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Abstract: This paper treats the problem of nonlinear adaptive attitude tracking control of an orbiting 
flexible spacecraft. It is assumed that the system parameters are unknown and the truncated model of the 
spacecraft has finite but arbitrary dimension. An adaptive sliding mode control law is derived for a three-
axis stabilized spacecraft attitude tracking control system. The control gains are designed by solving a 
linear matrix inequality (LMI) problem to achieve a prescribed L2-gain performance criterion. The 
external torque disturbance/parametric error attenuation, with respect to the performance measure, along 
with control input penalty are ensured in the L2-gain sense. Lyapunov analysis is employed to show that 
the closed-loop system is asymptotically stable and the effect of the external disturbances/parametric error 
on the tracking error can be attenuated to any prescribed level. Simulation results show the effectiveness of 
the control scheme.   

 

1. INTRODUCTION 

One of the most important problems in spacecraft design is 
that of attitude stabilization and control. Many studies related 
to attitude control of flexible spacecraft have been performed. 
Control laws based on linearization and nonlinear inversion 
have been presented (Singh, 1988). Optimal and nonlinear 
control systems for the control of flexible spacecraft have 
been developed (Nagata, et al., 2001; Karray et al., 1997). 
Based on variable structure system theory, controllers for 
maneuvering large flexible space structures have been 
designed (Hu and Ma, 2005; Iyer and Singh, 1991; Singh, 
1987; Oz and Mostafa, 1988). A nonlinear controller based 
on a neural network for the nonlinear slew maneuver of 
flexible spacecraft has been designed using state feedback 
(Nayeri et al. 2004). In these studies, it is assumed that the 
parameters of the spacecraft are exactly known. This is 
generally not the case with modern spacecraft, because it is 
very difficult to precisely know and model their complex 
nonlinear dynamics characteristics. The problem of model 
deficiencies can be dealt with by closing the control loop 
with a linear, robust controller, for example, an H ∞ 
controller (Show et al., 2003). However, the desired 
performance cannot be expected in the presence of gross 
errors in the spacecraft dynamics resulting from, for example, 
fuel usage and articulation. In these cases nonlinear adaptive 
control methods are called for. The problem of combining 
feedback linearization with an adaptive loop is presented 
(Zeng et al., 1999). Adaptive control based on variable 
structure techniques have also been used for designing 
controllers for flexible spacecraft (Singh and Zhang, 2004; 
Hu and Ma, 2006). For rigid spacecraft, many adaptive 
control strategies have been presented to compensate the 

unknown spacecraft inertia matrix (Jasim et al., 1998). 
Bošković et al. (2001) presented an adaptive variable 
structure tracking controller for rigid spacecraft in the 
presence of inertia uncertainties and external disturbances. 
However, most results reported in the literature suffer from at 
least one of the following substantial restrictions: (1) the 
proposed adaptive controllers ensure only local stability; (2) 
the external disturbances are assumed to be bounded, and  the 
effect of the disturbances on the system performance are not 
considered. Although there are relatively many research 
papers on the disturbance attenuation control problem for 
robotics (Chiu and Lian, 2007; Chen, et al., 1997), there are 
few for the attitude control problem.  

The contribution of this work lies in the derivation of a robust 
adaptive control law for attitude tracking control of flexible 
spacecraft in the presence of external disturbances, 
uncertainties and control input constraints. It is assumed that 
the moment of inertia matrix of the spacecraft is unknown to 
the designer. An adaptive sliding mode control law is 
designed such that the need to know the moment of inertia is 
eliminated. In the controller synthesis, the tracking 
performance is evaluated by an L2-gain constraint, with 
disturbance attenuation on both the tracking error and its 
derivative, and weighting on the control input. Also, the 
effect of parametric estimation on the error attenuation is 
considered in the design. Finally, the application to flexible 
spacecraft is investigated, with numerical simulation results 
used to show the expected performance. 
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 2. MATHEMATICAL MODEL OF SPACECRAFT AND 
THE CONTROL PROBLEM 

2.1. Mathematical Model of a Flexible Spacecraft 

In this work, the attitude tracking control of a flexible 
spacecraft is addressed. The attitude kinematics are 
represented by error quaternions, which are expressed in the 
reference frame ℜ , fixed in the main body, with respect to a 
desired reference frame dℜ , and given as follows  
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Note that the error quaternion is subject to the unit constraint 
condition: 2

0 1Te e e+ = .  

