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Abstract: This paper presents a novel design strategy for networked control systems, where a
centralized controller needs to divide its attention between various actuators. Communication is
via an unreliable network affected by data-dropouts and which allows access to only one actuator
node at a time. To achieve good performance, control and network protocol are co-designed and
signal predictions are sent to buffered actuator nodes. By using methods from predictive control
theory, we show how closed loop stability in the presence of data-dropouts can be ensured.
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1. INTRODUCTION

In Networked Control Systems (NCS’s), digital networks
are used to transmit sensor and/or control signals. The
use of general purpose network technology has numerous
advantages, including low cost, high reliability, interoper-
ability of devices and easy installation and maintenance.

Many interesting design challenges are associated with
NCS’s. For example, data needs to be quantized and coded
prior transmission, see, e.g., Nair et al. (2007); transmis-
sion errors and time delays are often unavoidable, see, e.g.,
Schenato et al. (2007); if the communication medium is
shared, then network protocol design (scheduling) plays
a mayor role, see, e.g., Nešić and Teel (2004). Clearly,
the communication technology used may constitute a bot-
tleneck in the achievable control performance and, thus,
should explicitly be taken into account when designing
NCS’s.

Perhaps unsurprisingly, Ethernet in its wired (hub-based
and switched) and wireless forms (IEEE 802.11) is increas-
ingly being adopted for low level control technology, see
also Moyne and Tilbury (2007). A key feature of Ethernet
is that the packet-structure contains large data fields, typi-
cally of the order of kilobytes. Thus, bit-rates are high and
quantization issues will often play a minor role. However,
time delays and packet dropouts are likely to occur.

As shown by Georgiev and Tilbury (2006), the packet
structure of Ethernet networks can be used to send signal
predictions, rather than only values to be implemented at
the current time instant, without increasing the network
load. Through buffering at the receiving end, these packe-
tized control schemes will often give good performance in
the presence of time delays and packet dropouts, see also
Casavola et al. (2006); Tang and de Silva (2006); Liu et al.
(2005); Quevedo et al. (2007).

In the present work, we focus on an NCS architecture
where a centralized controller communicates with a set of
actuator nodes through an Ethernet-like network, which is
capable of carrying fairly large data packets. The network
is such that only one packet can be sent at a time and each
packet can be addressed to only one node. The network
protocol, which regulates the medium access, allows for
dynamic scheduling. Within this setup, we propose a net-
work protocol and control co-design method which focuses
on closed loop performance. For that purpose, at each
time instant, it is decided, which actuator node to address
and what to send. Whilst this type of communication
constraints have also been studied, for example, in Gaid
et al. (2006); Goodwin et al. (2004), a distinctive feature
of our approach lies in how packet dropouts are handled.
Here, the controller extends the single actuator-link pack-
etized control methods referred to above and sends signal
predictions to the (buffered) actuator nodes.

We will consider general constrained non-linear plant
models, where we assume that the controller has direct
access to the plant states. By adopting ideas from non-
networked predictive control, see, e.g., Mayne et al. (2000);
Goodwin et al. (2005), we establish sufficient conditions on
tuning parameters for closed loop stability in the presence
of packet dropouts.

Notation and basic definitions We will denote by Im the
m×m identity matrix, the zero element of Rm×1 via 0̄m,
and define 0m , 0 · Im. The notation ‖v‖ refers to the
Euclidean norm

√
vT v, where v is any vector. For given

N ∈ N, we define the m-shift matrix Sm via:

Sm ,


0m Im 0m . . . 0m

...
. . . . . . . . .

...
0m . . . 0m Im 0m

0m . . . . . . . 0m Im

0m . . . . . . . . . . 0m

 ∈ RmN×mN . (1)
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2. MULTIPLE ACTUATOR-LINK NCS
ARCHITECTURE

As foreshadowed in the introduction, we consider con-
strained discrete-time nonlinear multiple-input plant mod-
els with state x(k) and input vector u(k)

x(k + 1) = f(x(k), u(k)), k ∈ N0 , N ∪ {0}, (2)
where

u(k) ∈ U ⊆ Rp, x(k) ∈ X ⊆ Rn, ∀k ∈ N0

and p ≥ 1, and n ≥ 1.

