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Abstract: In this paper, we show that adaptive controllers designed using the standard
backstepping technique proposed in Krstic [1995] globally stabilize a class of uncertain systems
with unknown input time delay and unmodeled dynamics. As such systems belong to non-
minimum phase systems and thus our result extends the class of systems stabilizable from
minimum phase systems when the standard backstepping technique is employed. Moreover,
it is shown that the transient system performance can be improved by adjusting the design
parameters.

1. INTRODUCTION

Time-delay phenomenon is commonly found in chemical
processes, biological reactors, rolling mills, communication
networks, etc. Since the existence of delay usually deterio-
rates the performance of closed-loop system (Kolmanovskii
and Nosov [1986], Malek-Zavarei and Jamshidi [1987]), the
stabilization and control problem for time-delay systems
have a topic of great importance and have received increas-
ing attention. Some fruitful results have been achieved for
past years when dealing with stabilizing problem for time-
delay systems using backstepping technique. In Ge et al.
[2003], neural network control cooperating with iterative
backstepping was constructed for a class of nonlinear sys-
tem with unknown but constant time delays. In Hua et
al. [2005], time-varying delays were considered and the
designed controller is independent of time delays. A decen-
tralized feedback control approach for a class of large scale
stochastic systems with time delay was proposed in Wu
[2006]. More recently, in Hua et al. [2007] a result of back-
stepping adaptive tracking in the presence of time delay
was established. All mentioned results are only applicable
to systems with time delay in system states. However,
when adopting backstepping approach, little attention has
been focused on systems with time-delay in control input
as such systems belong to non-minimum phase systems.
Although Mazenc [2003] and Iasson [2006] did researches
on such systems, the time delay and nonlinear system are
all known and their approaches are non-adaptive state
feedback control. Therefore, it is necessary and important
to investigate adaptive backstepping of uncertain systems
with unknown input time-delay.

In this paper, we present the standard backstepping design
approach in Krstic [1995] without any modification to
design adaptive controller for input time-delay systems in
which delay is unknown. Such systems are also subject

to unmodeled dynamics. It is shown that the designed
controller can globally stabilize the system with a unknown
delay of arbitrarily large length in the input asymptotically
under certain conditions. We will use the technique in Wen
et al. [1999] to deal with the unmodeled dynamics in the
stability analysis.

The remaining part of the paper is organized as follows:
Section 2 offers the class of systems to be controlled in
this paper. Then adaptive control design scheme based on
the backstepping approach is proposed in Section 3. After
that, in Section 4 both of the robustness and transient
performance analysises are established followed by an il-
lustrative example presented to show the effectiveness of
our proposed scheme in Section 5. Finally, the paper is
concluded in Section 6.

2. PROBLEM FORMULATION

Consider the system with unknown input time delay and
multiplicative unmodeled dynamics described as

y(t) =
B(p)

A(p)

(

u(t) + µ1∆1(p)u(t − τ)
)

+ µ2∆2(p)y(t),
(1)

where τ is an unknown positive constant denoting time de-
lay. p denotes the differential operator d

dt , B(p), A(p) and
∆1(p),∆2(p) are rational functions of p. With p replaced
by s, the corresponding B(p), A(p) and ∆1(p),∆2(p) are
transfer functions described as follows

A(s) = sn + an−1s
n−1 + . . . + a1s + a0 (2)

B(s) = bmsm + . . . + b1s + b0. (3)

ai (i = 0, 1, . . . , n−1) and bj (j = 0, 1, . . . ,m) are unknown
parameters, ∆1(s) and ∆2(s) are transfer functions of
the unmodeled dynamics, µ1 and µ2 are positive scalars
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indicating the magnitudes of the unmodeled dynamics.

Our goal is to design a controller using backstepping
technique to ensure the stability of the whole system and
regulate the system output to zero. The system transient
performance should also be adjustable by changing design
parameters in certain sense.

