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Abstract: In this paper, the problem of the robust tracking for a class of uncertain robotic
systems with delays is investigated. The uncertainty is nonlinear time-varying and does not
require a matching condition. A reference model with the desired amplitude and phase properties
is given to construct and error model. A neural network system is used to approximate an
unknown controlled system from the strategic manipulation of the model following tracking
errors. Based on the Lyapunov method and the linear matrix inequality (LMI) approach,
several sufficient conditions, which guarantee the state variables of the closed loop system to
converge, globally, uniformly and exponentially, to a ball in the state space with any pre-specified
convergence rate, are derived. Numerical examples are given to illustrate the proposed method.

1. INTRODUCTION

For the past several years, there have been a lot of interests
in applying artificial neural networks (NNs) to solve the
problems of identification and control of complex nonlin-
ear systems by exploiting the nonlinear mapping abilities
of the NN. At the same time, extensive investigations
have been carried out design NN controllers for robot
manipulators (Tseng [2001], Kim [2000]). In addition to
the nonlinearities and uncertainties, robotic systems with
unknown delayed states are often encountered in practice.
However, to the best of our knowledge, there is little result
about the robust intelligent control scheme for the uncer-
tain robotic systems with delays by now. In this paper,
we consider the problem of robust stabilization for a class
of uncertain robotic systems with multiple delayed state
perturbations. Both the adaptive robust control scheme
with known parameters, and the robust neural control
method for unknown parameters of robotic systems, are
proposed simultaneously. A reference model with the de-
sired amplitude and phase properties is given to construct
an error model. An NN system is used to represent the
unknown controlled system with the desired accuracy to
any degree from the strategic manipulation of the model
following tracking errors. The stability and robustness
properties of the proposed control scheme are established
in the Lyapunov theory framework and LMI approach. The
results demonstrate the feasibility of the proposed control
scheme, which can guarantee parameter estimation conver-
gence and stability robustness of the closed-loop system.

⋆ This work was supported by National Natural Science Foundation
of China (60775047,10771055), the Specialized Research Fund for the
Doctoral Program of Higher Education (20050532023) and National
High Technology Research and Development Program of China (863
Program: 2007AA04Z244).

Our main contributions are as follows. First, the plants
under our consideration are of multiple delays occurring in
the state variables. Second, our design procedure is based
upon a group of linear matrix inequalities (LMIs), whose
numerical solutions can be effectively obtained by LMI
toolbox in Matlab and, what is more, through which there
is no need to fix a prior some parameters. Finally, the
performance indices of the closed loop systems have a clear
relationship with the design parameters in our controllers.

2. PRELIMINARIES

In this section, dynamical models of robotic manipulators
with uncertainties will be presented in detail. According
to Lagrange theory (Yi [1997]), dynamical equations of
robotic manipulators with n serial links incorporating
external disturbances can be expressed as

M(q)q̈(t) + C
′

(q, q̇)q̇(t) + G
′

(q) + F
′

(q, q̇)

= τ(t) + D
′

(t), (1)

where q̈, q̇, q ∈ Rn are vectors of joint accelerations,
velocities, and positions, respectively. M(q) ∈ Rn×n is a

symmetric positive definite inertia matrix; C
′

(q, q̇)q ∈ Rn

being a vector of centripetal and Coriolis forces. G
′

(q) ∈
Rn denotes gravity vectors and F

′

(q, q̇) ∈ Rn includes

friction terms and unmodeled dynamics; D
′

(t) ∈ Rn is
the external disturbances; τ(t) ∈ Rn represents torque
vectors exerting on joints. It is assumed that vectors q̇,
q are measurable. The following are the properties of the
robotic dynamics:

Proposition 1. The inertia matrix M(q) is symmetric pos-
itive definite for every q. Both M(q) and M−1(q) are
uniformly bounded.
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Proposition 2. The matrix Ṁ(q) − 2C
′

(q, q̇) is skew-

symmetric for suitable representation of C
′

(q, q̇).

