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Abstract: In this paper, a new terminal sliding mode control approach is developed for robotic 
manipulators. Unlike traditional terminal sliding mode control, the proposed approach can make system 
states converge to zero in a finite time without requiring explicitly using of system dynamic model. 
Theoretical analysis and simulation results are presented to illustrate the proposed approach. The controller 
parameter tuning method is also proposed. 

 

1. INTRODUCTION 

Terminal sliding mode control (TSMC) is a finite time 
stability control approach (Hong, Yang, Cheng, and 
Spurgeon, 2005; Janardhanan and Bandyopadhyay, 2006). It 
offers some superior properties such as better tracking 
precision, fast convergence, unsensitivity to system 
uncertainty and external disturbance (Feng, Yu, and Man, 
2002; Feng, Han, Wang, and Yu, 2007). Recently, some 
TSMC approaches were developed for robotic manipulators 
(Barambones, and Etxebarria, 2002; Feng, Yu, and Man, 
2002; Man, and Yu, 1997; Tang, 1998; Yu, Yu, Shirinzadeh, 
and Man, 2005). These methods emphasized different 
problems for robotic manipulator control with terminal siding 
mode. The common characteristic of these approach is 
supposed that the dynamics of robotic manipulator is 
composed of nominal part (known part) and unknown part. 
The nominal part can be compensated in controller design. 
The unknown part is treated as uncertainty. In some 
situations, it is not an ease job to construct the nominal part 
of robotic manipulator dynamics. To carry TSMC design out 
for a robotic manipulator, approach without explicitly using 
the system dynamics is indeed a challenging and interesting 
problem. The investigation on this problem is motivated by 
the following considerations. In terms of application, this 
study offers an easy TSMC approach for robot control. In 
terms of theory, TSMC is an important control problem on its 
own, which has been studied with mode based approach for 
robotic manipulators. The work of this paper extends the 
previous results on TSMC. The main results are given on the 
construction of a new TSMC controller for robotic 
manipulators without requiring the system dynamic mode 
explicitly. 

The rest of this paper is organized as follows. In Section 2, 
basic concepts and some preliminary results are given. In 
Section 3, dynamics of robotic manipulators is formulated. In 
Section 4, the new TSMC design procedure is developed. 

Corresponding stability analysis is also presented. In Section 
5, an illustrative example is performed to demonstrate the 
effectiveness of the proposed approach. In Section 6, some 
concluding remarks and suggestions for further research are 
presented. 

2. PRELIMINARIES 

Some notations, definitions and lemmas which will be 
useful later are introduced in this section. 
Definition 1. The fast terminal sliding mode can be described 
by the following first order nonlinear differential equation 
(Yu, Yu, Shirinzadeh, and Man, 2005) 

( )1 2s x x sig x γ= + Λ + Λ                           (1) 

where nx R∈ , ( )1 11 1, , n n
ndiag Rλ λ ×Λ = ∈ , 

( )2 21 2, , n n
ndiag Rλ λ ×Λ = ∈ , 1 2, 0i iλ λ > , q pγ = , 

, 0q p >  are positive odd and 2q p q< < , 

( ) ( ) ( )1 1 , ,
T

n nsig x x sign x x sign xγ γγ ⎡ ⎤= ⎣ ⎦ . 

Remark 1. The ith element of s can be written as 

( )1 2i i i i i i is x x x sign xγλ λ= + +                   (2) 

According to the definition of finite-time stability (Bhat, 
and Bernstein, 1998, 2000), the equilibrium point 0ix =  of 
differential equation (2) is globally finite-time sable, i.e., for 
any given initial condition ( ) 00ix x= , the system state ix  
converges to 0 in a finite time (Yu, Yu, Shirinzadeh, and Man, 
2005) 

( )

1
1 0 2

1 2

1 ln
1

i i

i i

x
T

γλ λ
λ γ λ

− +
=

−
                (3) 

and stays there forever. The time T  is also called as settling 
time (Bhat, and Bernstein, 1998, 2000), which means 0ix =  
for t T≥ . 
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Lemma 1. Assume 1 0a > , 2 0a >  and 0 1c< < , the 
following inequality holds (Yu, Yu, Shirinzadeh, and Man, 
2005) 

( )1 2 1 2
c c ca a a a+ ≤ +                             (4) 

