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Abstract: This paper suggests a nonlinear control law to stabilize the rolling motion of missiles. Based on 
the analysis of rolling moment characteristics due to pitch/yaw control cross-coupling, we propose a 
conjecture that the moment is described by the bilinear form of pitch/yaw acceleration and yaw/pitch 
control. The conjecture fits a set of wind tunnel test data and leads to a bilinear control law. An important 
point is that the control law is implemented by using pitch/yaw accelerations and control signals. 
Simulations show that the new control law stabilizes rolling motions which cannot be stabilized by linear 
feedback control laws. 

 

1. INTRODUCTION 

A recent trend in advanced control systems is to increase 
their dynamic range as wide as possible. There is no 
exception in air vehicles including missiles. A conventional 
approach to designing missile autopilot is to separate and 
conquer each channel based on the assumption that cross-
couplings among channels are not large. Increasing dynamic 
range, however, tends to make the traditional way less 
effective or even useless because of large cross-couplings 
(Arrow and Yost, 1977; Devaud, et al., 2001). To make 
things worse, many cross-coupling components show strong 
nonlinearities (Cronvich, 1986). 

Dynamic models integrating roll-pitch-yaw motions include 
kinematical, inertial, and aerodynamic cross-couplings. The 
kinematical couplings are composed of angular and 
translational velocities. The products of angular velocities 
consist of the inertial couplings. Aerodynamic couplings 
come from the asymmetric configuration of airframe with 
respect to the direction of flight (Cronvich, 1986). These are 
induced moments and control cross-couplings which are due 
to change in airframe attitude and unequal forces developed 
by control surfaces, respectively (Arrow and Yost, 1977). 
There are two types of control cross-couplings: 1) rolling 
moments due to pitch (or yaw) control surfaces, 2) pitching 
or yawing moments due to roll control. For typical cruciform 
missiles, roll motion is generally far more sensitive than pitch 
or yaw with respect to the same amount of asymmetric 
control forces, which makes controlling roll  motion 
challenging. It even makes the problem more challenging that 
the rolling moment tends to be highly nonlinear. 

This work focuses on a roll control problem which is 
influenced by control cross-couplings. Based on the fact that 
the source of control cross-coupling is the difference in forces 
generated by a pair of fins for pitch (or yaw) control, we 
suggest a mechanism to generate the rolling moment. We 
confirm that the mechanism shows a good agreement with a 
set of wind tunnel test data. Based on the mechanism, we 
come up with a nonlinear control law feeding back pitch and 
yaw channel information to cope with the control cross-

coupling moment. 5-DOF (five-degree-of-freedom) 
simulations show that a control law with the nonlinear 
feedback works well. 

This paper is organized as follows. A missile model and 
problem formulation are described in Section 2. Section 3 
contains main results including a model of the cross-coupled 
rolling moment as well as the nonlinear compensator. We 
show some simulation results in Section 4. Section 5 
describes concluding remarks. 

2. PROBRAM FORMULATION 

Consider a conventional cruciform missile with four tail 
control fins. Figure 1 shows the definition of body 
coordinates, relevant angles and variables . 
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Fig. 1. Definition of the body-fixed coordinates ( , ,B B BX Y Z ), 
angle-of-attack α , side-slip angle β , total angle-of-attack 

tα , and aerodynamic roll (or bank) angle aφ , where mV  is 
the total velocity, and , ,p q r  are angular velocities about 
each axis. 
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Under some acceptable assumptions such as a constant speed 
of flight, the symmetry of cruciform airframe, a rigid body 
and so on, a 5-DOF model which integrates all control 
motions including two translations and three rotations is 
written as follows (Brakelock, 1991; Devaud, et al., 2001; 
Siouris, 2004). 
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In (1)-(3), φ  is roll position, ,y za a  are accelerations along 
each axis, g is the gravity, , ,r z yδ δ δ  denote the control fin 
deflections of roll, pitch and yaw, respectively, , ,p q rL M N  
denote damping derivatives about each axis, and the other 
parameters are defined as follows: 
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where Q  is the dynamic pressure, S  is the reference area, 
D  is the reference length, , ,l m nC C C  denote the 
aerodynamic moment coefficients about each axis, ,y zC C  
are the aerodynamic force coefficients along each axis, m  is 
the airframe mass, and , ,xx yy zzI I I  are the moments of inertia 
about each axis. 

