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Abstract: A new design procedure of a reduced order unknown input observer (UIO) is
proposed to generate residuals for fault detection isolation (FDI). The originality of this work
consists in the adopted approach for the procedure implementation. Indeed the kernel of the
actuator fault distribution matrix is generated thanks to generalized inverses. The Kronecker
product is used to solve a Sylvester equation which appears in the equations of an UIO. Residuals
generated by bank of observers allow on the one hand the detection isolation of every actuator
fault and on the other hand the isolation between actuator faults and sensor faults.

1. INTRODUCTION

Unknown input observers (UIOs) are usually used when
limitation disturbance effects are targeted. This approach
has been carried out as early as the 80s when researchers
in control field paid great attention to UIOs (Kudva et al.
[1980], Yang and Wilde [1988]). Model-based fault diagno-
sis techniques, mathematical description and definitions
are detailed in Chen and Patton [1999]. Many works in
the field of FDI are based on the design of a full order
UIO (Chen and Patton [1999], Demetriou [2005]). In fact,
there are more degrees of freedom available for the design
of structured residuals. However, in most cases, a reduced
order observer is suitable for a FDI approach (Koenig and
Mammar [2001]).

A simple reduced-order UIO design procedure is described
in this article. The observer leads to structured residuals
in order to detect and isolate actuator faults from sensor
faults.

In this procedure we use generalized inverses to design
the observer, and it enables to introduce some arbitrary
parameters which are very useful. Indeed, they offer some
opportunities in the design. Several works use a generalized
inverse to treat the equation which ensures that the
residual is insensitive to the actuator faults. The arbitrary
matrix which appears by solving a linear system with
generalized inverse is used, when it is possible, to assign
the observer dynamics. See for instance Kudva et al.
[1980], Kurek [1983] and Darouach et al. [1994] who define
existence conditions by using this approach too.

In this article, we also solve a linear system by finding
the kernel of an application. Another particular point of
our approach is that we set the structure of the matrix
which provides the dynamics of the observer. An arbitrary
matrix introduced in the resolution allows to ensure the
compatibility of the linear system we finally have to solve

⋆ This work was supported by the "Laboratoire Génie de Production
(LGP)" in Tarbes (France) and by the "Réseau de Formation des
Jeunes Chercheurs en Automatique (JCA)".

to design the UIO. Existence conditions are given by
several tests in the presented procedure.

In order to describe our purpose, notations are presented.
A linear time invariant system is considered, where r
actuator faults and m sensor faults can occur on the
system. The system model is described as

ẋ(t) = Ax(t) + Bu(t) + Kafa (1)

y(t) = Cx(t) + Ksfs

= [ Im 0 ]x(t) + Ksfs, (2)

where for every time t, x(t) ∈ R
n, u(t) ∈ R

r, fa ∈ R
r,

y(t) ∈ R
m and fs ∈ R

m are respectively the state, known
input, actuator fault assimilated as unknown input, output
of the system and the sensor fault. Matrices A ∈ R

n×n,
B ∈ R

n×r and C ∈ R
m×n are known constant matrices

constituting the state space model. Notice from (1) that a
special structure for the sensor matrix C is assumed which
can always be fulfilled under hypothesis of independent
sensors. Ka ∈ R

n×r and Ks ∈ R
m×m are respectively the

distribution matrices of actuator and sensor faults. It is
usually admitted that faults are constant additive terms.

With a FDI approach, and following Chen and Patton
[1999], it is possible to write (1,2) as

ẋ(t) = Ax(t) + Bu(t) +
r
∑

i=1

Kai
fai

(3)

y(t) = Cx(t) +
m
∑

i=1

Ksi
fsi

(4)

= [ Im 0 ]x(t) +
m
∑

i=1

Ksfs, (5)

which means that the distribution matrix Ka can be split
in r distribution vectors and that the distribution matrix
Ks can be split in m distribution vectors. So, fai

fits the
i-th actuator fault and Kai

is its distribution vector. That
is the same for fs which fits the i-th sensor fault and Ks

the associated distribution vector.
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For every matrix X ∈ R
m×n, let us denote

X =







X11 · · · X1n

...
. . .