Lemma 2. Suppose [ ]1, , T
na a a= , 1 na a a= + + , 

( )
1

2 2 2
1 na a a= + +  represent the Euclidean norm, then the 

following inequality holds 
a a≤                                        (5) 

Proof. For 1n = , it is obvious that expression (5) is satisfied. 
For 2n = , from Lemma 1, the follow inequality can be 
derived 

( ) ( ) ( )
1 1 1

2 2 2 22 2 2
1 2 1 2a a a a+ ≤ +                     (6) 

Therefore 

( )
1

2 2 2
1 2 1 2a a a a+ ≤ +                          (7) 

Assume that for n k=  the expression (5) holds, i.e., 

( )
1

2 2 2
1 1k ka a a a+ + ≤ + +                   (8) 

Then for 1n k= +  

( ) ( )
11

2 2 2 2 2 2 22
1 1 1 1k k k ka a a a a a+ +

⎡ ⎤+ + + = + + +⎣ ⎦     (9) 

From Lemma 1, the right hand of equation (9) satisfies the 
following inequality 

( ) ( ) ( )
1 1 1

2 2 2 2 2 22 2 2
1 1 1 1k k k ka a a a a a+ +

⎡ ⎤+ + + ≤ + + +⎣ ⎦   (10) 

According to the expression (8) and (10), the following 
inequality can be given 

( )
1

2 2 2 2
1 1 1 1k k ka a a a a+ ++ + + ≤ + +           (11) 

By the principle of mathematical induction, the conclusion 
can be drawn that the expression (5) is satisfied for any 
positive integer n . □ 

The following results on differential inequalities will be 
used for the stability analysis (Barambones, and Etxebarria, 
2002; Tang, 1998). 
Definition 2. If ( ),f V t  is a scalar function of scalars ( )V t , 

t  in some open connected set 2D R∈ , then a function ( )V t  

on [ )0 1,t t  is a solution of the differential inequality 

( ) ( )( ),V t f V t t≤                               (12) 

on [ )0 1,t t  if ( )V t  is continuous on [ )0 1,t t  and its derivative 

on [ )0 1,t t  satisfies (12). 

Lemma 3. Let ( )( ),f y t t  be continuous on an open 

connected set 2D R∈  and assume that the initial value 
problem for the scalar equation  

( ) ( )( ),y t f y t t= ,    ( )0 0y t y=                 (13) 

has a unique solution. If ( )y t  is a solution of (13) on [ )0 1,t t  
and ( )V t  is a solution of (12) on [ )0 1,t t  with ( ) ( )0 0V t y t≤ , 

then ( ) ( )V t y t≤  for 0 1t t t≤ < . 
Lemma 4. Assume that a continuous positive definite 
function ( )V t  satisfies the differential inequality 

( ) ( )V t V tηα≤ −   0t t∀ ≥   ( )0 0V t ≥             (14) 

where 0α > , 0 1η< <  are constants. Then, for any given 0t , 

( )V t  satisfies the inequality 

( ) ( ) ( )( )1 1
0 01V t V t t tη η α η− −≤ − − −   0 1t t t≤ ≤   (15) 

and 
( ) 0V t = ,  1t t∀ ≥                            (16) 

with 1t  given by 

( )
( )

1
0

1 0 1
V t

t t
η

α η

−

= +
−

                           (17) 

In this paper, ⋅  denotes norm of vector or matrix. The 
vector norm is Euclidean norm and the matrix norm is 
corresponding induced norm. 

3. DYNAMICS OF ROBOTIC MANIPULATORS 

For general n-link rigid robotic manipulators, the dynamic 
equation can be derived in joint space as 

( ) ( ) ( ),M q q C q q q G q τ+ + =                  (18) 

where , , nq q q R∈  are the vector of joint angular position, 
velocity and acceleration, respectively. ( ) n nM q R ×∈  is 
symmetric and positive definite inertia matrix, 

( ), n nC q q R ×∈  and ( ), nC q q q R∈  is the vector of 

centrifugal and Coriolis torques, ( ) nG q R∈  is the vector of 

gravitational torques, nRτ ∈  is the vector of applied joint 
torque. This dynamic model has the following properties that 
will be used in the controller design (Spong, and Vidyasagar, 
1989) 
(P1) The matrix ( )M q  satisfies ( ) mM q μ≤ , for constant 

0mμ > . 