For the system, we have the following assumptions.
Assumption 1: B(s) is a Hurwitz polynomial. The order
n, the sign of bm and the relative degree ρ(= n − m) are
known;
Assumption 2: ∆1(s) and ∆2(s) are stable, strictly
proper and have a unity high frequency gain.

Obviously, system (1) has the following state space real-
ization:

ẋ = Ax − ax1 +

[

0(ρ−1)×1

b

]

u

y = x1 + µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t) (4)

where

A =







0
... In−1

0 . . . 0






, a =









an−1

an−2

...
a0









, b =









bm

bm−1

...
b0









. (5)

In the design of adaptive controller, we only consider

transfer function B(s)
A(s) , i.e,

ẋ = Ax − ax1 +

[

0(ρ−1)×1

b

]

u,

y = x1. (6)

But in analysis, we will also take into account the effects
of the time delay and the unmodelled dynamics, i.e.

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t). (7)

3. DESIGN OF ADAPTIVE CONTROLLER

In this section, we only present the adaptive controller
designed using the standard backstepping technique in
Krstic [1995], without giving the details. Firstly, a local
filter using only local input and output is designed to
estimate the states of system as follows:

η̇ = A0η + eny (8)

λ̇ = A0λ + enu, (9)

where

A0 = A − keT
1 , (10)

k = [k1, . . . , kn]T , (11)

the vector k is chosen so that the matrix A0 is Hurwitz,
ei denotes the ith coordinate vector in ℜn. Then the state
estimate of the system can be obtained by

x̂ =−An
0η −

n−1
∑

i=0

aiA
i
0η +

m
∑

i=0

biA
i
0λ. (12)

From system (4) and (8)-(12), the state estimation error
ǫ = x − x̂ satisfies

ǫ̇ = A0ǫ + (a − k)
(

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t)
)

(13)

Thus, the derivative of the system output can be expressed
in the following form

ẏ = x2 − an−1y+

(s + an−1)
(

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t)
)

= ξ2 + ωT θ + ǫ2+

(s + an−1)
(

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t)
)

,

(14)

where

θ = [bT , aT ] (15)

ξ =−An
0η, (16)

vj = Aj
0λ, (17)

ω = [vm,2, vm−1,2, . . . , v0,2,Ξ(2) − yeT
1 ]T (18)

ω̄ = [0, vm−1,2, . . . , v0,2,Ξ(2) − yeT
1 ]T (19)

Ξ =−[An−1
0 η, . . . , A0η, η] (20)

and vi,2, ǫ2, ξ2,Ξ2 denote the second entries of vi, ǫ, ξ,Ξ
respectively.

The design system is now given as

ẏ = ξ2 + ωT θ + ǫ2 (21)

+(s + an−1)
(

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t)
)

v̇m,i = vm,i+1 − kivm,1, i = 2, . . . , ρ − 1 (22)

v̇m,ρ = vm,ρ+1) − kρvm,1 + u (23)

All states of the local filters in (8) and (9) are available
for feedback. Even though the estimated state is given in
(12), it is still unknown and thus can not be employed in
the controller design. The state estimation error (13) and
equation (21) will be utilized in system analysis.

Performing the standard backstepping procedures as in
Krstic [1995], the controller designed for stabilizing system
(1) can be summarized as follows where Γ is a positive
definite matrix in ℜ(n+m+1)×(n+m+1), ci, di and γ are
positive constants.

