
Integrated Autopilot and Guidance for Dual Control Missiles Using  
Higher Order Sliding Mode Control and Observers 

 
C. H. Tournes*. Y. B. Shtessel** 

 
* Davidson Technologies, Huntsville, AL, 35899, USA 

 (Tel: 256-922-0720; e-mail: christiantournes@davidson-tech.com) 
** University of Alabama in Huntsville, Huntsville, AL, 35899, USA (e-mail: shtessel@ece.uah.edu) 

Abstract: An integrated Autopilot-and Guidance Algorithm is developed using Higher Order Sliding 
Mode Control, for interceptors steered by combination of aerodynamic lift, sustainer thrust and center of 
gravity divert thrusters. A smooth HOSM guidance generates flight path trajectory angular rates and 
attitude rate commands. The attitude rate maneuvers are aimed at producing desired aerodynamic lift and / 
or orienting sustainer thrust. The lateral acceleration created by the attitude maneuver is treated as a 
“cooperative” disturbance and accounted for by the trajectory control. SOSM autopilot design is based on 
nonlinear dynamic sliding manifold. Proposed algorithm also includes seeker tracker, bore sight 
stabilization and estimation of target lateral acceleration. The algorithm is tested using computer 
simulations against a ballistic maneuvering target. 

 

1. INTRODUCTION 

To cope with increasingly larger ballistic target maneuvering 
capabilities a future missile interceptor may be steered by 
possible combination of aerodynamic-lift, sustainer-thrust 
and center-of-gravity divert thrusters. This poses serious 
Guidance Navigation and Control (Garnell and East, 1977; 
Zarchan, 1998) challenges and calls for the integrated design 
of all interceptor modules: sensor information processing and 
data estimation, a homing guidance law, and autopilot. 

The goal of this work is in developing an integrated robust 
guidance and control technology for dual controlled missile 
interceptors via Higher Order Sliding Mode Control and 
Observers in order to achieve the hit-to-kill accuracy against 
targets performing high-amplitude evasive maneuvers.  

Traditional sliding mode control (SMC) (Edwards and 
Spurgeon; 1998) is used for developing a guidance laws for 
missile interceptors that is robust to target maneuvers (Idan, 
et. al, 2007; Moon and Kim, 2000; Shkolnikov, et. al., 2001). 
The main problem is in necessity of smoothing high 
frequency switching control function by a price of loosing 
robustness. 

Higher order sliding mode control (HOSM) (Levant, 2003) 
mitigates the problems associated with SMC, i.e. HOSM is 
applicable to the systems with arbitrary relative degree and 
continuous/smooth control functions can be designed while 
the robustness is retained. Development of the smooth robust 
guidance law to target maneuvers (Shtessel et. al., 2005, 
2007) is essential for effective following this law by the 
autopilot and also for integrating guidance and autopilot. 

In this work Smooth Second Order Sliding Mode (SSOSM) 
Control techniques are used to orient the seeker bore sight 
(collapse of the seeker compensated dynamics is achieved) 
and to achieve a smooth estimation of target acceleration in 
finite time. The missile-interceptor smooth SSOSM-based 

robust guidance law (Shtessel et. al., 2007) is integrated into 
a dual controlled SOSM-based missile autopilot (Tournes et. 
al., 2006) by inverting to generate smooth flight path angle, 
angle of attack and pitch rate autopilot commands.  

The use of aerodynamic lift increases the divert capability of 
the missile up to 100%, while the use of divert thrusters 
provides a fast response to the guidance command. Model 
uncertainties created by the interactions between the airflow 
and the thruster-jets are taken into account and compensated 
for by SOSM-based autopilot. The integrated SOSM 
guidance-autopilot algorithm is tested via computer 
simulations against ballistic maneuvering targets. 

2. INTERCEPT STRATEGY AND HOSM GUIDANCE 

The following state model (Shtessel et. al., 2007) of missile-
target engagement kinematics (Fig. 1) is used  
 
 
 
 
 
 
 
 
 

Fig. 1 Intercept geometry 
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where r  is the range along line-of-sight (LOS), λ  is the LOS 
angle; Mγ  is a missile flight path angle,  ( ) is 
LOS rate, V

λωλ = /rad s
r λω⊥ =  ( ) is a transversal component of 

relative velocity in the reference frame rotating with LOS, 
sm /

Γ  
is missile normal acceleration,  (disturbances, ) 
are projections of bounded target acceleration along and 
orthogonal to LOS  

, ⊥Γ Γ 2/ sm

It is known (Shtessel at. Al. 2005, 2007) that a direct hit can 
be achieved if  

0V c r⊥ = ,  (2) 
where  is some constant.  00 >c

The following guidance strategy can be formulated in terms 
of SMC: stabilize the system (1) on the manifold 

0 0V c rσ ⊥= − =    (3) 

by means of the normal acceleration  command *Γ . This 
command is usually followed next by the autopilot. 

In this work we propose to use smooth SOSM (SSOSM)- 
guidance and integrate it into SOSM-based autopilot of a 
missile interceptor steered by a combination of aerodynamic-
lift, sustainer-thrust and center-of-gravity divert thrusters.  