The dynamic equations of a spacecraft with flexible 
appendage are given by (Hu and Ma, 2006)  

( ) ( )T T
dJ J u t T+ = − × + + +ω δ η ω ω δ η�� ��            (3a) 

0C K+ + + =η η η δω�� � �                          (3b) 

where J  is the symmetric inertia matrix of the whole 
structure, δ  is the coupling matrix between the elastic and 
rigid structure, η  is the modal coordinate vector, ( )u t  is the 
control torque generated by reaction wheel, and dT  is the 
external disturbance torque. 

[ ]( )1 1 2 2diag 2 , 2 , , 2 n nC = ζ ω ζ ω ζ ω…  is the damping matrix 

and ( )2 2 2
1 2diag , , ,n n nnK ⎡ ⎤= ⎣ ⎦ω ω ω…  is the stiffness matrix, 

n  the number of elastic modes considered, niω  are the 
natural frequencies, and iζ  are the corresponding damping 
ratios.  

If the terms Tδ η��  and T×ω δ η�  are considered as lumped 
perturbations to the rigid body dynamics, then Eq. (3a) can be 
rewritten as  

( ) ( ) ( , , )dJ J u t T t f= − × + + + Δω ω ω η η ω���      (4) 

where ( , , ) T TfΔ = − − ×η η ω δ η ω δ η�� �� �  may be considered as 
the lumped perturbation. Let the angular velocity error be 

defined as e d= −ω ω ω , then the error dynamics are given 
by 
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In order to develop the controller, the error equations (5) are 
transformed using the approach of Jasim et al. (1998) to give 
the following error dynamics 
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where 0e e I×Ξ +�  and 1P −Ξ� . Equations (6) are the 
general non-linear equations of motion for flexible spacecraft, 
which will be used for the controller synthesis.  

Throughout the remainder of this paper, the following are 
assumed: 

Assumption 1: The elastic oscillation and its rate are 
assumed to be bounded, that is to say, ( )tη and ( )tη�  are 
bounded during the whole attitude tracking process by 
designing the proper control input, ( )pu t . The control input 
design will be discussed in a later section. The lumped 
perturbation ( , , )fΔ η η ω��  is assumed to be bounded and there 
exists a constant 0fΔ >ρ  such that ( , , ) ff ΔΔ ≤η η ω ρ��  is 
satisfied. 

Assumption 2: The external disturbance ( )dT t  to the 
spacecraft system in Eq. (3) is assumed to be bounded. 

2.2 The Control Problem 

In this work, the objective of the control design is to achieve 
attitude tracking control and vibration reduction in the 
presence of possible uncertainty, external disturbance and 
control input constraints. Here the tracking performance 
criterion is given by an L2-gain constraint in the controller 
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synthesis. More specially, for a prescribed level of 
disturbance attenuation 1 0>γ  and the penalty matrices 

0Q ≥  and 0R ≥  for the tracking errors and control input, 
respectively, there exists a control law such that the closed-
loop system in Eq. (6a) satisfies the following: (a) all signals 
containing e , e� , e�� , σ  and θ� are bounded; (b) the control 
system achieves the performance criterion 

( )
0 0

0

0

2*
0 2

1( ) ( )

T TT T
t t
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W t e e d t dt− −

+
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∫β βε
β γ
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where the definition of θ� , γ , ε , β , z , u  and W  will be 

given in later; (c) if *d  is L2-integrable, then e  and e�  
asymptotically converge to zero. 

3. ADAPTIVE ATTITUDE CONTROL LAW DESIGN 

In this section, a discontinuous attitude control law is derived 
based on sliding mode control theory, with assumptions 1 and 
2, such that 0e → and 0e →ω  as t → ∞ , in spite of 
uncertainties and external disturbances. By taking the error 
quaternion and its derivative vector, a linear sliding surface in 
vector form is defined as  

e e= + Λσ �                                      (9) 

where Λ  is a positive definite matrix.   

We observe that the inertia parameters, ,i jJ  for , 1, 2,3,i j = , 
appear linearly in Eq. (6). To isolate these parameters, a 
linear operator is defined, 3 3 6:L → ×\ \ \ , acting on 
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Defining [ ]11 22 33 23 13 12
TJ J J J J Jθ � , it follows that  

( )Jb L b= θ                                  (11) 

Using Eqs. (11), (6) and (7), we obtain 
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Then we have the following statements. 

