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Abstract: This paper is concerned with stability of linear neutral systems. Firstly, a new
approach, a delay decomposition approach, is proposed to deal with the stability issue. The idea
of the approach is that the delay interval is uniformly divided into N segments with N a positive
integer, and a proper Lyapunov-Krasovskii functional is chosen with different weighted matrices
corresponding to different segments in the Lyapunov-Krasovskii functional. Secondly, based on
the delay decomposition approach, some new delay-dependent stability criteria for linear neutral
systems are derived. These criteria are much less conservative and include some existing results
as their special cases. Finally, numerical examples show that significant improvement using
the delay decomposition approach is achieved over some existing method even for coarse delay
decomposition.

1. INTRODUCTION

Time-delays are frequently encountered in many fields
of science and engineering, including communication net-
work, manufacturing systems, biology, economy and other
areas (Hale and Verduyn Lunel, 1993; Gu et al., 2003).
During the last two decades, the problem of stability
of retarded and neutral type have been the subject of
considerable research efforts. Many significant results have
been reported in the literature. For the recent progress, the
reader is referred to Gu et al. (2003) and the references
therein.

For the stability issue of time-delay systems, in the existing
literature, there are two kinds of Lyapunov-Krasovskii
functionals, i.e. complete Lyapunov-Krasovskii functionals
and simple Lyapunov-Krasovskii functionals, for estimat-
ing the maximum time-delay bound the system can toler-
ate and still retain stability. Using the complete Lyapunov-
Krasovskii functionals (Gu, 2001; Gu et al., 2003), one
can obtain the maximum time-delay bound which is very
close to the analytical delay limit for stability. Employ-
ing the simple Lyapunov-Krasovskii functionals usually
yields conservative results. However, the results based on
the simple Lyapunov-Krasovskii functionals can be easily
applied to controller synthesis and filter design. Hence, it is
still an attractive topic for finding some simple Lyapunov-
Krasovskii functionals, by which one can have less conser-
vative results.

In order to introduce a new approach to stability analysis
for time-delay systems, we consider the retarded system

ẋ(t) = Ax(t) + Adx(t − r), (1)
with the continuous vector valued initial condition

x(θ) = φ(θ), ∀θ ∈ [−r, 0]. (2)
� This work was supported in part by Central Queensland University
for the Research Advancement Awards Scheme Project “Robust
Fault Detection, Filtering and Control for Uncertain Systems with
Time-Varying Delay” (Jan 2006 - Dec 2008).

For comparison, we use a numerical example for system
(1) with

A =
(−2 0

0 −0.9

)
, Ad =

(−1 0
−1 −1

)
.

The analytical delay limit for stability for the numerical
example is calculated as ranalytical = 6.17258. In the
existing literature, in order to derive a delay-dependent
stability criterion, one transforms system (1) into a system
with a distributed delay, i.e.
ẋ(t) = (A+Ad)x(t)−Ad

∫ t

t−r

[Ax(ξ)+Adx(ξ−r)]dξ. (3)

Choose a Lyapunov function
V (t, xt) = xT (t)Px(t), P = PT > 0, (4)

and apply Razumikhin Theorem to obtain rmax = 0.9041
(Gu et al., 2003). As pointed out by Gu et al. (2003)
(Example 5.3 in Gu et al. (2003)), for this example, the
stability of system (1) is equivalent to that of system (3).
The conservatism of the result is due to the application
of the Razumikhin Theorem. For some system (1) with
different system’s matrices, the model transformation (3)
may induce additional dynamics (Gu et al., 2003). To
reduce the conservatism, instead of transforming system
(1) into (3), one transforms it into

ẋ(t) = (A + Ad)x(t) − Ad

∫ t

t−r

ẋ(ξ)dξ. (5)

Then choosing a Lyapunov-Krasovskii functional

V (t, xt) = xT (t)Px(t) +
∫ t

t−r

xT (ξ)Qx(ξ)dξ

+
∫ 0

−r

∫ t

t+θ

xT (ξ)AT
d RAdx(ξ)dξdθ, (6)

where P = PT > 0, Q = QT > 0, R = RT > 0, and
using the bounding technique for some cross term yield
rmax = 4.3588 (Park, 1999). This result was also derived
by decomposing delayed term matrix as Ad = Ad1 + Ad2

in Han (2002). In Fridman (2001), the author introduced
a descriptor transformation
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ẋ(t) = y(t), (7)

y(t) = (A + Ad)x(t) − Ad

∫ t

t−r

y(ξ)dξ. (8)

