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Abstract: An approach of self-learning fuzzy sliding-mode control which combines fuzzy control with 
the sliding-mode control, is presented for the tracking control of a class of nonlinear systems with the 
parameter uncertainties. The fuzzy control rules are updated through on-line learning, which make the 
output of fuzzy control approximate to sliding-mode equivalent control along the direction of making 
sliding-mode asymptotic stable. Based on Lyapunov theory, the asymptotic stability of the overall 
systems is proved. The proposed method is applied to some electrohydraulic servo systems, and the 
results of simulation show that the satisfied control precision and stability can be obtained by using 
proposed method for the systems.  

 

1. INTRODUCTION 

Fuzzy Control (FC) has already made great success in 
practical application, but FC generally relies on the experts' 
experience and experiments. It is difficult to analyze the 
stability of fuzzy control systems and obtain satisfied 
accuracy for some complex control objects. Sliding mode 
control (SMC) is a better robust control method. Once the 
states of controlled systems enter the sliding mode, the 
dynamic characteristics of overall system are determined by 
the designed sliding surface and independent of uncertainties. 
But in the practice control, the chattering phenomena in the 
sliding mode due to switching operating and high gain of the 
SMC influence the tracking accuracy and limit its application.  
Recently much research has been done to apply the fuzzy 
sliding mode control (FSMC), which includes the advantages 
of both FC and SMC. The References (Swiniarski R., 1990; 
Palm R., 1992) introduced the design means of FC into 
conventional SMC, which can get better consequences than 
FC, and eliminated the chattering of SMC to the great extent. 
Reference (Palm R., 1992) showed that sliding mode control 
with bounding layer was equivalent to FC in some meanings. 
Because no general stability analysis tools could be applied 
to fuzzy systems, reference (Kim S.W., Lee J.J., 1995) put 
forward a design method of FC with fuzzy sliding surfaces 
and Lyapunov theory could be used to testify the stability of 
FSMC system and the bounded properties for tracking error. 
Reference (Lin S.C., Chen Y.Y., 1994) presented a method of 
designing adaptive fuzzy sliding mode controller, the 
parameters in the fuzzy rule base can be updated in the terms 
of the adaptive algorithm and guaranteed that the states of 
systems can reach the prearranged sliding surfaces and slide 
along it. This paper proposes a control means of fuzzy sliding 
mode control with self-learning capability and the fuzzy logic 
system is employed to approximate the equivalent control of 
sliding mode in a compact set. Then the presented method is 
used to the tracking control of electrohydraulic servo system 
and satisfied simulation results are obtained.  

2. DESCRIPTION OF PROBLEM  

Consider the following system 
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system's state vectors, )(,0)( xfxb > are nonlinear scalar 
functions or either one is nonlinear function, and their value 
isn't exactly known, u is the control input of system and y is 
the output of system. )(td  is a bounded disturbance. The 
control goal for the systems is that the output y can precisely 
track the desired output dx when )(),(),( tdxfxb contain 
some uncertainties.  

3. DESIGN OF SELF-LEARNING FUZZY SLIDING 
MODE CONTROLLER 

3.1 Sliding mode controller  

Take tracking error as 
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Substituting e into (1) the error state equation of system is 
defined as follows:  
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According to the theories of Sliding Control, choose the 
switching function for sliding mode as 
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According to s& =0, we can get equivalent control of sliding 
mode  
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If the accurate values of dfb ,, have been known, from (5) 

we can directly get equ .  Based on the theory of sliding 
mode control, control law is chosen as  
 

seq uuu +=                                                                                                (6) 

 
Where su  is a nonlinear control, its function is to produce 
sliding mode. In practical control course, there often exist 
some uncertainty factors in dfb ,, , such as the parameter 
uncertainties caused by nonlinear or disturbance etc., which 
made equivalent control not able to be gained directly. Under 
above situation, a fuzzy system is employed to approximate 
sliding mode equivalent control equ . Then (6) becomes 

sf uuu +=                                                                 (7) 

3.2  Design of fuzzy controller  

Choose s and s& as the input of fuzzy control, then the output 

fu  of fuzzy controller can be defined from the following 

m fuzzy control rules mRRR ,...,, 21 .The general form of j-
th rule can be described as 
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Where ),( 111 jjj mA σ  and ),( 22,2 jjj mA σ are the fuzzy 

subsets of ),( 111 σmA and ),( 222 σmA   respectively, 

),( 111 σmA and ),( 222 σmA are corresponding to fuzzy 
input s  and s&  respectively. Here take Gauss membership 
function 
 
 ])/)((exp[)( 2σμ mxxA −−=                                   (9) 

So, fuzzy set A  can be presented as A ),( xm σ , 
j
fu represents the output of fuzzy controller when the j-th 

rule is satisfied. 
Define j-th rule firing strength as  

)1()),(),(min( 21 mjssw jAjAj L& == μμ                  (10) 

 
Where )(1 sjAμ and )(2 sjA &μ are the values of membership 

function corresponding to s  and s&  in the fuzzy subsets 
),( 111 jjj mA σ and ),( 222 jjj mA σ . Then according to the 

weighted average defuzzification method, we can get the 
final output 
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Where [ ]T

mwww ,,1 L= , [ ]Tmppp L,1= , p  is an 
unknown consequent parameter vector, it can be gotten by 
the following learning control method.  