The input vector is connected to a network via R ≤ p
nodes according to the partition

u(k) =

u1(k)
...

uR(k)

 . (3)

In (3), each input {ur(k)}r∈{1,2,...,R} satisfies
ur(k) ∈ Ur ⊆ Rpr , ∀k ∈ N0 (4)

for some set {pr : r = 1, 2, . . . , R} such that
∑R

r=1 pr = p.
Note that our model may refer to a single plant or also to
a set of geographically separate plants.

Our interest lies in clock-driven Ethernet-like communi-
cation networks situated between controller output and
plant inputs. Data is sent in large time-stamped packets.
Thus, quantization is less of an issue. Nevertheless, time-
delays and packet dropouts are likely to occur. We will here
concentrate on the latter and, thus, model the network as
a collection of R erasure channels, 1 see also Imer et al.
(2006); Wu and Chen (2007). Only one of these links can
be accessed at a time.

To summarize, the network model operates at the same
sampling rate as the plant model (2) and has three defining
properties:

(1) At any time instant, data can be transmitted to only
one of the R actuator nodes (scheduling constraint).

(2) Transmission is affected by dropouts.
(3) Data-packets are sufficiently large to contain a se-

quence of control input values.

We will consider the situation where the network protocol
is not pre-defined. Thus, at each time instant, one needs to
decide which actuator-link to use and what data to send.
In addition, the resulting NCS should be robust in the face
of packet dropouts. In the following section we will present
such a network protocol and control co-design strategy.

3. PACKETIZED CONTROL AND SCHEDULING

In our proposal, at each time instant, the controller sends
a control packet to one of the R input nodes. The data sent
contains possible control inputs for a finite number of N
future time instants. To achieve good performance, despite
the scheduling constraint and possible packet dropouts,
buffers are located at the plant input side, see Fig. 1. We
will first describe the buffering procedure and then propose
a joint control and scheduling (network protocol) design
method.
1 Note that small time-delays up to a fixed threshold can be
incorporated in the plant model (2). Signals, which are delayed more,
are then considered as “lost.”

Network
...

u1

uR

x

Scheduling

Predictive
Control & Plant

Buffer 1

Buffer R

Fig. 1. Multiple Actuator-Link NCS with Packetized Con-
trol and Scheduling.

3.1 Plant Input Buffering

Each of the R plant input nodes is connected to a buffer,
whose state is overwritten whenever a valid control packet
arrives. Actuator values are then passed on to the plant
sequentially until the next valid control packet arrives.

To be more precise, suppose that at time k, the controller
sends the data packet µ?(k) ∈ (Ur?)N to node r?. The
state of the r?-th buffer, say br? , is then given by:

br?(k) =
{

µ?(k) if µ?(k) arrives at instant k,
Spr? br?(k − 1) if µ?(k) does not arrive at k,

where Spr? denotes the pr?-shift matrix, see (1).

The buffer states at all other input nodes are updated via:
br(k) = Spr

br(k − 1), ∀r ∈ {1, 2, . . . , R}, r 6= r?.

At all times, plant inputs stem from buffer states following:
ur(k) = [Ipr 0pr . . . 0pr ] br(k), ∀r ∈ {1, 2, . . . , R}. (5)

As in, for example, Quevedo et al. (2007), the buffering
mechanisms amount to parallel-in serial-out shift registers.
They act as safeguards against channel dropouts and
also offer advantages in the presence of the scheduling
constraints considered here. 2

3.2 Predictive Control and Scheduling

We will next show how to choose actuator nodes r?(k)
and how to design the control sequences µ?(k). For that
purpose, we will concentrate on situations, where acknowl-
edgments form part of the network protocol, such as
TCP-like ones. Consequently, at time instant k the con-
troller knows the previous buffer states, namely br(k− 1),
∀r ∈ {1, 2, . . . , R}. In addition, we will assume that the
controller has exact knowledge of the plant state x(k).