The 5-DOF model (1)-(3) includes three types of couplings 
between roll, pitch and yaw channels. These are the 
kinematical couplings pβ , pα , the inertial couplings ,pr pq  
and the aerodynamic cross-couplings are hidden in (5)-(7). In 
order to design a roll autopilot coping with the aerodynamic 
cross-couplings, we need a roll system model with cross-
couplings. Let us assume in this model that the pitch and yaw 
control loops are closed by a conventional autopilot (Zarchan, 
1997) given as follows. 
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 ,zc r r i z yc r r i yK q K W x K r K W xδ δ= − = − +  (9) 

In (8)-(9), , , ,o a i rK K W K  denote control gains, ,z yx x  are the 

states of pitch and yaw controllers, ,o o
yc zca a  are acceleration 

commands given at an inertial roll reference, ,zc ycδ δ  are fin 
deflection commands for pitch and yaw control, respectively, 

and ,y za a  are achieved accelerations along each axis and 
defined as 
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For the time being, let us assume that actuators for pitch and 
yaw control are ideal, i.e.,  

,zc z yc yδ δ δ δ= = . 

Augmenting (1)-(3) by (8)-(9) yields a 8th-order roll system 
model which retains all cross-couplings between rolling, 
pitching and yawing motions. The augmented system can be 
written as 

            ( , )rx f x δ=& ,   (11) 

In (11), 8f R∈  and the augmented state 8x R∈  is given as 
T

z yx p q r x xφ α β⎡ ⎤= ⎣ ⎦ . 
The system (11) is a 5-DOF dynamics for design and analysis 
of roll control laws in this work. 

3.  ROLL MOMENTS DUE TO PITCH/YAW CONTROL 
SURFACES 

It is known that the rolling moment is contributed by many 
factors such as the pitch and yaw incidence angles and 
control surfaces as well as the roll control surface rδ  and roll 
rate p  (Arrow and Yost, 1977; Cronvich, 1986; Devaud, et 
al., 2001). Accounting  the contributions decomposes the roll 
moment L  as (Devaud, et al., 2001) 

 ( )sin(4 ) ( , , , , )t a r z yL f Lδα φ α β δ δ δ= +  (12) 

The first term of (12) is the induced roll moment due to body 
incidence and the second is generated from control fins. The 
control moment is decomposed of two parts, i.e., one due to 
roll control fins and another due to pitch/yaw fins, written as 
 ( , ) ( , , , )

r

cc
r z yL L Lδ

δ α β δ α β δ δ= +  (13) 

The control cross-coupling moment ccL  is induced by the 
difference between two forces generated from a pair of fins 
for pitch or yaw control (Arrow and Yost, 1977; Cronvich, 
1986). Let us think about the mechanism yielding the cross-
coupling moment. Figure 2 depicts four cases how roll 
moments are induced from pitch/yaw control surfaces. 

Consider the squeeze free relationship between four fins 
mounted on an airframe and deflections for roll, pitch and 
yaw control laws.  
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The upper-left case in Figure 2 assumes that the airframe 
stays in a trim condition ( , o

o zα δ+ − ) which is a steady 
manoeuvre with o

za−  acceleration. In this situation 
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introducing an amount of control yδ+  to a of fins #2 and #4 
generates only a lateral directional force along BY−  axis in 
principle. In reality, however, each of two fins #2 and #4 has 
a different effectiveness since a part of the fin #4 is shaded by 
airframe from the air flow with velocity mV  while the 
airframe has stayed in an attitude with angle-of-attack oα . 
This asymmetry tends to make the force due to fin #2 be 
different from that due to fin #4. In this condition the fin #4 is 
less effective than the fin #2. The difference induces an 
amount of roll moment. According to the same steps 
employed for the upper-left one in Figure 2, the other 
diagrams are interpreted in their own conditions. 
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Fig. 2. Conceptual diagrams how roll moments are generated 
from pitch/yaw control deflections. 