The change of coordinate is

z1 = y (24)

zi = vm,i − αi−1, i = 2, 3, . . . , ρ, (25)

The control law is

u = αρ − vm,ρ+1 (26)

α1 = ˆ̺ᾱ1 (27)

ᾱ1 =−c1z1 − d1z1 − ξ2 − ω̄T θ̂ (28)

α2 =−b̂mz1 −
(

c2 + d2

(∂α1

∂y

)2
)

z2 + β2 +
∂α1

∂θ̂
Γτ2 (29)

αi =−zi−1 −
[

ci + di

(∂αi−1

∂y

)2]
zi + βi +

∂αi−1

∂θ̂
Γτi
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−
i−1
∑

k=2

∂αk−1

∂θ̂
Γ

∂αi−1

∂y
zk, , i = 3, . . . , ρ (30)

βi =
∂αi−1

∂y
(ξ2 + ωT θ̂) + kivm,1 +

∂αi−1

∂ ˆ̺
˙̺̂

+
∂αi−1

∂η
(A0η + eny) +

m+i−1
∑

j=1

∂αi−1

∂λj
(−kjλ1

+λj+1), i = 3, . . . , ρ (31)

with tuning functions

τ1 = (ω − ˆ̺ᾱ1e1)z1 (32)

τ2 = τ1 −
∂α1

∂y
ωz2 (33)

τi = τi−1 −
∂αi−1

∂y
ωzi (34)

(35)

The parameter updating laws are

˙̺̂ =−γsgn(bm)ᾱ1z1 (36)

˙̂
θ = Γτρ (37)

Define z(t) = [z1, z2, . . . , zρ]
T , with the above adaptive

control law, the error system is characterized by

ż = Az(z, t)z + Wǫ(z, t)eT
2 ǫ + Wθ(z, t)T θ̃ − bmᾱ1e1 ˜̺

+Wǫ(z, t)·
[

(s + an−1)
(

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t)
)]

,
(38)

where

Az(z, t) =

















−c1 − d1 b̂m

−b̂m −c2 − d2

(∂α1

∂y

)2

0 −1 − σ2,3

...
...

0 −σ2,ρ

0 . . . 0
1 + σ2,3 . . . σ2,ρ

−c3 − d3

(∂α2

∂y

)2
. . . σ3,ρ

...
...

...

−σ3,ρ . . . −cρ − dρ

(∂αρ−1

∂y

)2





















(39)

the terms σi,j are due to the terms ∂αi−1

∂θ̂
Γ

∂αj−1

∂y ω in the
zj equation.

4. STABILITY ANALYSIS

4.1 Robustness Analysis

Define Lyapunov function Vρ as follows:

Vρ =

ρ
∑

i=1

1

2
z2
i +

1

2
θ̃T Γ−1θ̃ +

|bm|
2γ

˜̺2 +

ρ
∑

i=1

1

di
ǫT Pǫ (40)

where P satisfies PA0 + AT
0 P = −I, P = P T > 0. From

(13) and the designed controller (26)-(37), it can be shown
that the derivative of Vρ satisfies

V̇ρ ≤ −
ρi
∑

i=1

ciz
2
i − d1

2
(z1)

2 + z1(s + an−1)
(

µ1∆1(s)·

x1(t − τ) + µ2∆2(s)y(t)
)

−
ρ
∑

i=2

[di

2

(∂αi−1

∂y

)2·

(zi)
2 − zi

∂αi−1

∂y
(s + an−1)

(

µ1∆1(s)x1(t − τ)

+ µ2∆2(s)y(t)
)]

−
ρ
∑

i=1

[ 1

2di
‖ ǫ ‖2

+ ΦT ǫ
(

µ1∆1(s)x1(t − τ) + µ2∆2(s)y(t)
)]

≤ −
ρ
∑

i=1

ci(zi)
2 −

ρ
∑

i=1

1

4di
‖ ǫ ‖2

+

ρ
∑

i=1

1

di
µ2

1 ‖ ∆1(s)(s + an−1))x1(t − τ) ‖2

+

ρ
∑

i=1

2di ‖ Φ ‖2
[

µ2
1 ‖ ∆1(s)x1(t − τ) ‖2

+ µ2
2 ‖ ∆2(s)y ‖2

]

+

ρ
∑

i=1

1

di
µ2

2 ‖ ∆2(s)(s + an−1))y ‖2

(41)

where

ΦT =

ρ
∑

i=1

2(a − k)T P

di
(42)