A Lyapunov-Krasovskii functional was chosen as

V (t, xt)=
(

x(t)
y(t)

)T(
I 0
0 0

)(
P1 0
P2 P3

)(
x(t)
y(t)

)

+
∫ t

t−r

xT (ξ)Qx(ξ)dξ

+
∫ 0

−r

∫ t

t+θ

yT (ξ)AT
d RAdy(ξ)dξdθ, (9)

where P1 = PT
1 > 0, Q = QT > 0 and R = RT > 0.

Use this model transformation and bounding technique
for cross terms (Park, 1999) to obtain rmax = 4.4721
in Fridman and Shaked (2002). In He et al. (2004a,b),
the authors introduce some slack variables (free-weighting
matrices) to derive the same result.

In Han (2005a), the author avoided using model transfor-
mation on system (1) and chose the following Lyapunov-
Krasovskii functional

V (t, xt) = xT (t)Px(t) +
∫ t

t−r

xT (ξ)Qx(ξ)dξ

+
∫ t

t−r

(r − t + ξ)ẋT (ξ)(rR)ẋ(ξ)dξ, (10)

which is equivalent to
V (t, xt)=xT (t)Px(t) +

∫ t

t−r

xT (ξ)Qx(ξ)dξ

+
∫ 0

−r

∫ t

t+θ

ẋT (ξ)(rR)ẋ(ξ)dξdθ (11)

where P = PT > 0, Q = QT > 0 and R = RT > 0. Instead
of using the bounding technique for some cross term, the
author used the following bounding (Han, 2005a)

−
∫ t

t−r

ẋT (ξ)(rR)ẋ(ξ)dξ

≤
(

x(t)
x(t − r)

)T (−R R
R −R

)(
x(t)

x(t − r)

)
(12)

to derive the maximum allowed delay bound as rmax =
4.4721. Compared with the above mentioned results, the
most advantage of the result in Han (2005a) is that the
stability condition which was formulated in an LMI form,
was very simple and easily applied to controller design,
and did only include the Lyapunov-Krasovskii functional
matrices variables P,Q and R, which means that no addi-
tional matrix variable was involved. From the computation
point of view, it is clear to see that testing the result in Han
(2005a) is less time-consuming than some existing results
in the literature. However, the result rmax = 4.4721 is
not close enough to the analytical delay limit for stability
ranalytical = 6.17258 and work needs to be done to arrive
at a value much closer to the analytical delay limit for
stability. Therefore, the natural question is: How can one
improve the result by using simple Lyapunov-Krasovskii
functionals? Answer to this question will significantly en-
hance the stability analysis and controller synthesis of
time-delay systems. It seems that using the existing sim-
ple Lyapunov-Krasovskii functionals can not realize the
outcome even if one introduces more additional matrices

variables apart from Lyapunov-Krasovskii functional ma-
trices variables. One way to solve the problem is to choose
a new Lyapunov-Krasovskii functional. For this purpose,
we propose the following new simple Lyapunov-Krasovskii
functional

V (t, xt)=xT (t)Px(t)+
N∑

i=1

∫ t−(i−1)h

t−ih

xT (ξ)Qix(ξ)dξ

+
N∑

i=1

∫ −(i−1)h

−ih

∫ t

t+θ

ẋT (ξ)(hRi)ẋ(ξ)dξdθ (13)

where h = r/N and N is the number (a positive integer) of
divisions of the interval [−r, 0], and h is the length of each
division; and xt is defined as xt = x(t + θ),∀θ ∈ [−r, 0]
and P = PT > 0, Qi = QT

i > 0, Ri = RT
i > 0 (i =

1, 2, · · · , N).

