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Abstract: The combustion in future engines will work with a very high amount of recirculated exhaust gas 
in part load conditions to enable a low peak combustion temperature. This combustion suffers from insta-
bilities of the process and a highly nonlinear behaviour. The paper presents the use of neural nets for ob-
serving the engine. A nonlinear model without feedback of measurements is linearised online and com-
bined with an extended Kalman filter. This observer is compared to a neural net with observer structure by 
application to two different valve timing strategies. The more promising observer is combined with a 
model based predictive controller with a quadratic cost function. Its analytic solution is compared with 
quadratic programming for respecting constraints in the prediction for improving the control error. 

 

1. INTRODUCTION 

The need for a reliable energy supply characterizes the 
everyday life in private households, industrial processes and 
transportation. The awareness of environmental pollution has 
rapidly grown in the whole world within the recent years. 
Most industrialized countries agreed in the Kyoto Protocol to 
rapidly reduce their over all emissions. It entered into force 
on February 16th 2005. A big part of a nation’s emission is 
caused by traffic. Therefore the legislature in most countries 
enforced tighter emission laws for automobiles and transpor-
tation in general. E.g. the European parliament decided the 
Euro 6 legislation in December 2006. According to the 
stricter emission specifications the research on combustion 
systems focuses apart from a general improvement of effi-
ciency and carbon dioxide reduction on the reduction of the 
pollutants nitric oxides (NOx), soot, carbon monoxides and 
hydrocarbons, respectively. Therefore the development of 
new combustion processes is conditioned by the trade-offs 
between those emissions, which make the simultaneous re-
duction to contrary tasks. With the introduction of premixed 
lean combustion instead of the former diffusion controlled 
combustion especially the NOx-emissions could be reduced 
considerably. These combustion processes with a high ho-
mogenisation and exhaust gas recirculation (EGR) are known 
as HCCI (Homogeneous Charge Compression Ignition) or 
CAI (Controlled Auto Ignition). 

As a part of a major project, the Collaborative Research 
Centre 686 “Model based control of homogenized low-
temperature Combustion”, a controller for combustion en-
gines will be set up. Diesel and gasoline are the main focus of 
actual research, as their supply system is already highly de-
veloped and spread. The latter will be addressed in this paper. 
The low-temperature combustion of a gasoline-fuel will be 
named CAI in the following, but many other acronyms exist 
in literature. This combustion only can be realised with a 
modified valve train, which can offer a higher variability than 

the common fix valve train in usual series-engines. For the 
CAI-combustion the cylinder load is compressed until it self-
ignites nearly simultaneously in several centres of the com-
pression volume without the use of a spark. The nearly simul-
taneous reaction leads to a very steep pressure rise and there-
fore to a high thermodynamical efficiency. By recirculating 
exhaust gas with a high thermal heat capacity the peak tem-
perature can be kept in a low range and a reduction of NOx 
by 90-99% can be realised. The fuel consumption drops due 
to the increased efficiency up to 15% (Lang et al., 2005). 
However, instabilities arise in form of spatial and temporally 
distributed areas of ignition, which are sensitively depended 
on the temperature and the reaction’s kinetics. The self-
ignition is influenced by the thermal attributes of the cylinder 
load and its stratification, no longer by a spark or only the 
injection timing. As CAI works with a high amount of resid-
ual gas, the combustion of one cycle depends on the exhaust 
of the previous one. The start of combustion will be advanced 
with a higher compression end temperature. High pressure 
gradients and therefore inadmissible noise results are the con-
sequence. The auto ignition may even misfire or at least be 
retarded with too low temperature at the top dead centre after 
the compression stroke. The only way to address this problem 
is a controller stabilizing the combustion while taking con-
straints into account, e.g. the limited acceptable frame for the 
actuators. Therefore a controller is needed, which can respect 
those constraints.  

