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Abstract: The issue of speed tracking control for series DC motors is addressed. Based
on the classic backstepping design technique, an improved recursive nonlinear controller is
proposed to improve the transient response. In the design, two additional class K functions
as design functions are adopted to achieve desirable varying decay rate. Application of this
strategy substantially improves the transient response and convergence rate without remarkably
increasing the controller “gains”. Series DC motors with jumping load torques are also studied.
The dynamics of such a motor with jumping load torques are modeled as a switched system.
A switching controller based on the improved nonlinear design method is presented. Simulation
results demonstrate the effectiveness of the proposed method.

1. INTRODUCTION

The control of a series DC motor is of great importance
because of extensive engineering applications of series DC
motors. Meanwhile, since the dynamics of a series DC
motor can be described by a typical nonlinear system
with lower triangular structure, the study of series DC
motors from the control point of view also provides many
challenging theoretical issues to address.

The traditional way to control a series DC motor is to
adopt a linear controller which is based on the linear
approximation of the original nonlinear model around a
nominal operation point (Rashid (1993)). However, this
linear controller is not applicable to the case when the
motor operates on wide dynamical regimes. To overcome
this drawback, multiple linear controllers are used to con-
trol the motor, where each linear controller is applied to a
certain neighborhood of a operating point (Sira-Ramirez
(1990)). As a result, a piecewise linear controller is formed.
This control strategy really works in some cases and is easy
to implement in engineering but may not produce satis-
factory solutions in some other cases. Recent advances in
nonlinear control systems makes it possible to apply non-
linear controllers. Exact feedback linearization technique
was introduced to the controller design of series DC motors
(Chiasson (1994); Olivier (1991)). This technique cancels
all nonlinearities and transforms the nonlinear system into
a linear controllable one by coordinates transformation
and feedback, and thus standard design means for linear
systems can be applied in the new coordinates (Krstic et al.
(1995)). However, the exact feedback linearization method
requires precise models and often cancel some useful non-
linearity. Backstepping is another effective nonlinear de-
sign method which preservers certain useful nonlinearity
and gives the controller systematically. Also, compared
with exact feedback linearization method, backstepping

often has better robustness. Therefore, nonlinear control
based on backstepping has attracted a lot of attention.
Many results using backstepping to control DC motors are
available in the literature, see, for example, Burridge et al.
(2003); Wang et al. (2006).

For speed tracking control of series DC motors, nonlinear
control approaches, such as backstepping and feedback
linearization methods, usually give asymptotic tracking
results with constant decay rates. If we want a fast
transient response, large control “gains” must be applied
which in many cases is impossible or means high cost.
How to have a good transient response without remarkably
increasing the control “gains” is a significant problem.

Since uncertainties and disturbances are unavoidable in
practice, changing load torques must be taken into account
when designing a controller for a series DC motor. A
number of advanced robust control methods have been ex-
ploited to handle uncertainties and disturbances in motor
systems. For example, a robust tracking control was given
for varying parameters in Liu (2006); tracking periodic
signals was addressed for uncertain parameters in Wai
(2001); An adaptive backstepping method was applies to
the problem of motion control (Yu et al. (2001)); A robust
feedback linearization approach was presented in Bogosyan
et al. (2000). On the other hand, loads can be changed
abruptly, which causes jumping load torques. Most robust
control methods which are effective to deal with slowly
varying parameters are not applicable to control of jump-
ing load torques. Moreover, transient responses are even
more important when we control a motor with jumping
load torques because there is often no sufficient time to
have a transient response which is good enough before a
new load torque is applied.

In this paper we study the problem of speed tracking con-
trol for series DC motors. An improved recursive nonlinear
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controller is proposed to improve the transient response.
In the design, two additional class K functions as design
functions are adopted to adjust the response and decay
rates. Series DC motors with jumping load torques are also
studied. The dynamics of such a motor can be modeled as
a switched system so that the design methods for switched
systems are applicable. In particular, a switching controller
based on the improved design method is presented.

2. MOTOR DYNAMICS

Consider a series DC motor shown in Figure 1 below.