3. SMOOTH SECOND ORDER SLIDING MODE 
CONTROL 

3.1 Prescribed Sliding Variable Dynamics 

Consider SISO dynamics  
utg += )(σ ,    (4) 

which will be further interpreted as dynamics of the sliding 
variable  calculated along the system trajectory. The 
condition 

1ℜ∈σ
0=σ  defines the system motion on the sliding 

surface,  is a control input that needs to be smooth, 
and g(t) is an uncertain sufficiently smooth function that is to 
be cancelled by means of a HOSM observer. The 
compensated 

1ℜ∈u

−σ dynamics in (4) is chosen to have the form 
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Lemma. Let 0, 21 >αα , then any solution of the system (5) 
 in finite time for any initial conditions. 0, 21 →xx

Proof is omitted for brevity 

3.2 Smooth SOSM Disturbance Observer/Differentiator 

The sliding variable dynamics (4) is sensitive to the 
unknown bounded term . Let the variables )(tg )(tσ  and 

 be available in real time,  be differentiable, so that 
 has a known Lipschitz constant L > 0. The control 

function  is Lebesgue-measurable. Equation (4) is 
understood in the Filippov sense (see Filippov, 1988), which 
means in particular that 

)(tu )(tg
)(tg

)(tu

)(tσ  is an absolutely continuous 
function defined for any .  0≥t

Consider the HOSM disturbance observer (Levant, 2003): 
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then  in finite time, if the sliding variable )(1 tgz → σ  and 
control  are measured without noise. If u σ  and u  are 
measured with some noise bounded by 0≥ε  and  
respectively then (Levant, 2003; Shtessel at. al., 2007)  

3/2ε

0,)()( 3/2
1 >≤− µµεtgtz   (7) 

3.3 Disturbance cancellation 

The following control function smoothly drives 0, →σσ  
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If the control law (8) is inserted into the dynamics (4), then 
the dynamics in eq. (5) result for ideal cancellation. Here  
is given by (6) and 

1z
−σ dynamics are given by (4).  

Theorem. Let 0, 21 >αα ,  be differentiable,  
having a known Lipschitz constant . Then the closed-
loop system (5) with smooth control (8) and the disturbance 
observer (6) is finite-time stable. 

)(tg )(tg
0>L

Proof is omitted for brevity. 

Remark 1. The proposed control law (8) can be interpreted as 
a smooth second order sliding mode (SSOSM) control. 

4. SMOOTH SECOND ORDER SLIDING MODE 
GUIDANCE LAW  

From eqs. (1), (3) the σ-dynamics is identified as  

( )( ), ( ), ( ), ( ) cos( )Mg V t V t r t tσ λ⊥ ⊥ γ= Γ − − Γ   (9) 

where 0( ( ), ( ), ( ), ( )) / /(2 )g V t V t r t t VV r c V r⊥ ⊥ ⊥ ⊥Γ = − +Γ − , 

( ) 2 2
0

2

(2 )
( ( ), ( ), ( ), ( ))

4

VV VV r V V c rV V
g V t V t r t t

r r
⊥ ⊥ ⊥

⊥ ⊥ ⊥

+ − −
Γ =− +Γ −

r
The smooth guidance command  is to be designed in order 
to drive 

Γ
0, →σσ  in finite time using the SSOSM technique 

developed in Section 3.. 

It is worth noting that the singularity point occurs in (9) when 
intercept by impact happens. However, technically, the 
intercept by impact (“hit-to-kill”) happens when 0≠r  but 
belongs to the interval [ ] [ ] mrrr 25.0,1.0, maxmin =∈  
(Garnell and East, 1977; Zarchan, 1998). This fact is due to a 
certain size of the ballistic target, and a particular intercept 
value of [ ] mr 25.0,1.00 ∈ , named “zero intercept”. Since it 
is assumed that the function ( ( ), ( ), ( ), ( ))g V t V t r t t⊥ ⊥Γ  is 

differentiable 0rr ≥∀  its derivative has a Lipshitz constant. 
Assume the following inequalities hold LIM

⊥ ⊥Γ ≤ Γ , 
LIM

⊥ ⊥Γ ≤ Γ , LIMΓ ≤ Γ , ( ) LIMV t V⊥ ⊥≤ , (0) 0V M= << , 

1 2sin( ) 1, cos( ) 1M Mc cλ γ λ γ− < < − < < , ( ) 0M V t≤ ≤  
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in a reasonable flight domain. Then the Lipshitz constant  
for 

L
( ( ), ( ), ( ), ( ))g V t V t r t t⊥ ⊥Γ  can be estimated as  
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Apparently, the smaller zero intercept 0r  yields larger 
Lipshitz constant . L

Next, assuming the variables  measured, the 
target acceleration transversal to LOS can be estimated by the 
observer (6). This is  
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Apparently, in the absence of input noises we obtain 
 in finite time. If ˆ