The group of researchers of the Collaborative Research 
Centre 686 will create a model based predictive controller 
(MPC) which uses a physically based model for this task. 
This will be reduced from detailed models, e.g. CFD, to a 
form running in real-time on the prototyping-hardware, 
which will calculate the controller. E.g. (Shaver et. al.) have 
demonstrated a physically based closed loop controller to 
control the peak pressure of a propane HCCI-combustion. At 
the start of our project no model at all is available for the 
model-based controller. Therefore this has to be substituted 
by an identified model allowing its extension by new found 
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physical knowledge later in the project. As soon as a physical 
model of a part-aspect of the whole combustion process is 
available, this knowledge can be implemented. The part 
model’s output v(t) can be either the total input to an identi-
fied model like an artificial neural net (ANN), case 2 in (Fig. 
1), or a part of the inputs to the latter, case 4 in (Fig. 1). The 
third possibility is to set up two completely separate, but par-
allel models, one physical and one identified, each independ-
ently calculating one part of the output, case 3 in (Fig. 1). The 
identified model has to represent the highly nonlinear behav-
iour of the low temperature combustion in the engine and 
provide the opportunity for online use in a controller. E.g. 
(Colin et al., 2007) applied a linearised neural predictive con-
troller to reduce throttling losses of a downsized turbo 
charged SI engine. We also choose a special ANN for control 
which can be linearised to a discrete state space form, see 
(Hoffmann et al., 2007) and section 3. This allows the easy 
superposition of a physical with the identified model with a 
physical part model in the linear and nonlinear case, see  
(Fig. 1). 

 
Fig. 1: Discrete time (non-)linear state space model superpo-
sition. The numbers indicate in which cases the linearised 
state space matrices do have an entry. Otherwise the lot is 
filled with the zero matrix of the correct size. 

2 ENGINE SETUP AND ACTUATORS 

The research is based on a single cylinder research engine, 
which is run by the Institute for Combustion Engines, RWTH 
Aachen University, while the controller will be set up by the 
Institute of Automatic Control, RWTH Aachen University. 
The motored engine is equipped with direct injection and a 
fully variable electromechanical valve train (EMVT). Further 
engine details are shown in (Table 1). The piston’s shape 
allows an opening of the valves at any desired point of time. 

Table 1 Setup research single cylinder engine 
Bore Stroke Con-rod Displacement Compression- 
   length   ratio  
84 90 159 0.499  13 
mm mm  mm dm3 [-] 

 

The combustion process is controlled by two actuators, 
namely the valve timing for controlling the exhaust gas recir-
culation and the fuel injection for controlling as well the en-
gine’s load as the homogenisation process. 

The fully variable valve train offers a high degree of free-
dom for the recirculation of the exhaust gas to the next com-
bustion cycle which is reduced to the two most promising 
techniques.  

The first option is to hold the exhaust from a previous cy-
cle partly inside the combustion chamber (Combustion 
Chamber Recirculation CCR). This can be achieved by clos-
ing the exhaust valves before top dead centre of the gas ex-
change (TDCGE). An amount of exhaust is trapped inside the 
cylinder and compressed until top dead centre is reached and 
released afterwards. Subsequently the necessary amount of 
air is aspired during a short lift of the intake valve. 

A second possibility is to push out the exhaust, keep the 
valves opened over TDCGE and reaspirate it from the exhaust 
port (Exhaust Port Recirculation EPR). Afterwards the 
needed fresh air is drawn from the intake port while the in-
take valves are opened. (Fig. 2) shows the direction of change 
for reducing the amount of residual gas for both valve timing 
strategies. Shown is the lift of the intake- and exhaust valve 
(IV / EV) over crank angel from lower dead centre of the 
high pressure cycle (LDCHP) over top dead centre of the gas 
exchange (TDCGE) till lower dead centre of the gas exchange 
(LDCGE). 

 
Fig. 2: Valve timing strategies for internal exhaust recircula-
tion for Combustion Chamber Recirculation CCR (top) and 
Exhaust Port Recirculation EPR (bottom) with the direction 
of change for reducing residual gas. 

With these two valve-timing strategies the degree of free-
dom for actuating the valve train can be reduced to one. With 
CCR the events exhaust valve opening (EO) and intake valve 
closing (IC) are fix, at least for one engine speed, and exhaust 
valve closing (EC) and intake valve opening (IO) are set 
symmetrically to the top dead centre position shifted with a 
little tradeoff. With EPR the same valve events depend on 
each other as exhaust valve closing and intake valve opening 
fall together or at least have a constant overlap for one engine 
speed. 

The load can mainly be influenced by the injected amount 
of fuel per cycle or the energizing duration (ED) respectively, 
which means the opening or actuating time of the fuel direct 
injector. The grade of homogenisation of the injected fuel in 
the gas volume consisting of exhaust and air depends on the 
end of energizing event (EE) and influences as well the load 
as the exhaust gas.  