...
Xm1 · · · Xmn






= [ X1 X2 · · · Xn ] ,

with Xij ∈ R and Xi ∈ R
m×1, we can write

vect(X) = [ X11 · · · Xm1 · · · X1n · · · Xmn ]
T

=
[

XT
1 XT

2 · · · XT
n

]T
,

where XT stands for the transpose.

A generalized inverse of the (r × q) matrix X is defined
as a (q × r) matrix denoted X{1} (Ben-Israel and Greville
[1974]) such that

XX{1}X = X.

For every matrix X, a generalized inverse exists and the
set of generalized inverses of the matrix X is given by

X{1} + Y − X{1}XY XX{1}, (6)

where X{1}is a particular generalized inverse for X and Y
is an arbitrary (q × r) matrix. Moreover if

X =

[

Iρ 0ρ,q−ρ

L 0r−ρ,q−ρ

]

,

where ρ = rank X and L is a given (r − ρ) × ρ matrix,
then we can choose

X{1} =

[

Iρ 0ρ,r−ρ

0q−ρ,ρ 0q−ρ,r−ρ

]

.

Two equivalent conditions ensure the existence of a solu-
tion for M = NΓ
{

rank N = rank

[

M
N

]}

or
{

M(Iq − N{1}N) = 0
}

.

When these conditions are fulfilled, a general solution for
M = NΓ is given by

Γ = MN{1} + Z(I − NN{1}),

where Z is an arbitrary matrix.

The Kronecker product, defined in Brewer [1978], C(ms×
nt) of two matrices A(m × n) and B(s × t) is defined by

C = A ⊗ B =







A11B · · · A1nB
...

...
Am1B · · · AmnB






.

2. RESIDUAL GENERATION

The aim of this section is to provide a procedure to design
a reduced order UIO. The fundamental issue of this design
is the generation of a residual which is insensitive to only
one actuator fault (Kai

fai
term in (3)) or insensitive to

all actuator faults (Kafa term in (1)). To simplify the
notations, we will consider in the following matrix Ka.
However if a residual insensitive to only one fault has to
be designed, we have to replace Ka by Kai

.

2.1 Residual and UIO design

Using the basic principles of functional observers design
(Franck and Wünnenberg [1989], Chen and Patton [1999]),
residual r(t) can be estimated by

r(t) = G1z(t) + G2y(t), (7)

when r(t) ∈ R and z(t) ∈ R
q are the residual and

the observer state vector respectively. The observer state
vector z(t) is governed by

ż(t) = Nz(t) + Qu(t) + Ly(t), (8)

with G1 ∈ R
1×q, G2 ∈ R

1×m, N ∈ R
q×q, Q ∈ R

q×r,
L ∈ R

q×m and T ∈ R
q×n. The estimation error is defined

by

e(t) = z(t) − Tx(t). (9)

Dimensions q and g and matrices namely G1, G2, N , Q,
L and T have to be determined to obtain limt→∞ e(t) = 0
in the fault free case. Thus, the following conditions can
be deduced (Tsui [2004])

N is Hurwitz (10)

Q = TB (11)

LC = TA − NT. (12)

By considering these conditions, the state estimation error
is governed by

ė = Ne − TKafa + LKsfs.

When the system is subjected to fault and by substituting
y(t), defined in (2), and z(t), defined in (9), in (7), we get

r(t) = G1(e(t) + Tx(t)) + G2Cx(t)

= G1e(t) + (G1T + G2C)x(t) + G2Ksfs.

Firstly, r(t) must be independent of the state vector, so

G1T + G2C = 0, (13)

which constitutes a new constraint for the design of the
dynamic system observer-residual, as constraints (10), (11)
and (12).

Furthermore, in steady state and considering fa constant,
r(t) verifies the following condition

r = lim
t→∞

r(t) = G1N
−1TKafa (14)

−
(

G1N
−1LKs − G2Ks

)

fs.