(P2) The matrix ( ),C q q  satisfies ( ), cC q q qμ≤ , for 

constant 0cμ > . 

(P3) The vector ( )G q  satisfies ( ) gG q μ≤ , for constant 

0gμ > . 

(P4) ( ) ( )2 ,M q C q q−  is skew-symmetric. 
The purpose of this paper is to develop a new TSMC 

scheme for robotic manipulators such that both position and 
velocity tracking error converge to zero in a finite time. 

4. A NEW TSMC APPROACH WITHOUT REQUIRING 
SYSTEM DYNAMIC MODEL EXPLICITLY 

In this section, a new TSMC control approach is proposed 
for the tracking control of general n-link rigid robotic  
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manipulators. The proposed approach can guarantee the 
system states to reach the pre-described terminal sliding 
mode in a finite time, then the states converge to equilibrium 
point along the terminal sliding mode in a finite time.  

Let ( )d nq t R∈  be the desired joint position trajectory of 

robotic manipulator. The tracking error ( ) ne t R∈  is defined 
as 

( ) ( ) ( )de t q t q t= −                              (19) 

According to expression (1), the fast terminal sliding mode 
can be written as 

( )1 2s e e sig e γ= + Λ + Λ                        (20) 

The time derivative of ith element of ( )sig e γ  is 1
i ie eγγ − . 

Because 1 0γ − < , the singularity will occur as 0ie = . To 
avoid the singularity problem, the following definition 

n
re R∈  is given as 

1 0 1, ,
0 0

i i i
ri

i

e e ee i n
e

γγ −⎧ ≠⎪= =⎨
=⎪⎩

        (21) 

Then the time derivative of s  can be written as 
1 2 rs e e e= + Λ + Λ                                (22) 

Remark 2. Due to the definition of re , the singularity 
problem will be avoided in the controller design. This will be 
seen in the following of this section. 

The command vector and its time derivative are defined as 
follows 

( )1 2
dr q e sig e γ= − Λ − Λ                       (23) 

1 2
d

rr q e e= − Λ − Λ                             (24) 

The definitions of s  and r  lead to the following equation 
s q r= −                                        (25) 

s q r= −                                        (26) 

Applying the definitions of s  and r  to dynamic equation 
(18) yields 

( ) ( ) ( ) ( ) ( ), ,M q s C q q s M q r C q q r G q τ+ = − − − +   (27) 

Without loss of generality, two technical assumptions are 
made to pose the problem in a tractable manner. 
(A1) The desired joint position trajectory ( )dq t , the time 

derivatives ( )dq t  and ( )dq t  are bounded and smooth 
signals. 
(A2) The joint angular position and velocity q , q  are 
measurable. 

The control objective is to design the torque input τ  to 
drive the system states to reach the terminal sliding mode in a 
finite time and restrict the systems states to converge to 
equilibrium point along the terminal sliding mode in a finite 
time. 

Now the new TSMC control law which dose not require 
the explicit use of the system dynamical model is designed as 
follows 

0 1τ τ τ= +                                    (28) 

( ) ( )
0

1

M C G

M C G

K r K q r K

Ksig s sign s r q rρ

τ

τ

⎧ = + +⎪
⎨

⎡ ⎤= − − Δ + Δ + Δ⎪ ⎣ ⎦⎩
  (29) 

where the MK , CK  and GK  are positive definite diagonal 
feedforward control gain matrices, which are used to 
compensate the effect caused by ( )M q , ( ),C q q  ( )G q , 

respectively. MΔ , CΔ  and GΔ  are scalars, whose selection 
will be discussed later. ( ) ( ) ( )1 , ,

T
nsign s sign s sign s= ⎡ ⎤⎣ ⎦ in 

(29) is for a saturation control used to compensate for the 
nonlinear effect caused by the error between the feedforward 
control gains and modelling parameters, which was used in 
literature (Slotine and Sastry, 1983) The ( )Ksig s ρ  is 
feedback term to guarantee the system states to reach the 
terminal sliding mode in a finite time. K  is positive definite 
diagonal feedback control gain matrix, the selection of ρ  is 
similar to γ . 