Theorem 1. Consider the system defined by Eq. (6) using the 
control law in Eq. (14) and the adaptation law in Eq. (15) 
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ˆ ( , , , )T
d de e= ΓΦθ ω ω σ� ��                      (15) 

where θ̂  is the estimate of θ , 0TΓ = Γ > , ε  is a small 
positive scalar control gain and β  is a positive constant. 
Suppose there exist symmetric positive definite matrices K  
and 1P , and a positive constant γ  satisfying the following 
LMI problem: 
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Then the closed-loop system has the following properties: (1) 
the signals containing e , e� , σ  and θ�  are bounded; (2) the 
performance criterion in Eq. (8) can be guaranteed, where 

TT Tz e e⎡ ⎤= ⎣ ⎦� , u Kσ�  is an auxiliary control, and 0( )W t  

is a non-negative constant depending on the initial values of 
e , e�  and θ� ; (3) if ( )dT t  is L2-integrable, then e  and e�  will 
asymptotically converge to zero. Here Λ , 0R ≥ , 0Q ≥  and 

0fΔ >ρ  are given matrices and constant, and θ�  is the 

parameter error given by ˆ−θ θ θ� � . 

Remark 1. Close observation of the proposed control law, 
Eq. (14), gives guidelines to improve the tracking 
performance by adjusting gain matrix K  and the parameters 
ε  and β . However, for a proper selection of ε  and β  that 
eliminates the effect of the uncertainties, the system tracking 
performance is mainly determined by the gain matrix K . 
Therefore, by modifying the control gain matrix K  in the 
auxiliary control u K= − σ , the optimal approach is to 
achieve the goal of disturbance attenuation using the minimal 
auxiliary control torque u , subject to the physical capability 
of the actuator.  

Proof: Case (1). Consider the new candidate Lyapunov 
function  

1 1* 1
2 2 2

T TV J −= + Γσ σ θ θ� �                       (17) 

The time derivative of 2V  along the control law given by Eq. 
(14), and the update law Eq. (15), yields 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13237



 
 

     

 

( )* * * * * * 1
2

*

2 *
min ( )

T T T T

T t

t

V d C e J e N u f

K d e

K d e

−

−

−

= + Λ + Λ − + − Δ + Γ

≤ − + +

≤ − + +

β

β

σ σ σ θ θ

σ σ σ ε

λ σ σ ε

�� �� �

  (18) 

where min ( )λ i  denotes the minimum eigenvalue of a matrix. 
Due to the bounded disturbance, if the system trajectory lies 
within the region 

{ }23 *
min ( ) 0tK d e−∈ − + + ≤βσ λ σ σ ε\ , then 2V�  is 

negative semi-definite.  From a positive definite 2V  and 2V� , 
in the form of Eq. (18), we have L∞∈σ , e L∞∈ , e L∞∈� , 

L∞∈θ�  and L∞∈θ�� . In turn, we have L∞∈σ�  and e L∞∈��  
from the definition of the sliding surface and assumptions 1 
and 2. 

Case (2). Next we prove that the performance criterion in Eq. 
(8) is achieved by the feasibility of the LMI problem, Eq. 
(16). Define the energy function  
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where *1
1 2block-diag ,P P J⎡ ⎤= ⎣ ⎦  is a symmetric positive-

definite matrix. Then the time derivative of the energy 
function is  
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where the following equation is used   
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with * 1

1
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From inequality (8), we have  
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In view of Eqs. (21), (14) and (15), and using the definition 
of vector z , Eq. (22) becomes 
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Therefore, if the LMI problem in Eq. (22) has feasible 
solutions γ , K  and 1P , the error achieve the required 
tracking performance in Eq. (8).  

Case (3). In addition, if 2( )dT t L∈  then *
2d L∈  and Eq. (23) 

implies that 2z L∈ . Since 2e L L∞∈ ∩ , 2e L L∞∈� ∩  and 
e L∞∈�� , the strongly asymptotic convergence of e  and e�  is 
obtained from Barbalat’s lemma. Thus the theorem is proved 
completely. 