Apparently the events end of energizing (EE), energizing 
duration (ED) and exhaust valve Closing (EC) and intake 
valve Opening (IO) are the main actuating variables for a 
constant revolution speed. 

The values chosen to control are the indicated mean effec-
tive pressure imep and the efficiency of the combustion. A 
characteristic value for the latter in general and for control 
purposes in particular is the fuel mass fraction burned MFB 
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in general and especially the 50% conversion point. It should 
always be kept five to ten degrees after top dead centre as 
presented in (Chiang et al., 2007). This value so far is not 
calculated in the custom-made ECU based on a dSPACE 
MicroAutoBox, which is coevally developed. An easy to de-
tect alternative is given by the location of the peak pressure 
apmax. For best performance in one operating point a spe-
cific location of the maximum pressure exists. Unlike the 
50% MFB it is not nearly constant for best efficiency. Its op-
timal location changes slightly with the load but is a suitable 
measure for internal efficiency. 

3 OBSERVER DESIGN 

The aim of the research presented suggests a form for the 
identified model similar to a nonlinear state space, as the con-
troller shall be a model based predictive controller (MPC), 
which is the only controller able to respect constraints in the 
algorithm. Additionally the identified model should be adopt-
able to new physical knowledge.  

The model based predictive controller demands a linear 
state space model in every calculation step. The model there-
fore should have a form which can easily be linearised for the 
use internally in the MPC. A neural net is chosen which 
represents the nonlinear process in a sufficient way and has 
certain attributes of a linear state space. Different researchers 
have shown that MLP nets can approximate any continuous 
function to any desired accuracy, e.g. (Hornick et al., 1989). 
Therefore the chosen model form is Neural Network 
Statespace Innovations Form (NNSSIF) following (Nørgaard 
2000). This multilayer perceptron net (MLP) with one hidden 
and one output layer has hyperbolic tangent and linear activa-
tion functions in the hidden and the output layer, respectively, 
see (1). 

( ) ( ) , , ,0 ,0

1 1

ˆ , tanh
h

nn

i i i j j l l j i

j l

y t g W w w W
ϕ

ϕ θ ϕ
= =

  
= = + +   

  
∑ ∑ (1) 

Here φl(t) is the regression vector containing the input val-
ues to the net while the vector θ contains the weights and 
biases Wi,j and wi,j or Wi,0 and wi,0, respectively. These are 
optimized during the offline training of the net. With a 
MIMO system for each of the systems outputs ŷi one separate 
equation (1) is solved. The NNSSIF net is a special form of 
an MLP net whose outputs are part of the system’s states. 
The actual states are built by adding retarding states to re-
tarded states as described in (Hoffmann et al., 2007). These 
become part of the regression vector, which also contains the 
inputs to the system and the deviation of the model from the 
process’ output. The output of the process is calculated by 
multiplying the states with a fix matrix C, see (Fig. 3). 

As shown in (Hoffmann et al., 2007) this net already pro-
vides a structure of which the linearised form is a discrete 
time state space model including an observer matrix K, 
which originates from the feedback of the model’s deviation 
ε(t) from the measured process output. This, of course, is a 
form of observer. But it does not show integrating behaviour 
and therefore still leaves a deviation from the observed val-
ues, when other data than the training set is provided. 

 
Fig. 3 Schema of an NNSSIF net with error feedback ε(t). 

The state space model can also be implemented in an ex-
tended Kalman filter to improve the NNSSIF net. Here the 
error feedback is neglected, as this is replaced by the ex-
tended Kalman filter. Additionally the observer is imple-
mented with an output disturbance observer for zero tracking 
error following (Rossiter, 2003). To show the improvement 
by the extended Kalman filter, an NNSSIF net was trained for 
both valve-strategies, EPR and CCR. This net is used to ob-
serve an identified process model with superposed noise for 
verification. The used 5x5 engine simulation-model is a sec-
ond NNSSIF without feedback of ε(t). It is also trained and 
validated on separate step response measurements like the 
observing net. Inputs are EE, ED, EC, IO as described in sec-
tion 2 and the revolution speed. Outputs are imep, apmax, the 
maximum pressure, its maximum gradient and the location of 
the latter. Only the actuating variables are used for the test, 
the other inputs remain constant. The noise is white Gaussian 
on the model’s outputs and its intensity is the same as the 
measurement has shown. Both, the observer and the simula-
tion-model are of second order which is evaluated in 
(Bengtsson et al., 2006) for the control of a HCCI combus-
tion engine with linear MPC. 