To show system stability, the variables of the filters in (8)
and the zero dynamics should be included in the Lyapunov
function. Under a similar transformation as in Krstic
[1995], the variable ζ associated with the zero dynamics
can be shown to satisfy

˙̃
ζ = Abζ̃ + bbx1 (43)

˙̃η = A0η̃ + enz1 (44)

where

η̇ = A0η + enz1 (45)

η̇r = A0η
r, η̃ = η − ηr (46)

ζ̇ = Abζ + bbx1 (47)

ζ̇r = Abζ
r, ζ̃ = ζ − ζr (48)

where the eigenvalues of the matrix Ab ∈ Rm×m are the
zeros of the Hurwitz polynomial N(s) and bb ∈ Rm.

Ab =









−bm−1/bm

Im−1

...
−b0/bm 0 . . . 0









, (49)

bb = TAρ

[

0
b

]

, T = [Aρ
be1, . . . , Abe1, Im]. (50)

To deal with the unmodeled dynamics, we let v1 and
v2 be the state vectors associated with ∆1(s) and ∆2(s)
respectively.
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v̇1 = A1v1 + bv1x1 (51)

∆1(s)x1 = (1, 0, . . . , 0)v1 (52)

v̇2 = A2v2 + bv2z1 (53)

∆2(s)y = ∆2(s)z1 = (1, 0, . . . , 0)v2 (54)

where A1 and A2 are stable from Assumption 2.

Lemma 1. The effects of the unmodeled dynamics are
bounded as follows

‖ ∆1(s)x1(t − τ) ‖2 ≤ ‖ χ(t − τ) ‖2 (55)

‖ ∆2(s)y ‖2 ≤ ‖ χ ‖2 (56)

and

‖ ∆2(s)(s + an−1))y ‖2 ≤ k3 ‖ χ ‖2 (57)

‖ ∆1(s)(s + an−1))x1(t − τ) ‖2 ≤ k1 ‖ x1(t − τ) ‖2

+ k2 ‖ χ(t − τ) ‖2 (58)

‖ x1(t) ‖2 ≤ (3 + 3µ2
2)) ‖ χ(t) ‖2

+ 3µ2
1 ‖ χ(t − τ) ‖2 (59)

where χ = [zT , ǫT , η̃T , ξ, vT
1 , vT

2 ]T .

Proof. (55) and (56) can be obtained directly from (52)
and (54). Since ∆1(s) and ∆2(s) are strictly proper, we
have

‖ ∆1(s)(s + an−1))x1(t − τ) ‖2 ≤ k1 ‖ x1(t − τ) ‖2

+ k2 ‖ χ(t − τ) ‖2 (60)

‖ ∆2(s)(s + an−1))y ‖2 ≤ k3 ‖ χ ‖2 (61)

From (4) and (6), it is known that

x1(t) = z1(t) − µ1∆1(s)x1(t − τ) − µ2∆2(s)z1(t) (62)

Thus

‖ x1(t) ‖2 = ‖ z1(t) − µ1∆1(s)x1(t − τ) − µ2∆2(s)z1(t) ‖2

≤ (3 + 3µ2
2)) ‖ χ(t) ‖2 +3µ2

1 ‖ χ(t − τ) ‖2 (63)

2

Theorem 1. Consider the closed-loop adaptive system con-
sisting of the plant (1) under Assumptions 1 and 2, the
controller (26), the parameter update laws (36), (37), and
the filters (8) and (9). There exists a constant µ∗ such that
for all µ1 < µ∗ and µ2 < µ∗, all the signals in the system
are globally uniformly bounded and limt→∞ |y(t)| = 0 for
arbitrary initial x(0).