To achieve good performance in the presence of the
scheduling constraints, we propose to use a finite horizon
predictive optimal control framework, where at each time
instant k, the following cost function is minimized:

V (µ′, r′; k) , F (x′(k + N)) +
k+N−1∑

`=k

L(x′(`), u′(`)). (6)

In (6), {x′(·)} and {u′(·)} denote predicted plant states
and inputs, respectively. These obey the plant model, the
buffering procedure and are penalized via the per-stage
2 The choice in (1) corresponds to setting the buffer state to zero
if no data is received over N consecutive instants at the node.
Alternatively, if one wished to hold the latest value, one could set
the “last” element of Spr? equal to Ipr? .
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weighting function L(·, ·) and the terminal weighting F (·).
(More details on how to choose the weighting functions
are included in Section 4.) The decision variables r′ and
µ′ refer to the actuator node addressed at time k and to
the associated control sequence.

More precisely, and in agreement with the buffering mech-
anisms described in Section 3.1, every chosen pair (µ′, r′)
yields predicted buffer states 3

b′r(` + 1) = Sprb
′
r(`), ∀r, ∀` ∈ {k, . . . , k + N − 2}

with initial condition:

b′r(k) =
{

µ′ for r = r′,
Sprb

′
r(k − 1) for all r 6= r′, r ∈ {1, 2, . . . , R}.

The plant input and state predictions are then formed via
x′(` + 1) = f(x′(`), u′(`)), x′(k) = x(k),

where

u′(`) =

u′1(`)
...

u′R(`)

 , ` ∈ {k, k + 1, . . . , k + N − 1},

with u′r(`) = [Ipr
0pr

. . . 0pr ] b
′
r(`), ∀r ∈ {1, 2, . . . , R}.

At each time instant k, the optimizer

(µ?(k), r?(k)) , arg min
µ′∈(Ur′ )

N

r′∈{1,2,...,R}

V (µ′, r′; k) (7)

is determined and the sequence

µ?(k) =

 µ?(k; k)
...

µ?(k + N − 1; k)

 (8)

is sent through the network to the actuator node r?(k).
By construction, µ?(k) contains possible values for

{ur?(k)(k), ur?(k)(k + 1), . . . , ur?(k)(k + N − 1)}.
Following the buffering procedure, these values are im-
plemented sequentially until some future (valid) control
packet arrives at node r?(k).

In the proposed method, scheduling and plant input design
are done dynamically such as to optimize performance.
Here it is important to note that whilst µ?(k) and r?(k) are
found by evaluating open-loop predictions, the resultant
joint scheduling and control policy is a closed loop one.
Indeed, the loop is effectively closed at all successful trans-
mission instants, i.e., whenever no dropouts occur. Since
between successful transmission instants the plant oper-
ates in open loop, for the resultant NCS to exhibit good
performance, not too many consecutive packet dropouts
should occur.

For further reference, we will define the optimal value
function at time k via:

V ?(k) , V (µ?(k), r?(k); k), k ∈ N0 (9)
and denote the associated overall plant input and state
predictions via:

u(k) = {u(k; k), u(k + 1; k), . . . , u(k + N − 1; k)},
x(k) = {x(k + 1; k), x(k + 2; k), . . . , x(k + N ; k)}. (10)

3 Note that in our approach, delayed packets are not used further,
see also Footnote 1. Accordingly, the buffer state prediction model
only considers µ′.

Note that the sequence u(k) is formed from µ?(k) and
from some of the buffer states at time k−1, which in turn
originate from past optimizations.

From a computational viewpoint, it is worth emphasizing
that (µ?(k), r?(k)) in (7) can be found by solving R smaller
optimization problems, since

V ?(k) = min
r′∈{1,2,...,R}

{
min

µ′∈(Ur′ )
N

V (µ′, r′; k)

}
. (11)

Remark 1. The method presented is not equivalent to that
which would be obtained if optimizing control sequences
designed as in Goodwin et al. (2004); Gaid et al. (2006)
were transmitted. 4 These sequences contain information
for various actuator nodes and are, thus, unsuitable in the
present NCS architecture. In contrast, the sequence µ?(k)
in (8) is sent through only one link, namely r?(k). 4

Our control and network protocol co-design strategy is not
only intuitively appealing but has also good stabilizing
properties. Indeed, in the following section we will show
how the prediction horizon N and the weighting functions
L(·, ·) and F (·) in (6) can be utilized to guarantee stability
of the closed loop in the presence of packet dropouts.
Before doing so we will give a short illustrative example to
clarify the scheduling aspect of the resultant NCS.
Example 2. (Scheduling and packet dropouts). Suppose we
wish to control a plant having R = 4 inputs with horizon
N = 8 and that the buffer states at time ` = 1 are:

br(1) =

br1

...
br8

 , r ∈ {1, 2, 3, 4}.