It should be pointed out that if N = 1, the Lyapunov-
Krasovskii functional (13) reduces to (11) employed in Han
(2005a) by setting Q = Q1 and R = R1. Based on (13),
one can have a delay-dependent stability criterion (see
Corollary 5 in this paper). Applying this new criterion,
one obtains the maximum allowed delay bound as rmax =
5.7175 for N = 2; rmax = 5.9678 for N = 3; and rmax =
6.0569 for N = 4 and so on, which significantly improve the
result rmax = 4.4721 in the above mentioned references.
One can clearly see that we have made very significant
steps towards the analytical delay limit for stability of the
system.

Since the delay interval [−r, 0] is decomposed into N uni-
form segments, for the purpose of distinguishing from the
existing methods, in what follows, we refer the approach
based on the decomposition idea as a delay decomposition
approach.

In this paper, we will use a delay decomposition approach
proposed above to study the stability of linear neutral
systems. We will derive new stability criteria which include
some existing results as their special cases. These new
stability criteria will be much less conservative than some
existing results.

Notation: Rn denotes the n-dimensional Euclidean space.
Rm×n is the set of all m × n real matrices. The notation
P > 0 (P ≥ 0) means that P is symmetric and positive
definite (positive semi-definite). For symmetric matrices P
and Q, the notation P > Q (P ≥ Q) means that matrix
P − Q is positive definite (positive semi-definite). I is an
identity matrix of appropriate dimensions. λi(A) is the ith
eigenvalue of a real matrix A. ‖·‖ stands for the Euclidean
vector norm or the induced matrix 2-norm as appropriate.
For an arbitrary matrix U and two symmetric matrices
P and Q, the symmetric term in a symmetric matrix is

denoted by *, i.e.
(

P U
∗ Q

)
=
(

P U
UT Q

)
.

2. STABILITY OF LINEAR NEUTRAL SYSTEMS

Consider the following linear neutral system
d

dt
[x(t) − Cx(t − τ)] = Ax(t) + Adx(t − r), (14)

with
x(θ) = φ(θ), ∀θ ∈ [−max{r, τ}, 0]. (15)

where x(t) ∈ Rn is the state vector of the system; r > 0
is the constant discrete delay and τ > 0 is the constant
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neutral delay; φ(·) is a continuous vector valued initial
function; A ∈ Rn×n, Ad ∈ Rn×n and C ∈ Rn×n are
constant matrices.

Define xt as xt = x(t + θ),∀θ ∈ [−max{r, τ}, 0], and the
operator Dxt = x(t) − Cx(t − τ). We assume that
Assumption 1. |λi(C)| < 1 ( i = 1, 2, · · · , n).

Choose a Lyapunov-Krasovskii functional candidate as

V (t, xt)=(Dxt)T P (Dxt)+
N∑

i=1

∫ t−(i−1)h

t−ih

xT (ξ)Qix(ξ)dξ

+
N∑

i=1

∫ −(i−1)h

−ih

∫ t

t+θ

ẋT (ξ)(hRi)ẋ(ξ)dξdθ

+
∫ t

t−τ

xT (ξ)S1x(ξ)dξ+
∫ t

t−τ

ẋT (ξ)S2ẋ(ξ)dξ (16)

where h = r/N and N is the number of divisions of the
interval [−r, 0], and h is the length of each division; and
P = PT > 0, Qi = QT

i > 0, Ri = RT
i > 0 (i =

1, 2, · · · , N), Sj > 0 (j = 1, 2).

We now state and establish the following result.
Proposition 2. Under Assumption 1, for given scalars
r > 0 and τ > 0, the system described by (14) and
(15) is asymptotically stable if there exist real n × n
matrices P > 0, Qi > 0, Ri > 0 (i = 1, 2, · · · , N) and
Sj > 0 (j = 1, 2) such that

Π =

⎛
⎜⎜⎜⎜⎝

Π(1) Π(2) 0 Π(3) Π(4)

∗ −S1 0 0 0
∗ ∗ −S2 Π(5) CT S2

∗ ∗ ∗ Π(6) 0
∗ ∗ ∗ ∗ −S2

⎞
⎟⎟⎟⎟⎠ < 0, (17)

where

Π(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π(1)
11 R1 0 · · · 0 PAd

∗ Π(1)
22 R2 · · · 0 0

∗ ∗ Π(1)
33 · · · 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ · · · Π(1)
NN RN

∗ ∗ ∗ · · · ∗ Π(1)
N+1 N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with
Π(1)

11
Δ= AT P + PA + Q1 − R1 + S1,

Π(1)
22

Δ=−Q1 − R1 + Q2 − R2,

Π(1)
33

Δ=−Q2 − R2 + Q3 − R3,

...