Fig. 1. Series DC motor

If we neglect magnetic saturation in field circuit, the motor
can be modeled as (refer to Liu et al. (1999) for details).

L
di

dt
= u − Ri − Miω,

J
dω

dt
= Mi2 − TL,

(1)

where the physical meaning of the quantities are as follows.

i: armature current (or filed current)

u: terminal control voltage

ω: rotational speed of the motor

L: total armature and field current inductance

R: total armature and field circuit resistance

J : moment of inertia associated with both motor and the
load

M : motor constant

TL: load torque

Te = Mi2 and E = Miω.

For notational convenience, we set

x1 = ω, x2 = i.

Then, the system (1) becomes

dx1

dt
=

M

J
x2

2 −
TL

J
,

dx2

dt
= −

1

L
(Rx2 + Mx1x2) +

1

L
u.

(2)

The control goal is to design a feedback controller u such
that the speed of the motor x1 tracks a constant desired
speed ωr.

3. CONTROLLER DESIGN

In this section, we develop an improved backstepping
design method for the tracking control of the series DC
motor. We first recall the classic backstepping design for
the series DC motor.

3.1 Classic Backstepping Design

The classic backstepping design for (2) can be summarized
as follows (Liu et al. (1999)).

Step 1. Let e = x1 − ωr. Its derivative along the system is

ė = ẋ1 =
1

J
(Mx2

2 − TL).

Define the Lyapunov function for this step by

V1 =
1

2
e2,

whose derivative along the system is

V̇1 =
1

J
e(Mx2

2 − TL).

In order to have
V̇1 = −k1e

2

for some constant k1 > 0, the virtual control x2
2 should be

−
J

M
k1e +

TL

M
.

Step 2. Set

η = M(x2
2 +

J

M
k1e −

TL

M
)

= Mx2
2 + Jk1e − TL.

Define the Lyapunov function for Step 2 as

V2 = V1 +
1

2
η2 =

1

2
e2 +

1

2
η2.

Differentiating V2 along the system yields

V̇2 = −k1e
2 +

1

J
eη

+η[
2Mx2

L
(u − (Rx2 + Mx1x2))

+k1η − k2
1Je].

Choosing

u = Rx2 + Mx1x2

+
L

2Mx2

(

−k1η + k2
1Je −

1

J
e − k2η

)

with a constant k2 > 0, we have

V̇2 ≤ −k1e
2 − k2η

2.

Therefore,
lim

t→∞

e(t) = lim
t→∞

η(t) = 0.

3.2 Improved Backstepping Design

In the classic backstepping design, the Lyapunvov function
is made decreasing at a constant rate. It may take a long
time to have a desired tracking error if the initial error is
relatively large. If we need a shorter time to get a desired
error we have to choose larger constants k1 and k2, which
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implies the increase of the control “gains”. How to achieve
fast transient response without remarkably increasing the
controller “gains” is a basic problem in practice. A possible
solution is to exploit varying k1 and k2 which take larger
values when the error is larger and take smaller values
when the error is smaller, and asymptotically tend to
some constants when time goes to infinity. This is our
motivation to propose an improved backstepping design.
We first recall the concept of class K functions.

Definition (Krstic et al. (1995)). A function γ(·) :
[0,∞) → [0,∞) is called a class K function if it is con-
tinuous, strictly increasing and vanishes at the origin.

Now, we give the improved backstepping design.

Step 1. Let e = x1 − ωr. Choose constants k1 ≥ 0, k2 ≥ 0,
and smooth class K functions α(·) and β(·) which are
design functions determined by the required response time
and the maximum of control “gains”.

Define the Lyapunov function for this step by

V1 =
1

2
e2,

whose derivative along the system is

V̇1 =
1

J
e(Mx2

2 − TL).

If we choose the virtual control x2
2 as

−
J

M
(k1 + α(e))e +

TL

M
,

we will have

V̇1 = −(k1 + α(e))e2.

Step 2. Set

η = M(x2
2 +

J

M
(k1 + α(e))e −

TL

M
)

= Mx2
2 + J(k1 + α(e))e − TL.