Proof. Introduce an augmented Lyapunov function as

V̄ = Vρ +
1

kη
η̃T P η̃ +

1

kζ
ζ̃T Pbζ̃

+ q1v
T
1 P1v1 + q2v

T
2 P2v2 (64)

where P1 and P2 satisfy P1A1 + AT
1 P1 = −I and P2A2 +

AT
2 P2 = −I, respectively.

˙̄V = V̇ρ − 1

kη
η̃2 +

2

kη
η̃T Penz1 −

1

kζ
ζ2 +

2

kζ
ζ̃T Pbbbx1

− q1 ‖ v1 ‖2 +2q1v
T
1 P1bv1x1

−q2 ‖ v2 ‖2 +2q2v
T
2 P2bv2z1

≤−1

2
c1z

2
1 −

ρ
∑

i=2

ciz
2
i −

ρ
∑

i=1

1

4di
‖ ǫ ‖2 − 1

2kη
η̃2

− 1

2kζ
ζ̃2 − 1

2
q1 ‖ v1 ‖2 −1

2
q2 ‖ v2 ‖2

+

ρ
∑

i=1

1

di
µ2

1 ‖ ∆1(s)(s + an−1))x1(t − τ) ‖2

+

ρ
∑

i=1

2di ‖ Φ ‖2 µ2
1 ‖ ∆1(s)x1(t − τ) ‖2

+

ρ
∑

i=1

1

di
µ2

2 ‖ ∆2(s)(s + an−1))y ‖2

+

ρ
∑

i=1

2di ‖ Φ ‖2 µ2
2 ‖ ∆2(s)y ‖2 − 1

4kζ
ζ̃2

− 2

kζ
ζ̃T Pbbb

(

µ1∆1(s)x1(t − τ) + µ2∆2(s)z1(t)
)

− 1

4
q1 ‖ v1 ‖2 −2q1v

T
1 P1bv1

(

µ1∆1(s)x1(t − τ)

+ µ2∆2(s)z1(t)
)

− 1

8
c1z

2
1 − 1

2kη
η̃2 +

2

kη
η̃T Penz1

− 1

8
c1z

2
1 − 1

4kζ
ζ̃2 +

2

kζ
ζ̃T Pbbbz1

− 1

8
c1z

2
1 − 1

4
q1 ‖ v1 ‖2 +2q1v

T
1 P1bv1z1

− 1

8
c1z

2
1 − 1

2
q2 ‖ v2 ‖2 +2q2v

T
2 P2bv2z1 (65)

If kη, kζ , q1 and q2 are taken as

kη ≥ 16 ‖ Pen ‖2

c1
(66)

kζ ≥
32 ‖ Pbbb ‖2

c1
(67)

q1 ≤
c1

32 ‖ P1bv1 ‖ (68)

q2 ≤
c1

16 ‖ P2bv2 ‖ (69)

then

˙̄V ≤−β ‖ χ ‖2 +

(

ρ
∑

i=1

1

di
k3 +

ρ
∑

i=1

2di ‖ Φ ‖2

+
8

kζ
‖ Pbbb ‖2 +8q1 ‖ P1bv1 ‖2

)

µ2
2 ‖ χ ‖2

+

(

ρ
∑

i=1

1

di
k2 +

ρ
∑

i=1

2di ‖ Φ ‖2 +
8

kζ
‖ Pbbb ‖2

+ 8q1 ‖ P1bv1 ‖2
)

µ2
1 ‖ χ(t − τ) ‖2

+

ρ
∑

i=1

1

di
k1µ

2
1 ‖ x1(t − τ) ‖2 −1

4
c1z

2
1
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=−1

4
c1z

2
1 − β ‖ χ ‖2 +(k3k4 + k5)µ

2
2 ‖ χ ‖2

+ (k2k4 + k5)µ
2
1 ‖ χ(t − τ) ‖2

+ k1k4µ
2
1 ‖ x1(t − τ) ‖2 (70)

where

β = min
{c1

4
, c2, . . . , cρ,

ρ
∑

i=1

1

4di
,

1

2kη
,

1

2kζ
,
1

2
q1,

1

2
q2

}

(71)

k4 =

ρ
∑

i=1

1

di
(72)

k5 =

ρ
∑

i=1

2di ‖ Φ ‖2 +
8

kζ
‖ Pbbb ‖2 +8q1 ‖ P1bv1 ‖2(73)