If the on-line optimization yields the schedule
{r?(1), r?(2), . . . , r?(10)} = {2, 1, 4, 3, 1, 3, 4, 2, 1, 3}

and if packet dropouts occur at ` = 6 and ` = 9, then the
plant inputs at ` = 1, 2, . . . , 10 are characterized via:

{u(1), u(2), . . . , u(10)} = {u(1; 1), u(2; 2), u(3; 3), u(4; 4),
u(5; 5), u(6; 5), u(7; 7), u(8; 8), u(9; 8), u(10; 10)}

=


 b11

µ?(1; 1)
b31

b41

 ,

µ?(2; 2)
µ?(2; 1)

b32

b42

 ,

µ?(3; 2)
µ?(3; 1)

b33

µ?(3; 3)

 ,

µ?(4; 2)
µ?(4; 1)
µ?(4; 4)
µ?(4; 3)

 ,

µ?(5; 5)
µ?(5; 1)
µ?(5; 4)
µ?(5; 3)

 ,

µ?(6; 5)
µ?(6; 1)
µ?(6; 4)
µ?(6; 3)

 ,

µ?(7; 5)
µ?(7; 1)
µ?(7; 4)
µ?(7; 7)

 ,

µ?(8; 5)
µ?(8; 8)
µ?(8; 4)
µ?(8; 7)

 ,

µ?(9; 5)
µ?(9; 8)
µ?(9; 4)
µ?(9; 7)

 ,

 µ?(10; 5)
µ?(10; 8)
µ?(10; 10)
µ?(10; 7)




4. STABILITY WITH PACKET DROPOUTS

We will next show how closed loop stability of the NCS
can be ensured even in the presence of packet dropouts.
As in many approaches to establish stability of receding
horizon control, see, e.g., Mayne et al. (2000); Goodwin
et al. (2005), we will introduce additional ingredients in
the on-line optimization.
4 Note that these works do not use buffering at receiving nodes.
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Firstly, we will impose that the predicted plant state at
time k + N satisfies the terminal state constraint : 5

x′(k + N) ∈ Xf ⊆ X, (12)
where Xf is a given set containing the origin.

Secondly, we will assume that in the cost function of (6),
the weighting functions F (·) and L(·, ·) satisfy:

F (x) ≥ 0, ∀x ∈ Xf , F (0) = 0, (13)
L(0, 0) = 0, L(x, u) ≥ α (‖x‖) , ∀x ∈ XN , ∀u ∈ U, (14)

where α(·) : [0,∞) → [0,∞) is a continuous, nondecreas-
ing, unbounded function such that α(0) = 0 and α(ρ) > 0,
for all ρ > 0. In (14),

XN ⊆ X
denotes the set of all feasible initial states, i.e., states x(k)
such that there exists a pair (µ′, r) which is compatible
with the optimization (7) and satisfies the constraint (12).

To establish our result, it is convenient to denote the time
instants where no packet dropouts occur via {ki}i∈N and
to define: 6

mi , ki+1 − ki, i ∈ N.