Define the Lyapunov function for Step 2 as

V2 = V1 +
1

2
η2 =

1

2
e2 +

1

2
η2.

Differentiating V2 along the system yields

V̇2 = e

(

M

J
x2

2 −
TL

J

)

+
2Mx2η

L
(u − Rx2 + Mx1x2)

+ηJ
d

dt
(k1e + α(e)e)

= −(k1 + α(e))e2 − (k2 + β(e))η2

+η[
1

J
e + (k2 + β(e))η

+
2Mx2

L
(u − (Rx2 + Mx1x2)]

+J
d

dt
(k1e + α(e)e)).

(3)

Then, we design the controller

u = Rx2 + Mx1x2

−
L

2Mx2
[
1

J
e + (k2 + β(e))η

+J
d

dt
(k1e + α(e)e)]

= Rx2 + Mx1x2

−
L

2Mx2
[
1

J
e + (k2 + β(e))η

+(Mx2
2 − TL)

(

k1 +
∂α

∂e
e + α(e)

)

].

(4)

Using the expression of η we can easily have the controller
in terms of x1, x2 and e.

Substituting the controller (4) in to (3) results in

V̇2 ≤ −(k1 + α(e))e2 − (k2 + β(e))η2. (5)

Since k1 > 0, k2 > 0, α(e) ≥ 0 and β(e) ≥ 0, we have

lim
t→∞

e(t) = lim
t→∞

η(t) = 0,

which means that the objective of asymptotically speed
tracking is fulfilled. Obviously, it holds that

lim
t→∞

α(e(t)) = lim
t→∞

β(e(t)) = 0.

Therefore,

lim
t→∞

(k1 + α(e(t))) = k1

and

lim
t→∞

(k1 + β(e(t))) = k2

which means that the decay rate of V2 tends to a constant.

Remark 1. From (5) and in view of α and β being class K
functions, we can see that V2 decreases at a large rate when
the tracking error is larger, which improves the transient
response. On the other hand, smaller tracking error leads
to smaller values of (k1 + α) and (k2 + β), which in turn
reflects smaller controller gain.

4. JUMPING LOAD TORQUES

When load changes, the corresponding load torque also
changes. In this section, we will study the problem of
speed tracking control for a series DC motor with jumping
torques.

Suppose that we have m different load torques in use. Then
the the motor has m groups of dynamics:

dx1

dt
=

M

J
x2

2 −
T

j
L

J
,

j = 1, 2, · · · ,m
dx2

dt
= −

1

L
(Rx2 + Mx1x2) +

1

L
u.

(6)

For each j, (6) corresponds a torque and at each time t one
and only one torque is connected to the motor. Suppose
that at time tk one torque is switched off and another
torque is switched on. Thus we have a switching sequence

{t0, t1, · · · , · · · tk, · · ·},

which means that the ik-th torque is switched on at tk
and switched off at tk+1. Therefore, we actually have a
switched system:
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dx1

dt
=

M

J
x2

2 −
T

σ(t)
L

J
,

dx2

dt
= −

1

L
(Rx2 + Mx1x2) +

1

L
u.

(7)

where
σ : [0,∞) → {1, 2, · · ·m}

is a switching signal which is characterized by the switch-
ing sequence, i.e.,

σ(t) = ik when t ∈ [tk, tk+1).

The system resulting from (7) when σ(t) is replaced by
j is called the j-th subsystem of the switched system (7),
which is exactly the j-th group dynamical equations of (6).

Now we apply the improved backstepping design method
in Section 3 to design a controller uj for the j-th subsystem
of system (7)

uj = Rx2 + Mx1x2

−
L

2Mx2
[
1

J
e + (k2 + β(e))ηj

+(Mx2
2 − T

j
L)

(

k1 +
∂α

∂e
e + α(e)

)

]

(8)

where
ηj = Mx2

2 + J(k1 + α(e))e − T
j
L.

Let V
j
2 =

1

2
e2 +

1

2
η2

j . Then, when t ∈ [tk, tk+1), we have

V̇
j
2 ≤ −(k1 + α(e))e2 − (k2 + β(e))η2

j (9)

which guarantees asymptotic stability of each subsystem
of the switched system (7).