Now let us summarize the mechanism generating roll 
moments mentioned above. The forces in a trim condition 
which is maintained by a pair of control fins are expressed as 

 #1 1

#3 3

' '

' '

eff o
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z

f k k

f k k

δ δ
δ δ

= + = +

= − = −
,  (16) 

In (16), #1 #3,f f  denote the forces by fin #1 and fin #3, and 

1 3,eff effδ δ  are the effective deflection angles contributing to

#1 #3,f f , respectively, and 'k  is a constant. In this case 

1 3
eff eff o

zδ δ δ= = . The deflections for yawing in this trim state 
result in two different lateral directional forces. For these 
forces we introduce following expressions 

 # 2 2

# 4 4

' '

' ' (1 ' | |)

eff
y

eff o
y z

f k k
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δ δ

δ δ μ

= + = +
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under an assumption that the effectiveness of control fin in 
shaded area decreases in proportion of the magnitude of trim 
acceleration, where # 2 # 4,f f  are the forces by corresponding 
fins, and 2 4,eff effδ δ  are the effective deflections contributing 
to # 2 # 4,f f , respectively, and 'μ  is a constant. Summing the 
four forces in (16)-(17) gives a residual written as 

 
4

#
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1 ' ' | | | |
4

o o
r i z y z y

i
f f k a aμ δ μ δ

=
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In (18) rf denotes a force which induces unwanted rolling 
and is due to yaw control fins. There is no difficulty to extend 
the expressions and steps employed for the first case to the 
other three cases. Table 1 summarizes the results. 

The forces in the last column of Table 1 is integrated to two 
cases  

 
, 0,

3, ,2 2

z y a

r
y z a
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μ δ φ π
π πμ δ φ
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. (19) 

Four cases in Figure 2 represent specific situations in which 
only a pair of control fins, for pitch or yaw, contributes to the 
corresponding trim condition. Except the four specific cases, 
the velocity vector mV  always lies in between two adjacent 
fins. There is no objection to extend this cross-coupling 
mechanism yielding roll moments to general cases in which 

mV  lies in arbitrary direction. In these general conditions we 
can express the residual forces as an equation  
 r z y y zf a aμ δ μ δ= − +  (20) 

In (20), the first (or second) term of the right-hand side goes 
to zero only when 3,2 2a

π πφ =  (or 0,aφ π= ), but both terms 

contribute in all situations except the four specific conditions. 

Table 1.  Forces yielding roll moments due to 
the deflections of pitch/yaw control surfaces 

aφ ( , , , )z y trimα β δ δ ( , )z y trima a  rf  

0 ( ,0, ,0)o
o zα δ− ( ,0)o

za−  | |o
z yaμ δ
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o zα δ− ( ,0)o

za  | |o
z yaμ δ−

2
π (0, ,0, )o

o yβ δ− (0, )o
ya−  | |o

y zaμ δ−

3
2
π (0, ,0, )o

o yβ δ− (0, )o
ya  | |o

y zaμ δ

 

Comparing (20) with ccL  in (13) suggests a new expression  
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 ( , , , )cc
y z z y y zL k a k aα β δ δ δ δ= − +   (21) 

with a constant k  relating the forces in (19) to the 
corresponding moments. Finally (12) is expressed as 

 
( , ) ( ) ( )

( )sin(4 )
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In (22) the dimensional derivatives are defined by 
 ( ) , ( )

y zz z y yL a k a L a k aδ δ= − =   (23) 

4. ROLL CONTROL SYSTEM DESIGN 

In order to design a roll control system coping with cross-
couplings as well as nonlinear dynamics, let us define 
relevant steps. 