Proposition 3. C
′

(q, q̇) is bounded in q and linear in q̇.

From Propositions 1-3, the equation of the manipulator
can be written as

q̈(t) + C(q, q̇)q̇(t) + G(q) + F (q, q̇)

= B̄(q)τ(t) + D(t), (2)

where C(q, q̇) = M−1(q)C
′

(q, q̇), G(q) = M−1(q)G
′

(q),

F (q, q̇) = M−1(q)F
′

(q, q̇), B̄(q) = M−1(q) and D(t) =

M−1(q)D
′

(t). To simplify the notation the argument t is
in many cases dropped out. Since each link transmitting
the energy or the moment to the following links will have
some delayed behavior due to inertia effect, the states
with delayed uncertainties are unavoidable and should be
included in the dynamical system. Therefore, (2) can be
written as

q̈(t) + C(q, q̇)q̇(t) + G(q) + F (q, q̇)

= B̄(q)τ(t) +
r

∑

j=1

dj(t)q(t − hj) + D(t),

q(t) = φ(t), t ∈ [−h, 0], (3)

where φ(t) is a continuous vector-valued initial function,
h = max{hj , j = 1, 2, · · · , r}, and dj(t), j = 1, 2, · · · , r,
are nonlinear time-varying continuous functions which
represent the gains of the delayed state uncertainties for
the system. In our control scheme, we divide the dj(t) into
two parts: the known constant d̄j and unknown function
of time d̄j(t), namely,

dj(t) = d̄j + d̄j(t), j = 1, 2, · · · , r. (4)

The reference model for the plant to follow is a linear time
invariant stable system with a piecewise continuous and
uniformly bounded input rm, and the output qm, related
by

q̈m + M1q̇m + M0qm = rm, (5)

where M1 and M0 are selected properly such that qm has
the desired response of the plant. Let e = q − qm denote
the tracking error. In order to design a stable adaptive
controller with robust tracking performance, we first select
a set of parameter matrices F1, F0 such that the error
matrix polynomial ë+F1ė+F0e is a Hurwitz polynomial.
Then, define z as

z = q̈m − F1ė − F0e. (6)

Adding −z and subtracting C(q, q̇)q(t) and G(q) from both
sides of (6), we have

q̈ − z = B̄τ − z − C(q, q̇)q̇(t) − G(q)

+
r

∑

j=1

(d̄j + d̄j(t))q(t − hj) + D(t), (7)

Substituting (6) into (7), we obtain

ë + F1ė + F0e = B̄τ − z − C(q, q̇)q̇(t) − G(q)

+
r

∑

j=1

(d̄j + d̄j(t))q(t − hj) + D(t), (8)

Therefore, the error dynamics in (8) can be written as

˙̄e = Φē + B
(

B̄τ − z − C(q, q̇)q̇(t) − G(q)
)

+
r

∑

j=1

(d̄j + d̄j(t))Ī q̄(t − hj) + BD(t), (9)

where

q̄ =

[

q̇
q

]

(2n)×1

, ē =

[

ėT

eT

]

(2n)×1

,

Ī =

[

0(n) I(n)

0(n) 0(n)

]

(2n)×(2n)

, B =

[

I(n)

0(n)

]

(2n)×n

,

Φ =

[

−F0 −F1

I(n) 0(n)

]

(2n)×(2n)

,

in which 0(n) is an n × n zero matrix. For ease of illustra-

tion, set u(t) = B̄τ − z − C(q, q̇)q̇(t) − G(q), then (9) can
be rewritten as

˙̄e = Φē + Bu(t) +
r

∑

j=1

(d̄j + d̄j(t))Ī q̄(t − hj) + BD(t),

(10)

Assumption 1. The unknown matrix-value functions of
time d̄i(t)Ī are assumed to be of the form

d̄i(t)Ī = Bψi(t), i = 1, 2, · · · , r. (11)

Suppose that ψi(t), i = 0, 1, · · · , r and D(t) are Lebesgue
measurable and norm-bounded, i.e.,

‖ψi(t)‖ ≤ √
ρi, ‖D(t)‖ ≤ √

ρw, (12)

where ρi, i = 1, 2, · · · , r, and ρw are positive constants.