To tackle the unknown time-delay problem, we introduce
the following Lyapunov-Krasovskii function

W = k1k4µ
2
1

t
∫

t−τ

‖ x1(s) ‖2 ds

+

t
∫

t−τ

(

(k2k4 + k5)µ
2
1 + 3k1k4µ

4
1

)

‖ χ(s) ‖2 ds(74)

Then the final Lyapunov function is

V = V̄ + W (75)

The time derivative of V is

V̇ ≤−β ‖ χ ‖2 +(k3k4 + k5)µ
2
2 ‖ χ ‖2 −1

4
c1z

2
1

+ (k2k4 + k5)µ
2
1 ‖ χ(t − τ) ‖2 +k1k4µ

2
1 ‖ x1(t − τ) ‖2

+ k1k4µ
2
1 ‖ x1(t) ‖2 −k1k4µ

2
1 ‖ x1(t − τ) ‖2

+
(

(k2k4 + k5)µ
2
1 + 3k1k4µ

4
1

)

‖ χ ‖2

−
(

(k2k4 + k5)µ
2
1 + 3k1k4µ

4
1

)

‖ χ(t − τ) ‖2

=−β ‖ χ ‖2 +(k2k4 + k5)µ
2
1 ‖ χ(t − τ) ‖2

+
(

(k3k4 + k5)µ
2
2 + k1k4µ

2
1(3 + 3µ2

2)
)

‖ χ(t) ‖2

+ 3k1k4µ
4
1 ‖ χ(t − τ) ‖2 +

(

(k2k4 + k5)µ
2
1

+ 3k1k4µ
4
1

)

‖ χ ‖2 −1

4
c1z

2
1

−
(

(k2k4 + k5)µ
2
1 + 3k1k4µ

4
1

)

‖ χ(t − τ) ‖2

=−
[

β −
(

(k3k4 + k5)µ
2
2 + k1k4µ

2
1(3 + 3µ2

2)
)

−
(

(k2k4 + k5)µ
2
1 + 3k1k4µ

4
1

)]

‖ χ ‖2 −1

4
c1z

2
1

≤−1

4
c1z

2
1 −

(

β − (3k1k4 + k2k4 + k3k4 + 2k5)µ
2

− 6k1k4µ
4
)

‖ χ ‖2 (76)

where

µ = max{µ1, µ2} (77)

By taking µ∗ as

µ∗ =

√

√

K2
1 + 2K2β + K1

K2
, (78)

where,

K1 = 3k1k4 + k2k4 + k3k4 + 2k2
5 (79)

K2 = 12k1k4 (80)

we have

V̇ ≤ −1

4
c1z

2
1 ≤ 0. (81)

This concludes that all the signals in the system are
globally uniformly bounded, and limt→∞ |y(t)| = 0 for
arbitrary initial x(0). 2

Remark 1. This theorem shows that the designed con-
troller is able to stabilize the system with unknown input
delay and unmodeled dynamics whose magnitudes µ1 and
µ2 are bounded by parameter µ∗ satisfying (78). By choos-
ing appropriate Lyapunov-Krasovskii function, the effect
of input time delay can be compensated.

4.2 Transient performance

The bounds for system output y(t) on both L2 and L∞

norms can be stated in the following theorem.