4.1  Review of Pitch/Yaw Control System 

 Consider the pitch/yaw control in the aspect of roll control 
system. Aerodynamic forces and moments in (5) can be 
approximated as follows. 
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In (24) we neglected control cross-couplings between pitch 
and yaw as well as with roll. 

Applying (22)-(24) to (1)-(3) and (10), and using (8)-(9) 
gives a new expression of (11) written as 
 ( ) ( ) rx f x g x δ= +& ,  (25) 

where 8 8,f R g R∈ ∈ . 

4.2  Feedback Linearization to Compensate Roll Moments 
due to Pitch/yaw Control Fins 

 Based on (22), we come up with an auxiliary control 
variable xδ  defined by  

cc
x r rδ δ δ= + ,  (26) 

( ) ( ) ( )sin(4 )
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y z

r r

z y y zcc t a
r

L a L a f
L L

δ δ

δ δ

δ δ α φδ
α β α β
+

= + . (27) 

Applying (26) and (27) to (22) and  letting xδ  as 
 x p refK p K Kφ φδ φ φ= − − +  (28) 
simplifies the closed-loop dynamics of roll control system to  
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where refφ  is the reference roll position and ,pK Kφ are 

control gains. The control component cc
rδ in (26)compensating 

the cross-coupling roll moments can be implemented to  
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if the estimates ˆ ˆˆ( ), ( , ), ( )
rz y y z tk a a L fδδ δ α β α− and the 

bank aφ  are available. 

4.3  Considerations on Implementation 

Let us focus on (30). The estimate ˆ ( , )
r

Lδ α β  is a function of 
missile incidence angles. It is however known that the 
derivative can be approximated as a constant with tolerable 
errors for many conventional missiles. As an example, we 
show a trend in Figure 3 which comes from a set of wind 
tunnel test data of an air defence missile with four tail control 
fins. In case of the airframe in Figure 3, the estimation errors 
are less than about 15% even though the control derivatives 
are approximated as a constant without angle-of-attacks as 
well as bank angles. 

 
Fig. 3. An example of roll control derivatives versus the total 
angle-of-attack, where each line denotes a different bank 
angle, i.e., 0, 22.5, 45, or 90 degree 

According to (23), the derivatives ,
y z

L Lδ δ  are linear with 

respect to ,z ya a , respectively. With the data used in Figure 3, 
we depict the control coupling derivatives versus pitch/yaw 
accelerations in Figure 4. These figures confirm that the 
suggestions in (23) are acceptable. The two plots in Figure 4 
show that k̂  in (30) is approximated as a constant when the 
missile velocity and altitude are given. 

On the other hand, the induced roll moment, the last term of 
(22), is a function of the total angle-of-attack and the bank 
angle, i.e., ( )sin(4 )t af α φ . Since the function has a period 

2π , the estimation error of aφ  is very sensitive to the 
compensation error of the control cross-coupling moments. If 
the delay in real-time estimation is not negligible and the roll 
rate of vehicle is large, the effectiveness of the control law 
may be reduced dramatically. We, therefore, suggest a 
simplified compensator  
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as a practical version, where ˆ
r

Lδ  is a constant at a given 
velocity and altitude. The control law (31) is implemented by 
using pitch/yaw accelerations and controls which are all 
available. In a practical point view, using the control 
commands ,yc zcδ δ  in place of the control achievements 

,y zδ δ  in (31), i.e., 

 
ˆ

( )ˆ
r

cc
r z yc y zc

k a a
Lδ

δ δ δ= − − ,  (32) 

is able to show better performance and stability since the 
commands advance the achievements in phase. Finally 
employing (28) and (32) to (26) yields a new roll control law 

ˆ
( )ˆ

r

r p ref z y y z
kK p K K a a

Lφ φ
δ

δ φ φ δ δ= − − + + − . (33) 