In order to make the residual r insensitive to fault fa,
matrix T should be orthogonal to Ka. It follows that

TKa = 0 ⇔ KT
a TT = 0 ⇔ TT ∈ Ker(KT

a ). (15)

Moreover, to obtain the residual r, defined in (14), sensi-
tive to sensor faults fs, the following necessary condition
must be satisfied
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G2Ks − G1N
−1LKs 6= 0. (16)

Indeed, as seen in (?]), if this condition is not fulfilled
the residual will be insensitive to sensor faults, and so as
TKa = 0, the residual will always be equal to zero.

To treat (7), it is interesting to set TT = V X where
V ∈ R

n×n and X ∈ R
n×q. Matrix V is such that its

columns span Ker(KT
a ). So, V verifies

rank(V ) = dim(Ker(KT
a )

= n − dim(Im(KT
a ))

= n − rank(Ka) = q. (17)

Ka and n are known a priori, (17) defines the observer
order. In fact Ka reflects the effects of actuator faults
on the system, so we claim that Ka = B. To design V,
equation TKa = 0 is solved.

Remark 1. In the case where only one fault is considered
(Ka ≡ Kai

), observer order q is such that q = n − 1.

As said previously

TT = V X, (18)
with

V = (Im − (KT
a ){1}KT

a ), (19)
and X is an arbitrary matrix such that X ∈ R

n×q.

By studying TT , (18) in (12), we get

AT V X − V XNT = CT LT . (20)
Equation (20) is a Sylvester one. By using the Kronecker
product, this equation can be written as

[(Iq ⊗ AT V ) − (N ⊗ V )]vect(X) = vect(CT LT ). (21)

To ensure condition (10), N is chosen diagonal N =
q

diag
i=1

{ni}, where each ni is nonzero and must have a

negative real part. In fact, each ni represents an eigenvalue
of N or a dynamic of the observer. With this consideration
on N , (21) can be written as

(

q

diag
i=1

{AT V } −
q

diag
i=1

{niV }

)

vect(X) = vect(CT LT ).

(22)

By using the notations established before, (X)i denotes the
i − th column of X. So (22) leads to solve q independent
linear equations. They are expressed for i = 1, . . . , q, as

(AT V − niV )Xi = (CT LT )i. (23)
Due to the form of C described in (2) and by substituting
it in (23) we obtain

(AT V − niV )Xi =

[

(LT )i

0

]

. (24)

Matrices L and X are determined by solving these q
systems. In order to generate a residual with (7) G1 and

G2 have to be determined. By multiplying (13) with Ka,
we find

G2CKa = 0 ⇐⇒ KT
a CT GT

2 = 0 ⇐⇒ GT
2 ∈ Ker(KT

a CT ).

To solve equation KT
a CT GT

2 = 0 with generalized inverses,
we get

G2 = WT V T
2 , (25)

with
V2 = (Im − (KT

a CT ){1}KT
a CT ), (26)

where V2 ∈ R
m×m and W is an arbitrary matrix such that

W ∈ R
g×m.

Matrix G2 is thus determined and (27) allows to write G1

as a solution of
G1T = −V2WC. (27)

2.2 Procedure

The presented design can be summarized in the following
procedure:

Step 1 : With (17)

n − rang(Ka) = q,

calculate the order of the observer (q > 0). If q = 0 go to
step 10.

Step 2 : Calculate matrix V with (19)

V = (Im − (KT
a ){1}KT

a ).

Step 3 : Choose q observer dynamics denoted ni for
i = 1, . . . , q. N is defined by

N =











n1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 nq











.

Step 4 : Solve q linear systems (24)

for i = 1, . . . , q, (AT V − niV )Xi =

[

(LT )i

0

]

,

to find X and L.

Step 5 : Calculate matrix V2 with (26)

V2 = (Im − (KT
a CT )+KT

a CT ).

Step 6 : With (25)

G2 = WT V T
2 ,

express G2 according to W .

Step 7 : Solve (27)

G1T = −V2WC,

to determine G1 and W with constraint (16)

WT V T
2 Ks − G1N

−1LKs 6= 0,

and from W find out G2.

Step 8 : Verify (16)

G2Ks − G1N
−1LKs 6= 0.