Assumption 2. The desired trajectories qm and desired
velocity q̇m are continuous and bounded known functions
of time, without loss of generality, let ‖q̄m(t)‖ ≤ L, where

q̄m(t) =

[

q̇m(t)
qm(t)

]

(2n)×1

.

Definition 1. Define a ball B(r) := {ē ∈ Rn : ‖ē‖ ≤ r}.
The uncertain system (9) is said to be globally uniformly
exponentially convergent to the ball B(r) at a rate σ > 0
if for any given positive number δ, there exists a positive
number Γ = Γ(δ) such that

‖ē(t0;ϕ)(t)‖ ≤ r + Γexp(−σ(t − t0)),

∀t ≥ t0, ∀ϕ ∈ C([−τ, 0], Rn), ‖ϕ‖c ≤ δ. (13)

3. CONTROLLER DESIGN AND STABILITY
ANALYSIS

3.1 Adaptive robust control scheme with known parameters

It is first assumed that the robot dynamical system (1) is
known a priori. Now we consider the problem of adaptive
robust controller design for system (1). Fig. 1 shows the
structure of this control strategy.

Theorem 1. Consider the robotic system (1) with given

M(q), C
′

(q, q̇) and G
′

(q). Suppose that Assumption 1, 2
holds. If there exist a positive definite matrix P , positive
numbers µ, ξ0, ξi , εi, i = 1, · · · , r, such that the following
matrix inequalities
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Linear Matrix

Inequalities

d/dt

d/dt

Reference

Model

Robotic

System

qd(t)

e(t)

q(t)
q̇(t)

ė(t)
q̈m(t)

q(t)

τ

B̄(q)

G(q)

C(q, q̇)

τ = B̄−1(z + C(q, q̇)q̇(t) + G(q)

−

(

ρ +
1

η2
+ γ̂(t)

)

B
T

P ē)

Fig. 1. Schematic diagram of adaptive robust control scheme.

















PΦ + ΦTP + 2µP d̄1P Ī d̄2P Ī · · · d̄rP Ī

d̄1Ī
TP −ε1I 0 · · · 0

d̄2Ī
TP 0 −ε2I · · · 0
...

...
...

. . .
...

d̄r Ī
TP 0 0 · · · −εrI

















< 0, (14)

µP −
r

∑

i=1

(εi + ξi)I > 0 (15)

hold, then the adaptive controller

τ = B̄

(

z + C(q, q̇)q̇(t) + G(q)

−
(

ρ +
1

η2
+ γ̂(t)

)

BTP ē

)

, (16)

˙̂γ(t) =
1

λ
ēTPBBTP ē − µ̄γ̂(t), (17)

where ρ, λ, and µ̄ are design parameters satisfying

ρ > 0, λ > 0, µ̄ ≥ µ, (18)

will make the closed loop system (9), (16), (17) globally
uniformly exponentially convergent to the ball B(r) at a
rate σ/2, where r and σ are defined by

r =
√

r1 + r2, (19)

σ = 2µ − 2

λm(P )

r
∑

i=1

(εi + ξi)e
στmax , (20)

γ = −ρ +
1

2

(

ζ +

r
∑

i=1

ζ−1ρi

)

, (21)

with

r1 =

λµ̄2γ2

∑r
i=1(εi + ξi)

+
ζ−1ρw

λm(P )

2µ − 2

λm(P )

∑r
i=1(εi + ξi)

,

r2 =

ρ2

(

r
∑

i=1

√

d̄i + ρi‖BĪ−1‖
)2

L2ĪT(B+)TB+Ī

2µλm(P ) − 2
∑r

i=1(εi + ξi)
,

τmax = max{τi, i = 1, 2, · · · , r}, and ζ is a positive number
which can be freely chosen.