We furthermore introduce the sets:
Vr , 0̄p1×· · ·× 0̄pr−1×Ur× 0̄pr+1× . . . 0̄pR

, r ∈ {1, . . . , R}
These are clearly related to the scheduling constraint. Nev-
ertheless, it should be noted that, due to the buffering pro-
cedure, we will often have u(k) /∈ Vr, ∀r ∈ {1, 2, . . . , R}.
We can now state sufficient conditions for convergence of
plant state trajectories in the presence of packet dropouts:
Theorem 3. (Stability). Consider the plant model (2),
controlled via the packetized controller and network proto-
col described in Section 3.2, subject to (12)–(14). Suppose
that the horizon N in (6) is chosen such that

N ≥ mi, ∀i ∈ N (15)
and that there exist R control policies

κr : Xf → Vr, r ∈ {1, 2, . . . , R} (16)
such that ∀ξ ∈ Xf and ∀r ∈ {1, 2, . . . , R} it holds that:

F (f(ξ, κr(ξ)))− F (ξ) + L(ξ, κr(ξ)) ≤ 0, (17)
κr(ξ) ∈ Vr, (18)

f(ξ, κr(ξ)) ∈ Xf . (19)
We then have:

lim
k→∞

‖x(k)‖ = 0, (20)

for all initial states x(0) ∈ XN .

Proof. The proof is included in the appendix.

The above result allows one to synthesize the proposed
controller and network protocol such that stabilizing
scheduling and control sequences are obtained, provided
the maximum number of consecutive dropouts is bounded.
Remark 4. The scheduling constraint of the multiple
actuator-channel NCS architecture makes Theorem 3 more
demanding than the sufficient conditions for stability ob-
tained in Quevedo et al. (2007) for the one actuator-
channel case. Indeed, conditions (17)–(19) need to hold
5 In the sequel, we will assume that the constraint sets {Ur} and X
contain the origin (of their respective spaces).
6 Note that mi ≥ 1, ∀i ∈ N, with equality if and only if no packet
dropouts occur between time instants ki and ki+1.

for all R single actuator-link policies κr and, thus, also
involve the plant evolution, when inputs are set to zero.
Interestingly, it is sufficient to inspect only the case of
one channel dropout, rather than all possible scenarios
mi ≤ N . 4

Not surprisingly, Theorem 3 is, in general, more restrictive
than stability results for non-networked receding horizon
control as summarized in Mayne et al. (2000). Neverthe-
less, it holds that if stability of receding horizon control is
established via a terminal control policy which maps the
entire state space to the origin, then this same policy can
also be used to establish stability in the present networked
case. This aspect is illustrated in the following example:
Example 5. (Closed loop stability). Consider a stable lin-
ear time invariant plant (or a set of plants) with no state
constraints (X = Rn) and a quadratic cost function, i.e.,

f(x, u) = Ax + Bu, (21)
L(x, u) = xT Qx + uT Λu, F (x) = xT Px, P,Q,Λ > 0

If we choose Xf = Rn and
κr(ξ) = 0̄p, ∀ξ ∈ Rn, ∀r ∈ {1, 2, . . . , R},

see (16), then XN = Rn and (17) reduces to:

ξT AT PAξ − ξT Pξ + ξT Qξ

= ξT
(
AT PA− P + Q

)
ξ ≤ 0, ∀ξ ∈ Rn.

Theorem 3 guarantees that the plant state will asymp-
totically tend to the origin, provided that the prediction
horizon N satisfies (15) and that P is designed to satisfy
the Lyapunov inequality: 7

AT PA + Q− P ≤ 0. (22)
This result applies to any LTI stable plant with an input
constraint set containing the origin, such as (some) quan-
tization constraints and convex constraint sets. 4

5. SIMULATION STUDIES

To illustrate performance aspects of our NCS co-design
method, we will next examine two NCS’s with R = 2. We
use the cost functional (6) with N = 3 and

L(x, u) = xT x + 0.1uT u, F (x) = 0. (23)
In all simulations we incorporate disturbances and white
Gaussian zero mean state measurement noise of variance
0.01. The channels drop packets with probability 0.2.
Example 6. We first consider two non interacting unstable
non-linear plant models, described via:[

x1(k + 1)
x2(k + 1)

]
=

[
x1(k)1.2 + 0.5x1(k)u1(k),

−0.5x2(k) + (0.8x2(k) + 2)u2(k)

]
+ δ,

(24)
where δ = [0 0.5]T is unknown to the controller.
In (24), the scalar inputs are constrained according to
u1(k), u2(k) ∈ [−1.5, 1.5]. Furthermore, plant states are
corrupted by step-like additive disturbances, denoted via
d1(k) and d2(k). The initial state is x(0) = [2 − 2]T .