A control gain tuning strategy is proposed as follows. First, 
select the 0MΔ = , 0CΔ =  and 0GΔ = , tune the control 
gains K , MK , CK  and GK  using a trial and error method. 
The controller at this time is a normal feedforward/feedback 
control. Second, gradually increase MΔ , CΔ  and GΔ  from 
zero to introduce the saturation control. Finally, the previous 
tuned gains may need to be changed slightly, utilizing trail 
and error method. 
Theorem 1. Under assumptions (A1)-(A2), consider the 
robotic manipulator dynamic equation (27) subject to the new 
TSMC control law (28)-(29). If the following conditions are 
satisfied  

( )
( )

( )

,

M M

C C

G G

K M q

q K q C q q

K G q

⎧ Δ ≥ −
⎪⎪Δ ≥ −⎨
⎪

Δ ≥ −⎪⎩

                  (30) 

Then the position tracking error ( )e t  and velocity tracking 

error ( )e t  will converge to zero in a finite time. 
Proof Consider the Lyapunov function candidate 

1
2

TV s Ms=                                   (31) 

The time derivative of V  is 
1
2

T TV s Ms s Ms= +                            (32) 

Consider closed loop equation (27), one can get 

( ) 1
2

T TV s Cs Mr Cr G s Msτ= − − − − + +          (33) 

According property (P4), the following expression can be 
given 

( )TV s Mr Cr G τ= − − − +                      (34) 
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Substitute control law 0τ  into expression (34), the 
following expression can be derived 

( ) ( ) ( ) 1
T M C GV s K M r K q C r K G τ⎡ ⎤= − + − + − +⎣ ⎦  (35) 

( ) ( ) ( ) 1
T M T C T G TV s K M r s K q C r s K G s τ≤ − + − + − +  

1

T M T C

T G T

s K M r s K q C r

s K G s τ

≤ − + −

+ − +
               (36) 

Using Lemma 2, there must be  

1

M

C G T

V s K M r

s K q C r s K G s τ

≤ −

+ − + − +
     (37) 

Consider control law 1τ  

( )

M C G

T M C G

V s K M r s K q C r s K G

s Ksig s s r s q r sρ

≤ − + − + −

− − Δ − Δ − Δ
   (38) 

( )
( )
( ) ( )

M M

C C

G G T

V s K M r

s q K q C r

s K G s Ksig s ρ

≤ − Δ − −

− Δ − −

− Δ − − −

      (39) 

According to properties (P1)-(P3), one can get the 
following inequalities 

M M

C C

G G

K M

K q C q

K G

δ

δ

δ

⎧ − ≤
⎪⎪ − ≤⎨
⎪

− ≤⎪⎩

                        (40) 

where 0Mδ > , 0Cδ >  and 0Gδ >  are real numbers. 
Under condition (30) and inequalities (40), if the MΔ , CΔ  

and GΔ  are chosen as 
M M

C C

G G

δ
δ
δ

⎧ ≤ Δ
⎪ ≤ Δ⎨
⎪ ≤ Δ⎩

                                     (41) 

The following inequality can be given 
( )TV s Ksig s ρ≤ −                              (42) 

where 

( ) ( )
1

n
T

i i i i
i

s Ksig s s k s sign sρρ

=

− = −∑                                       

1 2

1 1

1
2

n n

i i i
i i

k s ms V
η

ρ ηα α+

= =

⎛ ⎞
= − ≤ − ≤ −⎜ ⎟

⎝ ⎠
∑ ∑  (43) 

where ( )1 2pη = + , ( )min 2k m ηα = , { }min min ik k= . 
By using (42) and (43), one can get 

0V V ηα+ ≤                                (44) 

From Lemma 4, it follows that s  will be 0 in a finite time. 
This means that the system states will reach the terminal 
sliding mode in a finite time rT  

( )
( )

1

1r

V s
T

η

α η

−

=
−

                              (45) 

According to the Definition 1, the system states will 
converge to zero in a finite time along the fast terminal 
sliding mode. This completes the proof. □ 

Remark 3 In controller (28)-(29), the sign function ( )sign ⋅  
will cause chattering. To avoid this problem, the function 

( )tanh ⋅  can be used to instead of ( )sign ⋅  in a practical 
controller implementation. 
Remark 4 To accelerate the convergence rate when the 
system state is far away from the terminal sliding mode, the 
control law 1τ  can be designed as 

( ) ( )1 1 2
M C GK sig s K s sign s r q rρτ ⎡ ⎤= − − − Δ + Δ + Δ⎣ ⎦ (46) 

where 1K  and 2K  are positive definite diagonal feedback  
control gain matrices. 2K s  can guarantee the fast converge 

rate when the system states are far away from terminal 
sliding mode. 