  

 
Fig. 4. An example of the roll control-coupling derivatives 
versus the total angle-of-attack, where each line denotes the 
different bank angle, i.e., 0, 22.5, 45, or 90 degree  

 

 

  
Fig. 5. 5-DOF simulation results of a given control system 
without the compensator  

4.4 Discussions on Stability 

Employing (22) with (33) for (1) yields the closed-loop 
dynamics of roll control system  
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Fig. 6. 5-DOF simulation results of a given control system 
with the compensator  
with 1 ( , )

rp pa L K Lδ α β= − , 2 ( , )
r

a K Lφ δ α β= , and 

 ˆ ˆ( , ) /
r r

k k k L Lδ δα β= −% .  (36)  

The closed-loop system (34) can be stabilized by the control 
gains ,pK Kφ  provided that the disturbance 

( , , , , , )cc
z yd q r x xα β is bounded by the pitch and yaw control 

law (9). Another approach is to linearize the whole closed-
loop system (25) with (33) at each operating condition and 

study the stability of each linear system. For the example in 
Section 5 we evaluate the stability by the second approach. 

5.  5-DOF NONLINEAR SIMULATIONS 

For the new roll control law (33), we simply choose 
ˆ (0,0)

r r
L Lδ δ=  by using the data in Figure 3. And the 

estimate of control coupling coefficient, k̂ , is evaluated by a 
least-squares fitting with the data in Figure 4. Given the 
velocity and altitude, these two parameters are constants. 
Control gains ,pK Kφ  in (33) and , , ,r i a oK W K K in (8)-(9) are 
designed for an aerodynamics data set which is including the 
data in Figure 3 and Figure 4. Stability of the nonlinear 
control system is evaluated by the linearization method on 
many operating conditions interested in. 

Consider the 5-DOF model (25) with control laws (8)-(9) and 
(33). The 5-DOF model takes care of all modes of a missile 
except a translational motion along BX  axis under a mild 
assumption that the velocity and altitude are given and fixed. 
To this system we introduce a large acceleration command 
along along BZ  axis only. We show two simulation results in 
Figure 5 and Figure 6 for a conventional roll control law with 
ˆ 0k =  and the new roll control, respectively. In these figures, 

all variables are normalized by their maximum values for an 
obvious reason. For easy and fair comparison, we use the 
same scale in Figure 5 and 6. The conventional roll control in 
Figure 5 shows an unstable response. It is possible to 
stabilize the unstable mode of low frequency by increasing 
the control gains ,pK Kφ . But large control gains tend to 
decrease stability at high frequency due to actuators with 
limited bandwidth. On the other hand, the new roll control 
law in Figure 6 shows an improvement. An observation on 
these results confirms that the proposed control law with 
bilinear feedback of pitch/yaw channel information has a 
good capability to improve stability as well as performance. 

6.  CONCLUDING REMARKS 

In this work we introduce an efficient and simple nonlinear 
control law to stabilize a kind of unwanted roll moments. 
Based on the analysis of the process that the roll moment is 
generated by pitch and/or yaw control cross-couplings, we 
propose a conjecture that the moment is described by two 
bilinear terms composed of the pitch acceleration and yaw 
control and the yaw acceleration and pitch control. This 
conjecture fits a set of wind tunnel test data and leads to a 
bilinear control law. 
An important point is that the control law is implemented by 
using pitch and yaw accelerations and control commands 
which are usually provided by conventional pitch/yaw control 
laws. Through some simulations based on a 5-DOF nonlinear 
model and a full set of aerodynamic data, we show that the 
new control law stabilizes rolling motions which cannot be 
stabilized by the conventional linear control law to feed only 
the roll channel information back. The new roll control law, 
moreover, shows relatively low sensitivity to errors in 
aerodynamics and incidence angles. The robustness of the 
new control law will be analyzed in further study.  
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