Π(1)
NN

Δ=−QN−1 − RN−1 + QN − RN ,

Π(1)
N+1 N+1

Δ=−QN − RN ,

and

Π(2)=

⎛
⎜⎜⎜⎜⎜⎜⎝

−AT PC
0
0
...
0

−AT
d PC

⎞
⎟⎟⎟⎟⎟⎟⎠

, Π(4) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−AT S2

0
0
...
0

−AT
d S2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Π(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

hAT R1 hAT R2 · · · hAT RN

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

hAT
d R1 hAT

d R2 · · · hAT
d RN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Π(5) =
(
hCT R1 hCT R2 · · · hCT RN

)
,

Π(6) = diag (−R1 −R2 · · · −RN ) .

In order to prove Proposition 2, we need the following
lemma.
Lemma 3. (Han, 2005a) For any constant matrix W ∈
Rn×n, W = WT > 0, scalar r > 0, and vector valued
function ẋ : [−r, 0] → Rn such that the following integra-
tion is well defined, then

−
∫ t

t−r

ẋT (ξ)(rW )ẋ(ξ)dξ

≤ ( xT (t) xT (t − r)
)(−W W

W −W

)(
x(t)

x(t − r)

)
.

Proof of Proposition 2. Taking the derivative of V (t, xt)
with respect to t along the trajectory of (14) yields

V̇ (t, xt) = xT (t)(AT P + PA + S1)x(t)

+2xT (t)PAdx(t − Nh) − 2xT (t)AT PCx(t − τ)

−2xT (t − Nh)AT
d PCx(t − τ)

−xT (t − τ)S1x(t − τ) − ẋT (t − τ)S2ẋ(t − τ)

+
N∑

i=1

xT (t − (i − 1)h)Qix(t − (i − 1)h)

−
N∑

i=1

xT (t − ih)Qix(t − ih)

+
N∑

i=1

ẋT (t)(h2Ri)ẋ(t) + ẋT (t)S2ẋ(t)

−
N∑

i=1

∫ t−(i−1)h

t−ih

ẋT (ξ)(hRi)ẋ(ξ)dξ. (18)

Rewrite system (14) as
ẋ(t) = Ax(t) + Bx(t − Nh) + Cẋ(t − τ). (19)

Then we have
ẋT (t)(h2Ri)ẋ(t) = ηT (t)�T (h2Ri)�η(t), (20)

and
ẋT (t)S2ẋ(t) = ηT (t)�T S2�η(t), (21)

where

ηT (t) =
(
ηT
1 (t) · · · ηT

2 (t) ηT
3 (t)

)
,

with

ηT
1 (t) =

(
xT (t) xT (t − h) xT (t − 2h)

)
,

ηT
2 (t) =

(
xT (t − (N − 1)h) xT (t − Nh)

)
,

ηT
3 (t) =

(
xT (t − τ) ẋT (t − τ)

)
,

and
� = ( A 0 0 · · · 0 Ad 0 C ) .

Use Lemma 3 to obtain
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−
∫ t−(i−1)h

t−ih

ẋT (ξ)(hRi)ẋ(ξ)dξ

≤ ζT (t)
(−Ri Ri

Ri −Ri

)
ζ(t), (22)

where ζ(t) =
(

x(t − (i − 1)h)
x(t − ih)

)
. Then from (18), (20),

(21) and (22), we have

V̇(t, xt)≤ ηT (t)

⎛
⎝Π(1) Π(2) 0

∗ −S1 0
∗ ∗ −S2

⎞
⎠η(t)

+ηT (t)

(
N∑

i=1

�
T(h2Ri)�+�

T S2�

)
η(t). (23)

According to Schur complement, (17) is equivalent to⎛
⎝Π(1) Π(2) 0

∗ −S1 0
∗ ∗ −S2

⎞
⎠ +

∑N
i=1 �T (h2Ri)� + �T S2� < 0.