5. AN ILLUSTRATIVE EXAMPLE 

Consider an illustrative example of the two-link rigid 
robotic manipulator in (Yu, Yu, Shirinzadeh, and Man, 2005) 

( ) ( )
( )

( ) ( )
( )

( )
( )

11 2 12 2 1 2 1 2 1 1 1 1 2 1

21 2 22 2 2 2 2 2 1 2 2

2 ,
0 ,

q q q q q q q q q q
g

q q q q q q q
α α β β γ τ
α α β γ τ

⎡ ⎤ ⎡− − ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

where 
( ) ( ) ( )2 2

11 2 1 2 1 2 2 2 1 2 2 12 cosq m m r m r m r r q Jα = + + + +  

( ) ( ) ( )2
21 12 2 2 2 2 1 2 2cosq q m r m r r qα α= = +  

2
22 2 2 2m r Jα = +  

( ) ( )2 2 1 2 2sinq m r r qβ =  

( ) ( ) ( ) ( )1 1 2 1 2 1 2 2 2 1 2, cos cosq q m m r q m r q qγ = + + +  

( ) ( )2 1 2 2 2 1 2, cosq q m r q qγ = +  
The parameter values were 1 1r m= , 2 0.8r m= , 1 5J kgm= , 

2 5J km= , 1 0.5m kg=  and 2 1.5m kg= . 
The reference signals were given by 

( ) ( ) 4
1 1.25 7 / 5 7 / 20d t tq e e− −= − +  

( ) 4
2 1.25 1/ 4d t tq e e− −= + −  

The initial values of the system were selected as 
( )1 0 1.0q = , ( )2 0 1.5q = , ( )1 0 0q =  and ( )2 0 0q = . 

The control parameters were chosen as 

[ ]( )1 2.5,2.5diagΛ = , [ ]( )2 1.5,1.5diagΛ = , 3
5

γ = , 

[ ]( )0.014,0.014MK diag= , [ ]( )1.6,1.6CK diag= , 

[ ]2,2 TGK = , 0.13MΔ = , 1.8CΔ = , 2.1GΔ = , 

[ ]( )1 50,50K diag= , [ ]( )2 50,50K diag= , 9
11

ρ = . 
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Fig. 1. The angle position tracking of joint 1 

 

 

Fig. 2. The angle position tracking of joint 2 

 

 

Fig. 3. The angle velocity tracking of joint 1 

 

 

 

 

 

 

Fig. 4. The angle velocity tracking of joint 2 

 

 

Fig. 5. The terminal sliding mode of joint 1 and joint 2 

 

 

Fig. 6. The angle position error of joint 1 and joint 2 
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Fig. 7. The angle velocity error of joint 1 and joint 2 

 

 

Fig. 8. The control input of joint 1 and joint 2 

Fig. 1-4 show the position tracking and velocity tracking of 
joint 1 and joint 2. These figures show that the good tracking 
performance is achieved. Fig. 5 shows that the terminal 
sliding modes converge to zero in a finite time. Fig. 6 and 7 
show that the position error and velocity error converge to 
zero in a finite time. From Fig. 5-7, it can be seen that system 
states reach terminal sliding mode in a finite time, then, 
converge to equilibrium along terminal sliding mode in a 
finite time. Fig. 8 denotes the control inputs. Since the new 
definition of non-singular terminal sliding mode and 
saturation technique are employed in controller design, the 
control inputs are bounded and chattering free. 

6. CONCLUSIONS 

This paper presents a new TSMC approach for robotic 
manipulators without requiring system dynamic mode 
explicitly. The proposed approach can guarantee the system 
states reach to the terminal sliding mode in a finite time. 
Then the system states converge to zero along the terminal 
sliding mode in a finite time. A novel non-singular terminal 
sliding mode is employed in controller design. The 
singularity problem can be avoided. Because this method 
does not require the explicit use of the robotic manipulator 
dynamic model, it can be implemented easily. It should 
mentioned that sound bench tests need to be conducted by 
simulations and lab demonstrations before applying the 

approach to control of real robotic manipulators. A fully 
adaptive TSMC for robotic manipulators is under the authors’ 
research. 
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