN FILTER CONNECTIONS

We will now discuss the results on the changes in the mean
anisotropy of signals propagating through several types of
filter connections.

4.1 Serial connection

Let W = GN× . . .×G1V be generated from the white
noise V by N serially connected filters as shown in Fig. 2.

G
1 VG

NW

Fig. 2. The serial connection of filters.

Lemma 3. For the serial connection of generating fil-
ters G1 ∈ Hm×m

2 and G2, . . . , GN ∈ Hm×m
∞ , its mean

anisotropy satisfies

A(GN× . . .×G1) ≤ aN ,

where the nonnegative reals a1, . . . , aN are computed by
the recurrence equation

ak = A(Gk) + ak−1 + m ln
|||Gk|||ak−1

|||Gk|||0
(22)

with initial condition a0 = 0.

Proof of Lemma 3 can be found in (Diamond et al. [2001])
and employs an “anisotropy leverage” identity

A(FG) = A(F ) + A(G) + m ln

√
m‖FG‖2

‖F‖2‖G‖2
(23)

which follows from (2) and holds for any systems F, G ∈
Hm×m

2 satisfying FG ∈ Hm×m
2 . Hence, in application to a

system F ∈ Hm×m
∞ , combining the identity (23) with (3)

gives

sup
G∈H

m×m

2
: A(G)≤a

A(FG) = A(F ) + a + m ln
|||F |||a
|||F |||0

,

which holds for any a ≥ 0 and underlies the recurrence
(22); see also (Diamond et al. [2001], Theorem 2 on p. 32).

Following (Vladimirov et al. [2005], Lemma 3 on p. 13),
in order to formulate another corollary of (23), we define
the condition number of an invertible filter G ∈ Hm×m

2 by

cond(G) =
‖G‖2‖G−1‖2

m
.

The latter satisfies cond(G) ≥ 1, with the inequality
turning to equality iff G is an all-pass system up to a
nonzero constant scalar multiplier.

Lemma 4. For an invertible filter G ∈ Hm×m
2 and its

inverse G−1, their mean anisotropies satisfy

A(G) + A(G−1) = m ln cond(G). (24)

Proof. Applying the identity (23) to F = G−1, we have

0 = A(Im)

= A(G−1) + A(G) + m ln

√
m‖Im‖2

‖G−1‖2‖G‖2
,

whence (24) follows immediately in view of the relation
‖Im‖2 =

√
m. �

Since the mean anisotropies A(G) and A(G−1) are both
nonnegative, m ln cond(G) is an upper bound for each of
them.

4.2 Summation of independent signals

Let W =
∑N

s=1 Ws be obtained by summation of N
signals Ws = GsVs generated from mutually independent
white noises V1, . . . , VN by filters G1, . . . , GN ∈ Hm×m

2 ; see
Fig. 3. Such W can be equivalently modeled as W = GV ,

+

G
1

V
1

G
N

V
N

W

W
1

W
N

Fig. 3. The summation of signals.

where the “effective” generating filter G ∈ Hm×m
2 satisfies

the factorization

ĜĜ∗ =

N∑

s=1

ĜsĜ
∗
s . (25)

The latter implies that ‖G‖2
2 =

∑N
s=1 ‖Gs‖2

2, and hence,
the ratio

Rs =

(‖Gs‖2

‖G‖2

)2

(26)

quantifies the relative power contribution of Ws to the
resulting signal W .

Lemma 5. The mean anisotropy of the signal W = GV
generated by a filter G ∈ Hm×m

2 satisfying (25) affords
the upper bound

A(G) ≤ min

(
N∑

s=1

RsA(Gs),

min
1≤s≤N

(
A(Gs) −

m

2
ln Rs

))
. (27)

Proof of Lemma 5 can also be found in (Diamond et
al. [2001], pp. 33–34) and employs the concavity and
monotonicity of ln det(·) on the cone of positive definite
Hermitian matrices. The right hand side of (27) describes
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two upper bounds for A(G) which complement each other
due to an interplay between the relative power contri-
butions Rs in (26) and the “partial” mean anisotropies
A(Gs).

4.3 Multiplex connection

Consider the multiplex connection of N filters Gs ∈
Hms×ms

2 in Fig. 4, where V1, . . . , VN are mutually indepen-
dent white noises which can be combined into one white
noise V of dimension m = m1 + . . . + mN . The resultant

G
1

V
1

G
N

V
N

W

W
1

W
N

Fig. 4. The multiplex connection of filters.

generating filter G = G1 ⊗ . . . ⊗ GN ∈ Hm×m
2 which

produces W = GV has a block diagonal matrix transfer
function

G =




G1 0
. . .

0 GN


 .

The latter implies that det G =
∏N

s=1 det Gs and, similarly
to the summation of independent signals in Sec. 4.2,

‖G‖2
2 =

∑N
s=1 ‖Gs‖2

2. Substitution of these expressions
into (2) gives

A(G) =

N∑

s=1

(
A(Gs) − ms ln

|||Gs|||0
|||G|||0

)
.

4.4 Feedback connection

Let W = GV be produced from the white noise V by the
generating filter

G = (Im − G0∆)−1G0 (28)

which is obtained from a “nominal” filter G0 ∈ Hm×m
∞

by a strictly causal feedback perturbation ∆ ∈ Hm×m
∞

interpreted as an uncertainty in the noise model; see
Fig. 5. By the Small Gain Theorem, the linear fractional

+G
0

∆

VW

Fig. 5. Feedback perturbation of the nominal filter.

transformation on the right hand side of (28) is well-
defined if

‖G0‖∞‖∆‖∞ < 1. (29)

Assuming that G0 is given in the prediction-innovation
form (6), that is,

G0 = (Im − S)−1M,

the appropriate representation for the perturbed generat-
ing filter (28) is obtained by an additive modification of
the prediction operator S, so that

G = (Im − T )−1M,

where
T = S + M∆.

If the nominal filter G0 is known and invertible, then
W = G0U , with all the noise model uncertainty due to the
perturbation ∆ incorporated in the signal U = FV . The
latter is produced from the white noise V by the generating
filter

F = G−1
0 G = (Im − ∆G0)

−1 (30)

whose well-posedness too is ensured by (29). Since ∆G0

inherits the strict causality from ∆ and is contractive,
application of Theorem 1 with S = ∆G0 and M = Im

to the system (30) yields

A(F )≤−m

2
ln
(
1 − |||∆G0|||2A(F )

)

≤−m

2
ln
(
1 − ‖∆G0‖2

∞

)

≤−m

2
ln
(
1 − ‖G0‖2

∞‖∆‖2
∞

)
,

where use has also been made of the submultiplicative
property of the H∞-norm.
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