Corollary 1. Consider the robotic system (1) with given

M(q), C
′

(q, q̇) and G
′

(q). Suppose that Assumption 1, 2
holds and the uncertainty bounds ρw and ρi, i = 1, · · · , r,

are known. If there exist a positive definite matrix P ,
positive numbers µ, ξ0, ξi , εi, i = 1, · · · , r, such that
the following matrix inequalities















PΦ + ΦTP + 2µP d̄1P Ī d̄2P Ī · · · d̄rP Ī
d̄1Ī

TP −ε1I 0 · · · 0
d̄2Ī

TP 0 −ε2I · · · 0
...

...
...

. . .
...

d̄r Ī
TP 0 0 · · · −εrI















< 0, (22)

µP −
r

∑

i=1

(εi + ξi)I > 0 (23)

hold, then the adaptive controller

τ = B̄
(

z + C(q, q̇)q̇(t) + G(q) − 1

η2
BTP ē

−
[

κ−1ρw +
r

∑

i=1

ξ−1
i ρi

]

BTP ē
)

, (24)

where κ > 0, η > 0 are design parameters, will make the
closed loop system (9), (24) globally uniformly exponen-
tially convergent to the ball B(r) at a rate σ/2, where r
and σ are defined by

r =

√

κ

2µλm(P ) − ∑r
i=1(εi + ξi)

, (25)

σ = 2µ − 1

λm(P )

r
∑

i=1

(εi + ξi)e
στmax , (26)

τmax = max{τi, i = 1, 2, · · · , r}. (27)

3.2 Adaptive neural robust control scheme with unknown
parameters

In order to apply the NN system with adaptation capa-
bility, we first parameterize the dynamical system (2) as
follows:









q̈1

q̈2

...
q̈n









+









a1 a2 · · · an

a2n+1 a2n+2 · · · a3n

...
...

. . .
...

a2n2
−2n+1 a2n2

−2n+2 · · · a2n2
−n

















q̇1

q̇2

...
q̇n








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+









an+1 an+2 · · · a2n

a3n+1 a3n+2 · · · a4n

...
...

. . .
...

a2n2
−2n+1 a2n2

−2n+2 · · · a2n2

















q1

q2

...
qn









= B̂









τ1

τ2

...
τn









+
r

∑

j=1

(d̄j + d̄j(t))q(t − hj) + D(t), (28)

where B̂ =
1√
c1c2

I(n) for which I(n) is an n × n identity

matrix. Let a = [a1 a2 · · · an an+1 · · · a2n a2n+1 · · ·
a3n a3n+1 · · · a2n2

−n+1 a2n2
−n+2 · · · a2n2 ]T(2n2)×1 be the un-

known plant parameter vector.

Rewrite (28) in the following form:

q̈ + V a = B̂τ +
r

∑

j=1

(d̄j + d̄j(t))q(t − hj) + D(t), (29)

where










q̄T 0 · · · 0
0 q̄T · · · 0
...

...
. . .

...
0 0 · · · q̄T











n×(2n2)

, (30)

Therefore, from (9), the error dynamics can be written as
˙̄e = Φē + B(B̄τ − z − V a)

+
r

∑

j=1

(d̄j + d̄j(t))Ī q̄(t − hj) + BD(t), (31)

where ē, Ī, Φ and B are defined as (9). For ease of
illustration, set v(t) = B̄τ − z − V a, then (31) can be
rewritten as

˙̄e = Φē+Bv(t)+
r

∑

j=1

(d̄j +d̄j(t))Ī q̄(t − hj)+BD(t), (32)