Fig. 2 illustrates the results. Clearly, the proposed NCS
co-design method gives good performance, despite the
scheduling constraint, data dropouts, un-modelled distur-
bances, and noise. In particular, δ is compensated and
7 Note that, since the plant model is assumed to be open loop stable,
A in (21) is Hurwitz and, thus (22) has a positive definite solution.
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Fig. 2. Packetized Control and Scheduling of (24).

dropouts have no serious consequences on the state tra-
jectories. A key feature is that scheduling is dynamic.
Indeed, in Fig. 2 it can be appreciated that the second
plant receives most of the attention (mainly due to the
fact that δ must be compensated). However, whenever
d1(k) 6= 0, the attention is focused on the first plant, so
as to compensate d1. We note that this type of behavior
cannot be achieved with static scheduling policies. 4
Example 7. We next consider the unstable linear model

x(k + 1) =
[
1.1 0.5
0 2

]
x(k) +

[
1 0
0 1

]
u(k). (25)

Each component of u(k) is constrained to lie in [−2.5, 2.5].

0 20 40 60 80 100 120

0
10
20
30
40
50

Sample number (k)

 

 
Non packetized: hold
Non packetized: reset
Proposed packetized
Channel 1 dropout
Channel 2 dropout

|| x (k)|| 2

Fig. 3. Control of (25): Proposed and previous strategies.

Fig. 3 illustrates the performance achieved, when a unit
magnitude step-like disturbance is added to the first state
for k ∈ {66, 67, . . . , 80}. In Fig. 3, we have also included
results obtained by using the non-packetized controllers
of Gaid et al. (2006), see also Goodwin et al. (2004). These
strategies incorporate scheduling constraints, but not data
dropouts. 8 For simulation of these methods, whenever no
data is received at some actuator node, we studied two
alternatives, namely, hold the current value, and reset the
value to zero. The results show that, for this example,
sending properly designed packets instead of single control
values is fundamental to preserve closed loop stability in
the face of disturbances. 4
8 The computational load incurred by these non-packetized designs
is larger than that of the present proposal. More precisely they
rely upon solving RN rather than R small optimization problems,
see (11).

6. CONCLUSIONS

We have presented a network protocol and control co-
design method for NCS’s with multiple actuator-links.
A key aspect lies in the use of buffering and predicted
signals. Closed loop stability despite data dropouts can,
at times, be ensured directly. Simulation results document
that good performance can often be achieved even in more
general situations.
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Appendix A. PROOF OF THEOREM 3

As in the stability proofs in Quevedo et al. (2007), the
key idea consists in showing that the sequence of optimal
costs at the time instants where no packet dropouts occur,
namely {V ?(ki)}, is decreasing. We will distinguish the two
possible cases mi ≤ N − 1 and mi = N , separately.

1) mi ≤ N − 1. By virtue of the buffering procedure,
the first mi elements of µ?(ki), see (8), are implemented
at node r?(ki), i.e., we have:

µ?(ki) = {ur?(ki)(ki), ur?(ki)(ki+1), . . . , ur?(ki)(ki+1−1),
µ?(ki+1; ki), µ?(ki+1 + 1; ki), . . . , µ?(ki + N − 1; ki)},

see (8). Thus, the first mi elements of u(ki) and of x(ki),
see (10), correspond to inputs and states of (2). Conse-
quently, the optimal value function at time ki satisfies: 9

V ?(ki) = F (x(ki + N ; ki)) +
ki+1−1∑
`=ki

L(x(`), u(`))

+ L(x(ki+1), u(ki+1; ki)) +
ki+N−1∑

`=ki+1+1

L(x(`; ki), u(`; ki)).