A switching controller is then constructed as u = uσ.

Remark 2. In the discussion above, we construct different
Lyapunov functions V

j
2 , j = 1, 2, · · · ,m for individual sub-

system. Moreover, for different load torques we may choose
different K functions α and β and different constants k1

and k2 to cope with different dynamical behavior. In this
case, for the switched system (7), we have a switched
Lyapunov function

V
σ(t)
2 =

1

2
e2 +

1

2
η2

σ(t),

whose derivative along the system is given by

V̇
σ(t)
2 ≤ −(k1σ(t) + ασ(t)(e))e

2

−(k2σ(t) + βσ(t)(e))η
2
σ(t).

(10)

Although V
σ(t)
2 and V̇

σ(t)
2 are all given in terms of e and

ησ(t), they can be easily expressed in x1, x2 and e.

Remark 3. For jumping load torques, asymptotically
speed tracking is impossible no matter what kind of con-
trollers are applied. This can be seen from the dynamical
equations of the motor. However, we can easily achieve
acceptable tracking accurateness by properly designing
feedback controllers for subsystems. This can be guaran-
teed by using multiple Lyapunov function principle for

switched systems (Branicky (1998)). In the case that the
switching law can be designed, we have more freedom to
choose controllers for subsystems.

5. SIMULATIONS

To demonstrate the effectiveness of the proposed design
method we have conducted two groups of simulations for
the cases of non-jumping load torque and jumping load
torques, respectively. In each group, we use speed and
current responses to compare the proposed improved beck-
stepping method with the classic backstepping method.

Group 1: Non-jumping torque.

The parameters are taken from Liu et al. (1999):

R = 1Ω, J = 0.5kgm2,
L = 0.05H, M = 0.027H,
TL = 55Nm, ωr = 151.7.

Figure 2 and Figure 3 show the speed and current re-
sponses respectively by the classic backstepping method
with

k1 = k2 = 10.

Figure 4 and Figure 5 show the the speed and current re-
sponses respectively by the improved classic backstepping
method with

k1 = k2 = 10

and
α(e) = β(e) = 0.05e2.

Group 2: Jumping load torques.

Parameters:

R = 1Ω, J = 0.5kgm2,
L = 0.05H, M = 0.027H,

T 1
L = 55Nm, T 2

L = 110Nm
ωr = 151.7.

The switching sequence is

{0, 0.5, 1, 1.5, · · ·}

with the torque TL = 55Nm applied first.

Figure 6 and Figure 7 show the speed and current re-
sponses respectively by the classic backstepping method
with

k1 = k2 = 10.

Figure 8 and Figure 9 show the speed and current re-
sponses respectively by the improved classic backstepping
method with

k1 = k2 = 10
and

α(e) = β(e) = 0.05e2.

These simulation results show that in any cases, the
transient responses are substantially improved with the
proposed control method.
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Fig. 2. Classic backstepping
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Fig. 3. Classic backstepping

6. CONCLUDING REMARKS

We have proposed an improved backstepping speed con-
troller for series DC motors. By adopting two class K
functions as design functions, we achieved varying decay
rates which gives fast transient response without remark-
ably increasing the controller gains. The proposed method
can be obviously extended to the case that torque and the
speed of the motor are unmeasurable by using adaptive
mechanism.

Jumping torques are also discussed where the improved
backstepping method is more suitable. By expressing the
dynamics of a series DC motor with jumping load torques
as a switched system, we designed a switching controller.
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Fig. 4. Improved backstepping
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Fig. 5. Improved backstepping
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Fig. 6. Classic backstepping with jumping torques
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Fig. 7. Classic backstepping with jumping torques
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Fig. 8. Improved backstepping with jumping torques
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Fig. 9. Improved backstepping with jumping torques

It is worth mentioning that the transient response for
each load torque is more important than that in non-
jumping case because each torque is only connected to the
motor for a finite time interval before it is switched off.
Good response of each torque often produces good tracking
effect.
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