If (16) is not fulfilled then go to step 10.
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Step 9 : Compute residual generator r(t). End.

Step 10 : No UIO can be designed with this procedure.
End.

3. EXAMPLE

Let us consider the following faulty machine paper system
presented in Kailath [1980]. This system is more precisely
by (1-2) where

A =

[

−0.2 0.1 1
−0.05 0 0

0 0 −1

]

, B =

[

0 1
0 0.7
1 0

]

, C =

[

1 0 0
0 1 0

]

,

Ka =

[

0 1
0 0.7
1 0

]

and Ks =

[

1 0
0 1

]

. (28)

Both actuators and sensors can be subjected to actua-
tor faults (fa1

and fa2
) and sensor faults (fs1

and fs2
)

respectively.

A bank of observers allows to detect and locate fa1
or fa2

and detect fs1
and fs2

. To design the bank of observers we
have to:

• design an UIO which generates a residual insensitive
to fa1

;
• design an UIO which generates a residual insensitive

to fa2
;

• design an observer which generates a residual sensi-
tive to all faults.

3.1 Residual insensitive to fa1

We consider : Ka = Ka1
=

[

0
0
1

]

, and by applying the

described procedure, the residual is designed by:

Step 1 : As rank[Ka] = 1, then rank[T ] = q = 2.

Step 2 : Matrix V is determined with (18)

V =

[

1 0 0
0 1 0
0 0 0

]

.

Step 3 : As q = 2, we have to choose 2 arbitrary dynamics
for the observer, namely in −1 and −2. N can be written
as

N =

[

−1 0
0 −2

]

,

Step 4 : As q = 2, matrix X is defined by

X =

[

X11 X12

X21 X22

X31 X32

]

,

So, (24) can be written as follows

{

(AT V − n1V )X1 = (CT LT )1
(AT V − n2V )X2 = (CT LT )2

, and becomes:



























(AT V − n1V )

[

X11

X21

X31

]

= (CT LT )1

(AT V − n2V )

[

X12

X22

X32

]

= (CT LT )2

.

Each sub-system is defined by

([

0.8 −0.05 0
0.1 1 0
1 0 0

])[

X11

X21

X31

]

=

[

L11

L12

0

]

(29)

and

([

1.8 −0.05 0
0.1 2 0
1 0 0

])[

X12

X22

X32

]

=

[

L21

L22

0

]

(30)

By solving (29) and (30) we get


















X11 = X12 = 0
L11 = −0.05X21

L12 = X21

L21 = −0.05X22

L22 = 2X22

.

Therefore, by choosing X21 = 1 and X22 = 2, we obtain










L11 = −0.05
L12 = 1

L21 = −0.05
L22 = 2

.

Finally N , X, and L are written as

N =

[

−1 0
0 −2

]

X =

[

0 0
1 2

X31 X32

]

L =

[

−0.05 1
−1 4

]

.

Step 5 : With (26) V2 is defined by

V2 =

[

1 0
0 1

]

.

Step 6 : By setting

W =

[

W11

W21

]

.

So, G2 is
G2 = [ W11 W21 ] .

Step 7 : From (27) and keeping in mind that T =

(V X)T =

[

0 1 0
0 2 0

]

, we obtain

[ G111
G112

]

[

0 1 0
0 2 0

]

=− [ W11 W21 ]

[

1 0 0
0 1 0

]
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[ 0 G111
+ 2G112

0 ]

=− [ W11 W21 0 ] .

which directly gives

G2 = [ 0 G111
+ 2G112

] .

Equation (16) becomes

−0.05G111
− 0.05G112

6= 0.

By setting [ G111
G112

] = [ 1 2 ], the previous condition is
fulfilled.

Step 8 : Equation (16) is fulfilled due to

G2Ks − G1N
−1LKs = −0.15 6= 0.

Step 9 : Residual is then defined by

r = lim
t→∞

r(t) = lim
t→∞

([ 1 2 ] z(t) + [ 0 5 ] y(t)),

and is insensitive to fa1
.