We next consider time instant ki+1 = ki + mi and a pair
(µ], r]), where r] = r?(ki),

µ] ,
{
µ?(ki+1; ki), µ?(ki+1+1; ki), . . . , µ?(ki+N−1; ki),

µ](ki + N), µ](ki + N + 1), . . . , µ](ki+1 + N − 1)
}
,

with
µ](ki + N + j) ∈ Ur] , ∀j ∈ {0, 1, . . . ,mi − 1}. (A.1)

Since between ki and ki+1 no valid control packets arrive
at any of the R nodes, the plant input sequence, say u],
which would result if µ] was implemented at node r] is:

u] = {u(ki+1; ki), u(ki+1 + 1; ki), . . . , u(ki + N − 1; ki),

u](ki + N), u](ki + N + 1), . . . , u](ki+1 + N − 1)},
(A.2)

where

u](ki+N+j) =

u]
1(ki + N + j)

...
u]

R(ki + N + j)

 , ∀j ∈ {0, 1, . . . ,mi−1}

and where {u]
r(ki + N + j)}, r ∈ {1, 2, . . . , R} satisfy:

u]
r(ki + N + j) =

{
0 ∈ Rpr×1, if r 6= r?

µ](ki + N + j), if r = r?.

The cost associated with u] is related to V ?(ki). Indeed,
direct algebraic manipulations yield that

V (µ], r]; ki+1) = V ?(ki)−
ki+1−1∑
`=ki

L(x(`), u(`))

+ F (x](ki+1 + N))− F (x](ki + N))

+
ki+1+N−1∑
`=ki+N

L(x](`), u](`)), (A.3)

where:
x](`+1) = f(x](`), u](`)), ` ∈ {ki +N, . . . , ki+1 +N −1},
9 In the sequel we use the convention

Pj2
`=j1

g(`) = 0, whenever

j2 < j1 and irrespective of g(·).

with initial condition
x](ki + N) = x(ki + N ; ki) ∈ Xf ,

see (12).

Whilst (A.3) holds for all sequences which obey (A.2), it
is convenient to choose {u](ki + N + j)} via: 10

u](ki + N + j) = κr](x](ki + N + j)) ∈ Vr] .

Property (17) then amounts to:

F (x](` + 1))− F (x](`)) + L(x](`), u](`)) ≤ 0,

which summed for ` = ki + N to ` = ki+1 + N − 1 yields:

F (x](ki+1 + N))− F (x](ki + N))

+
ki+1+N−1∑
`=ki+N

L(x](`), u](`)) ≤ 0. (A.4)

Use of (A.4) in (A.3) now gives:

V (µ], r]; ki+1) ≤ V ?(ki)−
ki+1−1∑
`=ki

L(x(`), u(`)). (A.5)

Whilst (µ], r]) is feasible at time ki+1, it is not necessarily
optimal. Thus, it holds that

V ?(ki+1) ≤ V (µ], r]; ki+1).
Expression (A.5) then yields that the differences in the
optimal value functions at the time instants where no
packet dropouts occur satisfy:

V ?(ki+1)− V ?(ki) ≤ −

ki+1−1∑
`=ki

L(x(`), u(`))


≤ −

ki+1−1∑
`=ki

α (‖x(`)‖)

 ≤ 0, ∀i ∈ N,

where we have used (14). Since V ?(ki) ≥ 0 for all i, it
follows that the sequence {V ?(ki)}i∈N is convergent so that

lim
i→∞

ki+1−1∑
`=ki

α (‖x(`)‖) = 0 =⇒ lim
k→∞

α (‖x(k)‖) = 0,

from where (20) follows.

2) mi = N . With mi = N , i.e., ki+1 = ki + N , we have:

V ?(ki) = F (x(ki + N)) +
ki+1−1∑
`=ki

L(x(`), u(`)).

We will next examine time ki+1. Unlike in the previous
case, we will consider any r] ∈ {1, 2, . . . , R} and the
associated sequence
u] = {u](ki+1), u](ki+1+1), . . . , u](ki+1+N−1)}, (A.6)

where {u](ki + N + j)} satisfy:

u](ki + N + j) = κr](x](ki + N + j)) ∈ Vr]

with
x](` + 1) = f(x](`), u](`)), ` ∈ {ki+1, . . . , ki+1 + N − 1},
with initial condition x](ki+1) = x(ki+1) ∈ Xf .

The choice u] in (A.6) is feasible, though not optimal. The
remainder of the proof now follows along similar lines as
those in the previous case. 2

10This implicitly defines the values µ](ki + N + j) in (A.1).
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