As first actuating variable the energizing duration ED is 
chosen. This value corresponds to the time the injector is held 
open and therefore the injection of fuel. That means the in-
crease of load as well as the retardation of the location of the 
peak pressure. For evaluation the test is accomplished with 
data different from the training data set of the NNSSIF net 
observer for both valve timing strategies as in (Fig. 2). The 
model based predictive controller to develop will base on a 
prediction of the future engine behaviour, which in turn de-
pends on a good estimate of the current states. The controlled 
values imep and apmax are part of the states and are taken as 
a measure for the quality of the observance. It is essential not 
only that the observer offers a good result, but also that it is 
available for all valve timing strategies under research. 
Therefore (Fig. 4) and (Fig. 5) show the comparison of the 
NNSSIF net with extended Kalman filter NNSSIF observer 
for both valve timing strategies Combustion Chamber Recir-
culation CCR and Exhaust Port Recirculation EPR. Applying 
the extended Kalman filter permits the improvement of the 
observer for both engine operation modes. This can easily be 
seen from the accumulated standardised square errors. The 
simulation results in (Fig. 4) and (Fig. 5) demonstrate that the 
extended Kalman filter (red dashed lines) is able to observe 
the noisy model output (green solid lines) better than the 
original NNSSIF net (blue solid lines) can, although the op-
erating point of the engine and therefore the operating condi-
tions  
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Fig. 4: Comparison of an NNSSIF observer with trained Er-
ror feedback to one with an integrating Kalman filter, engine 
operated in CCR-mode 

for the observers are close to the training data set of the neu-
ral net. The engine model is excited with similar actuating 
values as in the training set. Therefore the deviation between 
both observers cannot be caused by extrapolating effects of 
the neural net. The accumulated square error is standardised 
over the corresponding measurement value. The engine 
model is actuated first by a de-/increase sequence in energiz-
ing duration and second in exhaust valve closing. Note that 
this means for CCR an in-/decrease, for EPR a de-/increase 
sequence in recirculated gas. For both valve timing strategies 
the degree of freedom for the actuation of intake and exhaust 
valve is reduced to one according to section 2. The deviation 
of the estimate of the indicated mean effective pressure imep 
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Fig. 5: Comparison of an NNSSIF observer with trained error 
feedback to one with an integrating Kalman filter, engine 
operated in EPR-mode 

is well for both observers in both cases regarded, CCR and 
EPR. The example for CCR shows a higher slope in the de-
viation error for imep with the NNSSIF observer than with 
the extended Kalman filter. The EPR case shows only a 
minimally better performance of the extended Kalman filter 
for imep. With the location of the maximum pressure apmax 
the extended Kalman filter NNSSIF observer proofs its better 
performance, especially with rather instable operating condi-
tions for the engine: E.g. with CCR the reduction of residual 
gas by shifting exhaust valve closed late at 70 seconds leads 
to rather instable conditions. With EPR the load de- and in-
crease at seven and seventeen seconds respectively show lead 
to a high deviation. Here the accumulated error increases 
significantly. 
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4 CLOSED LOOP SIMULATION WITH MPC 

The comparison of the observers showed the advantage of 
the NNSSIF-observer with extended Kalman filter. Therefore 
it is used in the implementation in a simulated closed control 
loop. The engine model is the same nonlinear second order 
model as described in section 3. Used actuators are the ener-
gizing duration ED and the valve timings exhaust valve clos-
ing EC or intake valve opening IO respectively. The end of 
energizing and the revolution speed are kept constant. Again 
the model’s outputs are noisy as before. The observer focuses 
on the controlled variables indicated mean effective pressure 
imep and location of the maximum pressure apmax. In the 
closed control loop the observer linearises the nonlinear 
NNSSIF system in (Fig. 3) as described in (Hoffmann et al., 
2007) to a linear discrete time state space. The matrices C 
and D are constant and therefore become parameters to the 
controller. The matrices Ak and Bk in contrast change with 
every time step and therefore are an input to the controller. 