Let x = [x1 x2 · · ·xn xn+1 · · ·x2n]T = [ėT eT]T. The basic
configuration of the neural network system is implemented
by using massive connections among processing units. Let
x ∈ R2n be the input of the neural network system. Ex-
press a(x, c) = [a1(x, c1), · · · ,a2n2(x, c2n2)]T. The neural
networks output ak(x, ck) for k = 1, · · · , 2n2 are composed
of nonlinear neurons in every hidden layer and linear
neurons in the input and output layers. For simplicity of
design, the adjustable weightings ck for k = 1, · · · , 2n2

are put in the output layers of the following single-output
neural networks (Chang [1997]):

ak(x, ck) =

pk
∑

i=1

ckiH(
2n
∑

j=1

wk
ijxj + mk

i )
∆
= ξT

k ck, (33)

where ck = (ck1, · · · , ckpk
)T, ξk = [H(

∑2n
j=1 wk

ijxj +

mk
1), · · · ,H(

∑2n
j=1 wk

pkjxj + mk
pk

)]T, and pk is the num-

ber of hidden neurons, k = 1, · · · , 2n2. According to
the multi-layer neural network approximation theorem
(Hornik [1989]), H must be a non-constant, bounded
and monotonically increasing continuous function. In this
work, the following hyperbolic tangent function is used:

H(x) =
eσ(x) − eσ(x)

eσ(x) + eσ(x)
,

where σ(x) is a function of the augmented state x.

For convenience, the neural network system a(xe, c) is
denoted as

a(x, c) =











ξT
1 c1

ξT
2 c2

...
ξT
2n2c2n2











=













ξT
1 0 · · · 0

0 ξT
1

... 0
...

...
. . .

...
0 0 · · · ξT

2n2













·









c1

c2

...
c2n2









∆
= Ξ(x)c (34)

Because the time-varying parameters of the controlled
plant represented as the parameter vector a are absorbed
partly into the NN system, a can be obtained more ac-
curately by further estimating the unknown but constant
weight vector c according the tracking error and the coef-
ficients of the NN system. Let â = Ξĉ be the estimate of a
due to and c̃ = ĉ− c the error vector. Then, the certainty
equivalent controller of (16) can be re-defined as

τ = B̂−1

(

z + V â −
(

ρ +
1

η2
+ γ̂(t)

)

BTP ē

)

= B̂−1

(

z + W ĉ −
(

ρ +
1

η2
+ γ̂(t)

)

BTP ē

)

(35)

where W = V Ξ. The configuration of proposed adaptive
neural robust control scheme for the robotic system is
depicted in Fig. 2.

Theorem 2. Consider the robotic system (1) with un-

certain nonlinear parameter matrices M(q), C
′

(q, q̇) and

G
′

(q). Suppose that Assumption 1, 2 holds. If there exist
a positive definite matrix P , positive numbers µ, ξ0, ξi ,
εi, i = 1, · · · , r, such that the following matrix inequalities















PΦ + ΦTP + 2µP d̄1P Ī d̄2P Ī · · · d̄rP Ī
d̄1Ī

TP −ε1I 0 · · · 0
d̄2Ī

TP 0 −ε2I · · · 0
...

...
...

. . .
...

d̄r Ī
TP 0 0 · · · −εrI















< 0, (36)

µP −
r

∑

i=1

(εi + ξi)I > 0 (37)

hold, then the adaptive NN robust controller

τ = B̄

(

z + W ĉ −
(

ρ +
1

η2
+ γ̂(t)

)

BTP ē

)

, (38)

˙̂c = ˙̃c =
α

2
c̃ − 1

2
P1W

TW c̃ − P1Ξ
TV TBTP ē, (39)

˙̂γ(t) =
1

λ
ēTPBBTP ē − µ̄γ̂(t), (40)

where P1 is defined as

P1(t) =

(
∫ t

0+

exp
(

−
∫ t

0+

α(φ)dφ
)

WT(s)W (s)ds

)

−1

, (41)

with

α = α0

(

1 − ‖P1‖
k0

)

(42)

for which α0 and k0 are positive constants. ρ, λ, η, and µ̄
are design parameters satisfying