Therefore, there exists a scalar λ1 > 0 such that V̇ (t, xt) ≤
−λ1x

T (t)x(t) < 0 for x(t) 	= 0. Notice that Assumption 1
guarantees the operator Dxt is stable. Hence, by Theorem
8.1 (pp. 292-293, Hale and Verduyn Lunel (1993)), the
system described by (14) and (15) is asymptotically stable.
This completes the proof. �
If N = 1, then (16) becomes the Lyapunov-Krasovskii
functional employed in Han (2005b)

V (1)(t, xt)=(Dxt)T P (Dxt)+
∫ t

t−r

xT (ξ)Q1x(ξ)dξ

+
∫ 0

−r

∫ t

t+θ

ẋT (ξ)(rR1)ẋ(ξ)dξdθ

+
∫ t

t−τ

xT (ξ)S1x(ξ)dξ+
∫ t

t−τ

ẋT (ξ)S2ẋ(ξ)dξ

By Proposition 2 we have the following corollary.
Corollary 4. (Han, 2005b) Under Assumption 1, for given
scalars r > 0 and τ > 0, the system described by (14)
and (15) is asymptotically stable if there exist real n × n
matrices P > 0, Q1 > 0, R1 > 0 and Sj > 0 (j = 1, 2)
such that⎛
⎜⎜⎜⎜⎜⎝

(1, 1) (1, 2) −AT PC 0 rAT R1 AT S2

∗ (2, 2) −AT
d PC 0 rAT

d R1 AT
d S2

∗ ∗ −S1 0 0 0
∗ ∗ ∗ −S2 rCT R1 CT S2

∗ ∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ ∗ −S2

⎞
⎟⎟⎟⎟⎟⎠ < 0, (24)

where
(1, 1) Δ= AT P + PA + S1 + Q1 − R1,

(1, 2) Δ= PAd + R1, (2, 2) Δ= −Q1 − R1.

If τ = 0, then system (14) becomes system (1). The follow-
ing corollary is immediately implied by using Proposition
2.
Corollary 5. For a given scalar r > 0, the system described
by (1) and (2) is asymptotically stable if there exist real
n × n matrices P > 0, Qi > 0, Ri > 0 (i = 1, 2, · · · , N)
such that

Ξ =
(

Ξ(1) Ξ(2)

Ξ(2)T Ξ(3)

)
< 0, (25)

where

Ξ(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ(1)
11 R1 0 · · · 0 PAd

∗ Ξ(1)
22 R2 · · · 0 0

∗ ∗ Ξ(1)
33 · · · 0 0

...
...

...
. . .

...
...

∗ ∗ ∗ · · · Ξ(1)
NN RN

∗ ∗ ∗ · · · ∗ Ξ(1)
N+1 N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Ξ(1)
11 = Π(1)

11 −S1, Ξ(1)
ii = Π(1)

ii (i = 2, · · · , N +1), and

Ξ(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

hAT R1 hAT R2 · · · hAT RN−1 hAT RN

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
hAT

d R1 hAT
d R2 · · · hAT

d RN−1 hAT
d RN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ξ(3) = diag (−R1 −R2 · · · −RN−1 −RN ) .

When τ = r, system (14) becomes
d

dt
[x(t) − Cx(t − r)] = Ax(t) + Bx(t − r), (26)

with x(θ) = φ(θ), ∀θ ∈ [−r, 0]. (27)
The corresponding Lyapunov-Krasovskii functional candi-
date is
Ṽ (t, xt)=(D̃xt)T P (D̃xt)+

N∑
i=1

∫ t−(i−1)h

t−ih

xT (ξ)Qix(ξ)dξ

+
N∑

i=1

∫ −(i−1)h

−ih

∫ t

t+θ

ẋT (ξ)(hRi)ẋ(ξ)dξdθ

+
∫ t

t−Nh

ẋT (ξ)S3ẋ(ξ)dξ (28)

where D̃xt = x(t)−Cx(t−Nh). Then we have the following
result.
Proposition 6. Under Assumption 1, for a given scalar r >
0, the system described by (26) and (27) is asymptotically
stable if there exist real n × n matrices P > 0, Qi > 0,
Ri > 0 (i = 1, 2, · · · , N) and S3 > 0 such that

Ω=
(

Ω(1) Ω(2)

Ω(1)T Ω(3)

)
< 0, (29)

where

Ω(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω(1)
11 R1 0 · · · 0 PAd − AT PC 0
∗ Ω(1)

22 R2 · · · 0 0 0
∗ ∗ Ω(1)

33 · · · 0 0 0
...