3.3 Design of Learning law and Su  

The destination of learning is to realize that the output 
parameter jp (consequent function) is updated online, then 

makes the final output fu of fuzzy control gradually 

approximate sliding mode equivalent control equ along the 
direction in which sliding mode state is asymptotically stable. 
So that system states can retain on the sliding surface and 
move along it. In order to derive the learning laws, at first, 
make the assumptions as follows 
 
Assumption 1:  In the formulation (1) )(xb and its estimated 

value 
∧

)(xb  satisfy the following conditions   
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The conditions above can be satisfied for the system 
considered in Section 4 of this paper.  In fact, equation (12) 
can be obtained from a number of mechantronics systems 
(Suolin Duan 1999).  

Generally 
∧

)(xb can selected as 
 

)(ˆ xb = minmax bb ⋅ =Constant                                    (13) 

Assumption 2:  The vector set TssT ],[ &= is a compact set 

and nRT ∈ , exist a group of consequent parameter vector 
,],,,[ **

2
*
1

T
mppppp L== ∗ and make the following 

condition to be satisfied  
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Then 
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Differentiating )(ts with respect to t  along the trajectory of 
equation (1), and using (3), (5)，(6) gives 
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Thus  
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Choose a Lyapunav function candidate as follows 
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 Where b̂ is selected according to (13). Differentiating above 
equation (17) in two sides, then 
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Select su as  
 
 )sgn(10 skskus +=                                                  (18) 
 
Where ,00 >k 01 >k . From (14), (15) and (17), we have 
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Then 
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The result, the formula (20) indicates that the stability of 
SMC systems can be guaranteed when fu , output of fuzzy 
control is used to approximate sliding mode equivalent 
control equ and sliding mode state is asymptotically stable in 
terms of Lyapunov theory. When t ∞→ , the following 
dynamic characteristic can be achieved 
 
 0,, )1(
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Consequently, tracking error approaches zero along sliding 
surface. The following theorem can be obtained. 
 
Theorem 1:  For the described system (1), the control system 
and sliding mode state are asymptotically stable according to 
the Lyapunov theory when the control law and the defined 
learning law given by (7), (11), (18), (19) are used, Then 
when t ∞→ , the tracking error of the system convergence to 
zero along sliding mode surface.  

4. SIMULATION RESULTS  

Consider the following electro-hydraulic position servo 
system described by follows equations for some structure 
fatigue testing machine (Suolin Duan, 1999)  
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Where T
ppp

T yyyxxxx ][][ 321 &&&== , py  is output 

displacement of the system, T][ 321 αααα =  is nominal 
parameter vector in the systems, and 

[ ]375 108.131034.9105.11 ×−×−×−=Tα ,

αΔ < 5107 ×  is the uncertainty of the parameter vector, 
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u is the control input, and control gain )(xb  71043.2 ×=  

pCu)sgn(1−   ( pC <1), is a nonlinear function, F is the 

bounded disturbance, and 2100.1 ×≤F . The design 
procedures of the fuzzy-sliding mode controller with self-
learning for above system (22) are described as follows 
 
1) Determine the linguistic variables and universe of 

discourse of the fuzzy control:  
Choose s and s& as linguistic variables, consider their 
universe of discourse as [-1,1], and the sliding mode function 
is selected by  
 

eececs &&& ++= 21                                                         (23) 
 

Where 121 ,0,0 xxecc d −=>> , dx is the desired 
output signal.  
 
2) Choose the linguistic values and corresponding  
 
membership function. Every linguistic variable can 
individually take five linguistic values (5 fuzzy subsets). The 
corresponding Gauss membership functions are 
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Where i =1, 2 is corresponding to the linguistic variables s  
and s&  respectively. Then, xσ =0.01, the corresponding 
universe of discourse for the linguistic values are 
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3) Build fuzzy rules bases 
To constitute fuzzy rules bases, 25 fuzzy rules are taken 
 
R1:  if s  is 11A (-0.8,σx) and s&  is 21A (-0.8,σx) Then 

1
1 pu f =    

M  
R25: if s  is A15 (0.8,σx) and s&  is  A25(0.8,σx)  
                Then 25

25 pu f =  
 

4) From the fuzzy inference (Maximum and minimum 
Reasoning) in (10) the firing strength jw of every rule can be 
determined. 
 
5) According to (19), take learning laws as  
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6) Determine the output fu of the fuzzy controller in terms 

of (10), and the initial value of jp  is often taken as 0. 
 
7) Choose su according to (18). 
 
8) From (7) we can get the control input u  of self-learning 
fuzzy sliding mode controller. 
 
The simulation results are illustrated in Fig. 1 to Fig.4. Fig.1 
and Fig.2 show the response results of tracking square wave 
signal with frequency 2.5Hz and 0.5Hz by using the self-
learning FSMC scheme. Fig.3 and Fig.4 respectively 
illustrate the error curves of tracking 2.5Hz and 0.5Hz square 
wave. The simulation results show that the presented self-
learning FSMC is of good tracking characteristics for the 
square wave signal with different frequency.  

5.  CONCLUSIONS 

Based on the idea of combining fuzzy control and sliding 
mode control, the self-learning fuzzy sliding mode control 
method is presented in this paper. The proposed method is 
applied to an electrohydraulic servo systems, the results of 
simulation show that the satisfied tracking characteristics and 
stability can be obtained by using the proposed method for 
the systems to tracking the square wave signal with different 
frequency. 

 

 
 

Fig. 1.Response of tracking 2.5Hz square wave signal 
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Fig.2.Response of tracking 0.5Hz square wave signal 
 

                   

Fig.3. Error curve of tracking 2.5Hz square wave 

             
 
Fig.4. The error curve of tracking 0.5Hz square wave 
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