3.2 Residual insensitive to fa2

We now consider that Ka = Ka2
=

[

1
0.7
0

]

. To design this

residual, we proceed in the same way we presented before.
We choose 2 observer dynamics in −1 and −1.1, and by
choosing G1 = [ 1 1 ] , we get the following observer:

N =

[

−1 0
0 −1.1

]

Q =

[

1 0
−1 0

]

L =

[

0 0
0.0971 −0.1471

]

T =

[

0 0 1
0.1 −0.1429 −1

]

G1 = [ 1 1 ]

G2 = [−0.1 0.1429 ] .

In order to complete the FDI problem, a residual sensitive
to all faults (fa1

, fa2
, fs1

and fs2
) has to be designed.

This residual could be generated thanks to a Luenberger
observer.

3.3 Residual sensitive to all faults

To generate this residual, we design the following Luen-
berger observer (Luenberger [1971])

{

˙̂x(t) = (A − KC) x̂(t) + Bu(t) + Ky(t)
ŷ(t) = Cx̂(t)

The state estimation error is then

x̃(t) = x(t) − x̂(t)

˙̃x(t) = ẋ(t) − ˙̂x(t)

= (A − KC) x̂(t) + Kafa(t) − KKsfs(t).

In a fault free case, in order that the state estimation
error will approach zero asymptotically, matrix A − KC

must be stable. K will be determined as a consequence.In
order to arbitrarily choose eigenvalues of A − KC, pair
(A,C) has to be observable (Borne et al. [2000]). As this
condition is fulfilled in this example, we choose to set the
eigenvalues, which are the observer dynamics in −1, −2
and −3. Eventually K is such that

K =

[

0.1 0.38
0.95 2
1 1

]

.

The residual generated with this observer is the output
estimation error defined by

ỹ(t) = y(t) − ŷ(t)

= Cx(t) − Cx̂(t) + Ksfs(t)

= Cx̃(t) + Ksfs(t).

3.4 Simulation results
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fs2(t)

r
(t

)

Fig. 1. Residuals r1(t), r2(t) and r(t)

The simulation, which results are given in fig. 1, is defined
by:

• system (1), where constitutive matrices are given in
(28) ;

• 2 actuators faults fa1
and fa2

. fa1
appears when

t ∈ [60; 80] and fa2
appears when t ∈ [120; 140] ;

• 2 sensor faults fs1
and fs2

. fs1
appears when t ∈

[100; 110] and fs2
appears when t ∈ [150; 160] ;

• residual generator, called r1(t), insensitive to fa1
;

• residual generator, called r2(t), insensitive to fa2
;

• residual generator, called r(t), sensitive to all faults
(fa1

, fa2
, fs1

and fs2
).

Thus, as shown in fig. 1, faults fa1
and fa2

can be detected
and located.

In fact, an analysis of the residual r(t) allows to detect
the time when a fault (fa1

, fa2
, fs1

or fs2
) occurs in the

system.

Therefore, after this detection, it becomes necessary to
analyze:
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• r1(t) signal: if r1(t) → 0, then a fault occurs on
actuator 1 (fa1

), else the fault is either fa2
or fs1

or
fs2

;
• r2(t) signal: if r2(t) → 0, then a fault occurs on

actuator 2 (fa2
), else the fault is either fa1

or fs1
or

fs2
;

• if r1(t) 6= 0 and r2(t) 6= 0, then a sensor fault occurs:
fs1

or fs2
.

In order to be complete in the FDI problem, sensor fault
can be isolated as seen in Park et al. [1994].

4. CONCLUSION

From a FDI perspective, a new residual design procedure
based on the design reduced-order unknown input observer
is presented in this work. The starting point of the pro-
posed procedure is the study of the kernel of the fault
distribution vector. This property allows us to determine
at first the observer order. Then, thanks to Kronecker
product, we can propose a design procedure to generate
a residual insensitive to one or several faults. In order to
complete the FDI problem, we have briefly reminded the
method to generate a residual sensitive to all faults. Thus,
thanks to a basic detection logic, we can distinguish the
actuator faults among them and categorize actuator faults
and sensor faults.
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