...
...

. . .
...

...
...

∗ ∗ ∗ · · · Ω(1)
NN RN 0

∗ ∗ ∗ · · · ∗ Ω(1)
N+1 N+1 0

∗ ∗ ∗ · · · ∗ ∗ −S3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with Ω(1)
11 = Π(1)

11 − S1, Ω(1)
ii = Π(1)

ii (i = 2, · · · , N) and
Ω(1)

N+1 N+1 = Π(1)
N+1 N+1 − AT

d PC − CT PAd, and

Ω(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hAT R1 hAT R2 · · · hAT RN AT S3

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
hAT

d R1 hAT
d R2 · · · hAT

d RN AT
d S3

hCT R1 hCT R2 · · · hCT RN CT S3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2610



Ω(3) = diag (−R1 −R2 · · · −RN −S3 ) .

Notice that system (14) can be rewritten as
ẋ(t) = Ax(t) + Bx(t − r) + Cẋ(t − τ). (30)

For this form, choosing a Lyapunov-Krasovskii functional
candidate as

V̂ (t, xt)=xT (t)Px(t)+
N∑

i=1

∫ t−(i−1)h

t−ih

xT (ξ)Qix(ξ)dξ

+
N∑

i=1

∫ −(i−1)h

−ih

∫ t

t+θ

ẋT (ξ)(hRi)ẋ(ξ)dξdθ

+
∫ t

t−τ

ẋT (ξ)S4ẋ(ξ)dξ (31)

we can conclude that
Proposition 7. For given scalars r > 0 and τ > 0, the
system (30) is asymptotically stable if there exist real n×n
matrices P > 0, Qi > 0, Ri > 0 (i = 1, 2, · · · , N) and
S4 > 0 such that

Φ =
(

Φ(1) Φ(2)

Φ(2)T Φ(3)

)
< 0, (32)

where

Φ(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ(1)
11 R1 0 · · · 0 PAd PC

∗ Φ(1)
22 R2 · · · 0 0 0

∗ ∗ Φ(1)
33 · · · 0 0 0

...
...

...
. . .

...
...

...
∗ ∗ ∗ · · · Φ(1)

NN RN 0
∗ ∗ ∗ · · · ∗ Φ(1)

N+1 N+1 0
∗ ∗ ∗ · · · ∗ ∗ −S4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Φ(1)
11 = Π(1)

11 −S1, Φ(1)
ii = Π(1)

ii (i = 2, · · · , N +1), and

Φ(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hAT R1 hAT R2 · · · hAT RN AT S4

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
hAT

d R1 hAT
d R2 · · · hAT

d RN AT
d S4

hCT R1 hCT R2 · · · hCT RN CT S4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ(3) = diag (−R1 −R2 · · · −RN −S4 ) .

Remark 8. Notice that for N = 1, the Lyapunov-
Krasovskii functionals (28) and (31) for systems (26) and
(30) reduce to the ones used in Han (2005b). Similar to
Corollary 4, we can have the corresponding results which
recover the results in Han (2005b).
Remark 9. Similar to Han (2005b), one can address robust
stability issue for neutral systems subject to parameter
uncertainty. Due to page limit, it is omitted.

3. EXAMPLES

In order to show significant improvements over some exist-
ing results in the literature, we employ a Partial Element
Equivalent Circuit (PEEC) model, which is recurring an
increasingly important role in many practical applications,
especially in combined electromagnetic and circuit analy-
sis. Figure 1 shows a small PEEC model for metal strip
(Bellen et al., 1999), in which there are delayed circuit

Fig. 1. Small PEEC model for metal strip

elements, that is, the partial inductances of the form
Lpij

d
dt (ij(t − r)) are coupled by the retarded dependent

current sources of the form pij/piiicj(t − r). This model
usually results in a neutral delay differential equation. The
mathematical model for the PEEC shown in Figure 1 can
be given as{