ρ > 0, λ > 0, η > 0, µ̄ ≥ µ, (43)
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Linear Matrix

Inequalities

d/dt

d/dt

Reference

Model

Robotic

System

qd(t)
e(t)

q(t)
q̇(t)

q̈m(t)

q(t)

τ

B̄(q)

G(q)

C(q, q̇)

τ(t) = B̄−1(z + V â − ρBTP ē

−
1

η2 BTP ē − γ̂(t)BTP ē)

NN

Controller

Fig. 2. Schematic diagram of adaptive neural robust control scheme.

will make the closed loop system (32), (38)-(40) globally
uniformly exponentially convergent to the ball B(r) at a
rate σ/2, where r and σ are defined by Theorem 1.

Corollary 2. Consider the robotic system (1) with un-

certain nonlinear parameter matrices M(q), C
′

(q, q̇) and

G
′

(q). Suppose that Assumption 1, 2 holds and the un-
certainty bounds ρw and ρi, i = 1, · · · , r, are known. If
there exist a positive definite matrix P , positive numbers
µ, ξ0, ξi , εi, i = 1, · · · , r, such that the following matrix
inequalities















PΦ + ΦTP + 2µP d̄1P Ī d̄2P Ī · · · d̄rP Ī
d̄1Ī

TP −ε1I 0 · · · 0
d̄2Ī

TP 0 −ε2I · · · 0
...

...
...

. . .
...

d̄r Ī
TP 0 0 · · · −εrI















< 0, (44)

µP −
r

∑

i=1

(εi + ξi)I > 0 (45)

hold, then the adaptive controller

τ =B̄

(

z + Wĉ − 1

η2
BTP ē

−
[

κ−1ρw +
r

∑

i=1

ξ−1
i ρi

]

BTP ē

)

, (46)

˙̂c =˙̃c =
α

2
c̃ − 1

2
P1W

TWc̃ − P1Ξ
TV TBTP ē, (47)

where P1 is defined as (41)-(42), and κ > 0, η > 0 are
design parameters, will make the closed loop system (32),
(46), (47) globally uniformly exponentially convergent to
the ball B(r) at a rate σ/2, where r and σ are defined by
Corollary 1.

4. COMPUTER SIMULATION

To illustrate the adaptive neural control scheme proposed
in this paper, a simulation example for gyroscopic system
with single actuating input (Ferreira [1999]) is performed.
The inertia of the system is concentrated in the rotor,
with J as the radial moment of the inertia and I the axial
moment of inertia. This system is acted upon by a single

torque input τ(t) applied along the x-axis (torque axis).
From Newton’s law in rotational form, the equations of
motion for the gyroscopic system are shown as follows:

Jθ̈ = τ(t) + Jβ̇2(t − h) sin(θ(t − h)) cos(θ(t − h)) (48)

− E2β̇(t − h) sin(θ(t − h)) + ζ(t),

Jβ̇ sin2(θ(t)) + E2 cos(θ(t)) = E1, (49)

I(ψ̇ + β̇(t) cos(t)) = E2, (50)

where E1, E2 are conservation of the angular momentum
constants, h is the delay time for the rate of change, β,
due to the inertias of the radial and axial moments, and
ζ is the bounded disturbance caused by the unbalanced
effects. Without loss of generality, counterclockwise and
clockwise rotations are defined as positive and negative,
respectively.

There are three outputs θ, β and ψ in this gyroscopic
system. From (49) and (50), we have

β̇ +
E2 cos(θ) − E1

J sin2(θ)
= 0, (51)

ψ̇ +
E1 cos(θ) − E2 cos2(θ)

IJ sin2(θ)
=

E2

I
. (52)

Hence, the rate changes of β, β̇, and ψ, ψ̇, can be seen
as in function of θ. From (28) and (48)-(50), since n = 2
for θ and n = 1 for ψ, we can express the plant model as
follows:

θ̈ + a1θ̇ + a2θ + a3ψ = τ

+ d(θ(t − h), β̇(t − h)) + ζ, (53)

where ai, i = 1, 2, 3, are unknown parameters to be
estimated.