In above analysis, the effect of the parametric error θ�  is not 
considered in the robustness design. Since a poor parametric 
estimation will leas to an unexpected transient response, 
especially when the moment generated by the actuator is 
limited. However, it is necessary to address the attenuation of 
both disturbance and parametric errors. To this end, we have 
the following corollary.  

Corollary. Consider the system given in Eq. (6) using the 
following control law, Eq. (24),  
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(24) 

with the adaptation law given by Eq. (15). Then attitude 
tracking problem with disturbance/parametric error 
attenuation and control input penalty is solved if the LMI 
problem in Eq. (16) has a feasible solution.  

Proof: The proof is straightforward and is similar to that for 
Theorem 1.  

4. SIMULATION RESULTS 

The numerical application of the proposed control schemes to 
the attitude control of a flexible spacecraft is presented using 
MATLAB/SIMULINK software. The spacecraft is 
characterized by a nominal main body inertia matrix (Hu and 
Ma, 2006). The periodic external disturbance torque, dT , is 
assumed to be of the following form in the simulation 
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0.3cos(0.1 ) 0.1
( ) 0.15sin(0.1 ) 0.3cos(0.1 )

0.3sin(0.1 ) 0.1
d

t
T t t t

t

+⎧ ⎫
⎪ ⎪= +⎨ ⎬
⎪ ⎪+⎩ ⎭

             (25) 

All control design parameters were tuned by trial-and-error 
until the best control performance was achieved for the 
control tasks. In addition, simulations have been rendered 
more realistic by considering saturation on the inputs. The 
maximum value of the moment produced by the actuator 
(reaction wheel) is 0.5 Nm.  

In attitude tracking, suppose that the desired attitude 
trajectory was selected as 0 cos( 2)dq = Φ , 

[ ]cos(0.37 ) sin(0.37 ) 0 sin( 2)T
dq t t= Φ     (26) 

with sin(0.2 )tΦ =  and the desired velocity trajectory is 

[ 0.04cos 0.2 , 0.04sin 0.2 , 0.05sin 0.2 cos 0.2 ]Td t t t t= − − +ω
 (27) 

Figure 1 (solid line) gives the time responses of velocity, 
error quaternion, modal displacement, vibration energy 
defined by T TE q q q Kq= +� � , and the required control input 
torque given by Eq. (14). For the modified control case, Fig. 
1 (dash-dot line) gives the corresponding time responses. No 
excessive control chattering can be observed, and also the 
control torque does not exceed its saturation value. This 
example demonstrates the effectiveness of the proposed 
cotnrol laws for atttiude tracking control. 

For comparison, the system is also controlled by using the 
traditional PD law designed using the approach of Hu and Ma 
(2005). The same simulation case is repeated for this TSMC, 
including the actuator dynamics, and the results of simulation 
are also shown in Fig. 1 (dotted line). For this case, the 
desired attitude tracking cannot be achieved, and severe 
oscillations are excited during tracking and can be observed, 
even if this designed controller is very effective when 
external disturbances to the system are not considered. 

 

 

 

 

 

 

 

 

 

 

(a) Time response of the angular velocity 

 

 

 

 

 

 

 

 

 

(b) Time response of wheel input torque 

 

 

 

 

 

 

 

 

 

 

 (c)    Time response of the error quaternion 

 

 

 

 

 

 

 

 

 

 

 

 (d) Time response of vibration displacements and energy 

Fig. 1. Attitude tracking control without vibration 
compensation. Case 1: Proposed sliding mode control law 
(solid line); Case 2: Modified sliding mode control law 
(dash-dot line); Case3: PD control law (dotted line). 
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5. CONCLUSIONS 

In this paper, the attitude tracking control problem has been 
addressed for the electrically-driven flexible spacecraft with 
external disturbances by incorporating the performance 
criterion given by an L2-gain constraint in the controller 
synthesis. The design of the attitude controller was based on 
adaptive sliding mode control theory, and this controller can 
achieve arbitrary disturbance attenuation on tracking error for 
the external disturbances. Moreover, the developed controller 
does not require knowledge of the system parameters. The 
Lyapunov argument is also used to prove asymptotic stability 
when the L2-gain is less than a given small level if the linear 
matrix inequality (LMI) problem for control gain design is 
feasible. The efficiency of the proposed algorithm has been 
studied by the application to a three-axis stabilized flexible 
spacecraft system. Simulation results have demonstrated the 
effectiveness of the proposed algorithm.  
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