C0ẏ(t) + G0y(t) + C1ẏ(t−r) + G1y(t − r)
= Bu(t, t − r), t ≥ t0

y(t) = g(t), t ≤ t0
(33)

where C0 is a diagonal matrix. The associated delay
differential equation of neutral type is{

d

dt
[y(t)−Cy(t − r)]=Ay(t)+Ady(t − r), t ≥ t0

y(t) = g(t), t ≤ t0
(34)

Consider the system (34) with

A = 100×
(

β 1 2
3 −9 0
1 2 −6

)
, Ad = 100 ×

( 1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0

)
,

C =
1
72

×
(−1 5 2

4 0 3
−2 4 1

)
.

For β = −7, Bellen et al. (1999) studied the stability
problem of the system and concluded that the system is
asymptotically stable. However, the result is independent
of the delay. In Han (2005c), the author claimed that the
system is asymptotically stable independent of the delay
for β ≤ −2.106.

Applying the Proposition 6 in this paper and the criteria
in Han (2005c) and Yue and Han (2004), Table 1 lists the
maximum allowed time-delay rmax for asymptotic stability
for different β. From this table, one can clearly see that
for N = 1, the results in Han (2005c) are recovered; for
N ≥ 2, the results using Proposition 6 can provide much
less conservative results than the criteria in Han (2005c);
Yue and Han (2004).

Table 1. Comparison of rmax using different
methods

Method β = −2.105 β = −2.103 β = −2.1

Han (2005c) 1.0874 0.3709 0.2433

Yue and Han (2004) 1.1413 0.3892 0.2553

Proposition 6 (N = 1) 1.0874 0.3709 0.2433

Proposition 6 (N = 2) 1.5318 0.5185 0.3381

Proposition 6 (N = 3) 1.6238 0.5490 0.3577

Proposition 6 (N = 4) 1.6567 0.5599 0.3647

We now consider another example to show significant
improvements over some existing results in the literature.
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Example 10. Consider the system (26) with

A =
(−0.9 0.2

0.1 −0.9

)
, Ad =

(−1.1 −0.2
−0.1 −1.1

)
,

C =
(−0.2 0

0.2 −0.1

)
.

The analytical delay limit for stability can be calculated
as ranalytical = 2.2255. Using some existing criteria and
Proposition 6 in this paper the maximum allowed time-
delay rmax is compared in Table 2 . It is clear to see that
for this example the criterion in this paper can provide
much less conservative results than some existing ones
mentioned in Table 2. From this table, one can also see
that as N increases, the results converge to the analytical
delay limit for stability.

Table 2. Comparison of rmax using different
methods

Methods rmax

Lien et al. (2000) 0.3

Chen et al. (2001) 0.5658

Fridman (2001) 0.74

Lien and Chen (2003) 0.8844

Han (2004) 1.61

He et al. (2004a) 1.6527

Fridman and Shaked (2002) 1.7191

Han (2005b) 1.7858

Proposition 6 (N = 1) 1.7858

Proposition 6 (N = 2) 2.1077

Proposition 6 (N = 3) 2.1708

Proposition 6 (N = 4) 2.1932

Proposition 6 (N = 5) 2.2036

Proposition 6 (N = 6) 2.2093

Proposition 6 (N = 7) 2.2121

Proposition 6 (N = 8) 2.2149

Proposition 6 (N = 9) 2.2164

Proposition 6 (N = 10) 2.2175

Proposition 6 (N = 15) 2.2201

Proposition 6 (N = 20) 2.2210

4. CONCLUSION

We have considered the problem of stability of linear
neutral systems. The main contribution of this paper is
that we have proposed a delay decomposition approach to
address the problem. The delay decomposition approach
has opened a door in the area of time-delay systems how
to use simple Lyapunov-Krasovskii functionals to derive
much less conservative results for stability analysis and
controller design. For a stability issue, employing the
delay decomposition approach, we have obtained some
new stability criteria which are much less conservative
than some existing ones using simple Lyapunov-Krasovskii
functionals. The stability limit can be approached with fine
delay decomposition.

It should be pointed out that one can use the delay
decomposition approach to address controller design and
filtering for time-delay systems. Due to page limit, we have
left these issues in other papers.
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