A gyroscope having the following parameters is chosen for
this simulation: the inertias are taken given by I = 2 and
J = 1, the delay time by h = 0.02s, and the angular
momentum constants by E1 = E2 = 1, since (49) and (50)
satisfy the conservation laws of the angular momentum.
Let the reference model be specified as

θ̈m + 15θ̇m + 75θm + 125ψm = rm, (54)

where rm = 125 for unit step tracking.
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Specify α0 = 1, k0 = 1, and from (8) and (30), we have

F0 =

[

1024 64 0
−1 0 0
0 0 1

]

, V =

[

θ̇ θ ψ 0 0 0 0

0 0 0 0 θ̇ θ ψ

]

. (55)

In practice, friction and mass unbalance are inevitable
for the gyroscope and will cause disturbance torques on
the gimbals when the body is accelerating and rotating.
Therefore, the sinusoidal disturbances 2sin(t) are used to
simulate these imperfections.

Since the information on the bounds of parameter un-
certainties and disturbances is unknown, let the initial
conditions be given by P1(0)−1 = I, σ0 = 0.05, r0 = 0.5,
µ = µ̄ = 1.0, ĉ(0) = [10 10 · · · 10]T, γ̂(0) = 0, and set

B̂ = I(3), B = [1 0 1]T, V =

[

0 1
0 0
0 1

]

. (56)

Then we have a = 2.0406. Substituting a into Step 2 of
Algorithm 1 yields

P =

[

35.7820 −23.1621 −19.0652
−23.1621 27.0633 16.7321
−19.0652 16.7321 13.6162

]

,

ε1 = 26.7851, ξ1 = 5.7889. (57)

Update the estimates of the vectors ĉ, γ̂ and obtain the
weighting matrix P1 from (39), (40) and (41), respectively.
Now we choose λ = 103 and ρ = 0.01, then the adaptive
controllers will be derived from (16) and (38), respectively,
for comparison depending on different assumptions on the
plant parameter matrices.

Figs. 3 and 4 show the simulation results with disturbances
2sin(t) as follows: (a) the tracking error eβ = β − βm,
(b) the tracking error eθ = θ − θm, (c) the tracking error
eψ = ψ − ψm, (d) the control input τ . It is easy to see
that in our tracking purpose with the NN system (i.e.,
without a priori knowledge on plant dynamics) can be
achieved effectively than the case without (i.e., with a
priori knowledge on plant dynamics). The results reveal
that the proposed adaptive neural robust scheme indeed
improves the system performances including convergence
of tracking errors, the smoothness of the control inputs. It
seems that the robustness of the proposed control scheme
is excellent.

5. CONCLUSIONS

In this paper, an adaptive neural robust control scheme
for MIMO uncertain robotic systems with time delays has
been developed and the general idea that appropriate es-
timation of the adaptation process should provide a satis-
factory basis for the control. The essential requirement for
the delayed state uncertainties is that they satisfy match-
ing conditions and are norm-bounded, but the bounds of
the uncertainties are not necessarily known. As well, an
NN system is used to represent the unknown controlled
system. A reference model with the desired amplitude and
phase properties is given to construct an error model. It
is shown that, in the sense of Lyapunov-type stability, the
proposed control scheme can guarantee estimation conver-
gence and stability robustness of the closed-loop system.

As demonstrated in the illustrated example, the control
scheme proposed in this paper can achieve a better model
following tracking performance over that without using the
NN system with adaptation weights.
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Fig. 3. Simulation results with disturbance 2sin(t) for ρ = 0.5, where
the subscript a denotes the responses without using the NN
system.
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Fig. 4. Simulation results with disturbance 2sin(t) for ρ = 0.1, where
the subscript a denotes the responses without using the NN
system.
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