The controller also receives the estimated states ̂xk from the 
observer, the measured system’s output y(k) and the predicted 
setpoint wk. The letter is assumed constant over the predicted 
future. 

The MPC is based on the optimization of the quadratic cost 
function (2). The two terms regard the deviation between 
predicted setpoint wk and predicted system output ŷk in a 
timeframe from lower to upper prediction horizon, from N1 to 
N2. The change of the actuating variable ∆uk is considered 
from the actual time step to the control horizon Nu. Both are 
quadratically weighted with the matrices Λ or Γ respectively: 
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Notice that the system is realigned in (3). The prediction of 
the free system response is calculated at time step k by the 
multiplication of the actual matrix Fk with the actually esti-

mated state ̂xk. To realign the prediction to the system’s out-
put, not the free system response itself, but only its deviation 
from the previous prediction is added for every predicted 
time step to the actual measured system output Y(k). The pre-
dicted influence of the actuating values is calculated by the 
last term in (3). From (2) and (3) the problem can be reformu-

lated to a quadratic term, which can be minimized analyti-
cally. This leads to the optimal solution (4). The term obvi-
ously only depends on the prediction of the setpoint and the 
system’s predicted output Ŷk. Here the vector ∆Uopt,k holds 
(Nu*dimu) entries, for each predicted control step one set of 
actuating variables. Of these only the first set is applied. 
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opt k quad k quad k
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quad k k k k quad k k k
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 (4) 

Enforcing constraints on the actuating variable or its deri-
vate is only possible by saturating the optimal solution when 
using the analytic solution (4). Constraints on the controlled 
variables are not possible at all. The direct consideration of 
constraints can be realized by using an optimisation routine 
which minimizes (2) subject to boundaries on ∆U. Such a 
quadratic solver (QP) is described for example in 
(Schittkowski 1986). All constraints on the actuating variable 
and its derivate as well as constraints on the controlled vari-
able can be reformulated in dependency on the optimization 
variable ∆U analogous to (Maciejowski 2002). To evaluate 
the improvement of the implementation of a quadratic solver 
only the actuating variables are bounded as shown in (Fig. 6), 
as this is also possible with the analytic solution. The benefit 
therefore only arises from the QP controller’s feature to re-
gard constraints in the optimization. The controller was set up 
with an upper prediction horizon N2 of 20 simulation steps 
with a lower prediction horizon N1 of 1. The prediction hori-
zon Nu was set to 5. Λ and Γ are the same for both control-
lers. The actuators seem to be quite fast, see (Fig. 6). But the 
actuation is only necessary every second revolution, as we 
operate a four stroke engine. The electromechanical valve 
train offers the needed response time, as it is actuated once 
per cycle, see section 2. The visual benchmark is hindered by 
the noise applied to the system’s output, but it demonstrates 
the controllers’ ability to cope with the disturbance, 
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Fig. 6: Bounded actuating variables for the comparison test of 
QP and analytic solver shown in Fig. 7 
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Fig. 7: Model based predictive controllers in closed loop 
simulation, setpoint step in imep with EPR mode, comparison 
of quadratic programming and analytic solution 

see (Fig. 7). A better measure for the performance is the ac-
cumulated square error standardized over the setpoint. Espe-
cially the step to a lower load at 30 seconds leads to a better 
performance of the QP solver especially in following the set-
point for apmax. As remarked before the step towards low 
loads conduces to a less stable engine operation for EPR. The 
analytic controller is not capable of keeping the location of 
the maximum pressure apmax constant between 30 and 40 
seconds simulation time, while the quadratic controller is. 
The shown test only holds for the actuating variable, not for 
its derivate. The implementation of constraints on the con-

trolled variable is only possible for the QP controller using 
(3) to make the constraints dependent on the optimization 
variable ∆U. 

5 CONCLUSIONS 

A nonlinear model based predictive controller combined 
with a neural net observer has been presented in this paper. 
The benefit of the combination of an extended Kalman filter 
with the neural net observer has been shown for different 
operation strategies for a CAI single cylinder engine. By 
combination of the neural extended Kalman filter with two 
different MPCs their performance could be evaluated. This 
benchmark proved the advantage of respecting constraints in 
the prediction by using quadratic programming solvers. Fur-
ther research has to show the convenience and closed loop-
stability of the proposed concept by application to the real 
engine. 
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