Theorem 2. Consider the initial values zi(0), i = 2, . . . , ρ,

η̃(0) = 0, ζ̃(0) = 0, v1(0) = 0 and v2(0) = 0, the L2 and
L∞ norms of output y(t) are given by

‖y(t)‖2 ≤
2√
c1

[

1

2
y(0)2 +

1

2
‖θ̃(0)‖2

Γ−1

+k4‖ǫ(0)‖2
P +

|bm|
2γ

| ˜̺(0)|2
]1/2

(82)

‖y(t)‖∞ ≤
√

2

[

1

2
y(0)2 +

1

2
‖θ̃(0)‖2

Γ−1

+k4‖ǫ(0)‖2
P +

|bm|
2γ

| ˜̺(0)|2
]1/2

(83)

where

‖θ̃(0)‖2
Γ−1 = θ̃T (0)Γ−1θ̃(0) (84)

‖ǫ(0)‖2
P = ǫT (0)Pǫ(0) (85)

Proof. As shown in (81), V is non-increasing, thus we
have

‖y(t)‖2
2 =

∞
∫

0

‖z1t‖2dt≤ 4

c1
(V (0) − V (∞))

≤ 4

c1
(V (0)) (86)

‖y(t)‖∞ ≤
√

2V (0) (87)

From (46) and (48), we can set η̃(0) = 0 and ζ̃(0) = 0 by
choosing ηr(0) = η(0) and ζr(0) = ζ(0). Consider the zero
initial values
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η̃(0) = 0, ζ̃(0) = 0, v1(0) = 0, v2(0) = 0 (88)

Besides, from (25), the initial values zi(0), i = 2, . . . , ρ can
be set to zero by suitably choosing vm,i as

vm,i(0) = αi−1

(

y(0), θ̂(0), ˆ̺(0), η(0), λ(0), vm,i−1(0)
)

,

i = 2, . . . , ρ (89)

Thus we have

V (0) =
1

2
y(0)2 +

1

2
‖θ̃(0)‖2

Γ−1 +k4‖ǫ(0)‖2
P

+
|bm|
2γ

| ˜̺(0)|2 (90)

Substituting the above results to (86) and (87), we will get
(82) and (83) respectively. 2

Remark 2. This theorem shows that the L2 norm and L∞

norm of output y depend on the initial estimation errors
θ̃(0), ǫ̃(0) and ˜̺(0). The closer the initial estimates to the
true values, the better the transient performance turns out.
The bounds can be reduced by increasing c1 (82), Γ and
γ (82,83).

5. AN ILLUSTRATIVE EXAMPLE

We illustrate the approach on a relative-degree-two time-
delay system with unmodeled dynamics as described in
(1), where B(s) = b1s + b0 = 2s + 3 and A(s) = s3 +
a2s

2 + a1s + a0 = s3 + 3s2 + 2s, delay τ = 2 seconds.
Note that a2, a1, a0, b1, b0 and τ are all considered to be
unknown in controller design. Meanwhile, the order n = 3,
the sign of b1 and the relative degree ρ = 2 are known. The
unmodeled dynamics ∆1 = ∆2 = 1

s+1 and the constants
µ1 = µ2 = 0.1. In simulation, all the initials are set as 0
except for y(0) = 0.4 and ˆ̺(0) = 0.2.

0 10 20 30
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t(sec)

y

Fig. 1. The output y of time-delay system with unmodeled
dynamics

The design parameters are chosen as vector k = [6, 12, 8]T ,
c1 = c2 = 2 and d1 = d2 = 0.5. With the the pre-
sented adaptation mechanism on by choosing γ = 0.1 and
Γ = 0.1 × I, the results are sketched in Fig.(1)-(2), which
obviously show that the system can be stablized and the
system output converge to zero even certain unknown time
delay in the input and unmodeled dynamics exist.
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Fig. 2. Control input u

6. CONCLUSION

Adaptive controllers using the standard backstepping tech-
nique without modification are shown robust with respect
to time delay in system input and unmodelled dynam-
ics. This implies that the class of systems stabilizable
using backstepping adaptive controllers can be extended
to certain non-minimum phase systems. Transient system
performance can also be improved by adjusting the design
parameters.
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