⊥Γ = Γ⊥ σ  and 

0cos( ) / /(2 )M VV r c V rλ γ ⊥− Γ + +  are measured with some 

Lebesgue-measurable noises bounded by 0>ε  and  
respectively, then (Levant, 2003; Shtessel at. al., 2007) 

3/2ε

0,)( 3/2
,1 >≤− µµελTAtz   (11) 

The prescribed compensated −σ dynamics that provide finite 
time convergence is selected in a format (5), and the smooth 
guidance law is derived in accordance with (8), (10)  
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5. ANALYSIS OF INTERNAL DYNAMICS 

As soon as ,σ σ  in (3) is reach zero in finite time via the 
SSOSM guidance law (12) the compensated engagement 
kinematics (or the forced internal dynamics of the original 
kinematics in (1)) become 
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Studying eq. (13) we have to find out if there exist a moment 
 at which zero-intercept happens, i.e. 0

int )( rtr = .  inttt =

Assuming LIMΓ ≤ Γ  the following inequality holds 
2

20 1 max( ) (0)
2
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The minimal value of  is identified )(tr
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and is achieved at  

2
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*
( )LIM
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+ Γ + Γmax

   (16) 

The parameters 0)0( <= MVr  and  can be selected 

to meet the condition 

00 >c
0*)( rtr ≤  that implies the zero-

intercept at *int tt ≤  via the SSOSM guidance law (12). 

6. PITCH PLANE MATHEMATICAL MODEL OF A 
DUAL-THRUSTERS CONTROLLED MISSILE 

The dynamics of a missile steered by combined effects of 
divert thrusters and pitch maneuver are given by (Tournes et. 
al., 2006) 
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, , qα γ  are angle-of-attack, flight path angles (rad) and pitch 
rate (rad s) respectively; V  is longitudinal velocity of a 

missile (m/s). The cumulative disturbances , ,d d dα δ ∆  
represent the unknown interactions between attitude thruster 
jets, divert thruster jets and shockwaves as well as bounded 
slow-varying perturbations/uncertainties in the stability 
derivatives. Here it is assumed that 1 0, , ,id i α δ+ > = ∆ . 

Actuator dynamics of divert and attitude thrusters and TVC 
deflection are given by  
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1 1 1( ); ( ); (u u )uδ ς
δ ς

δ δ ς ς
τ τ τ∆

∆
∆ = −∆ + = − + = − +   (20) 

where ∆,δ  are normalized attitude and divert thrusters 
forces; ς  is thrust deflection. 

Missile acceleration normal to the velocity vector, the 
commanded output, is related to the flight path angle rate, 
without account for gravity, as follows: 

VγΓ = ⋅      (21) 

The problem is to design a SOSM-based pitch-plane autopilot 
using Eqs. (17-19) that achieves asymptotic tracking the 
normal acceleration command  by means of )(* tΓ

, , ,iu i δ ς= ∆  in the presence of modeling bounded 

uncertainties  , ,d d dα δ ∆ , and also when divert thrusters 

capability may be insufficient to follow  without the 
complementary lift created by the attitude maneuver.  

)(* tΓ

The architecture of the Integrated Guidance and Autopilot 
algorithms steering the interception is represented Fig. 2.  

 

 

 

 

 

 

 

 

Fig. 2 Guidance and Control Architecture 

The seeker (Fig. 2) is supposed to measure LOS λ  by 
pointing to the target. However, its bore site angle  differs 
from the actual LOS 

λ̂
λ  with an error ˆε λ λ= −  (Fig. 3). 

 
 
 
 
 
 
 

Fig. 3 Seeker geometry 

The SSOSM-based controller that is studied in Section 3 is 
designed to steer . 0ˆ →−= λλε

6. INVERSION/INTEGRATION OF GUIDANCE LAW 

First of all, command profiles * * *, ,γ γ γ  are computed in 
real-time.  

* *
* * * *

0
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V V V
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Secondly, the angle of attack command profile *α  and its 
derivative are computed in real-time assuming full 
knowledge of stability derivative Zα  and , while 
nullifying direct effect of attitude and divert thrusts 

*( )tγ
δ  and ∆  

in (17)-(19) 
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The corresponding pitch rate command is calculated in 
real-time as the sum of commanded flight path angle rate 
profile  

*q

* ( )tγ
* *q *α γ= +     (25) 

The pitch rate command profile q  is supposed to be 

followed by thruster control 

*

uδ . Clearly  implies 

approximate following 

*q q→

*α α→  while creating a cooperative 
disturbance term Z αα  in (19), and thus, owing to the 

robustness of SOSM accuracy following *α α→  is not 
required. 

Remark 2. It is worth noting that tracking *α  does not imply 

an accurate tracking of *γ , since the purpose of the attitude 
thrusters control is only to generate an aerodynamic 
maneuver, which in effect is a “cooperative disturbance” that 
alleviates the divert thrusters control. Next, the difference 

between *γ  and γ  is steered to zero by the divert thrusters 
control u

∆
 in the presence of this cooperative disturbance 

thereby increasing significantly (up to 100%) the missile 
overall divert maneuver capability. 

7. AUTOPILOT DESIGN 

7.1 Second Order Sliding Mode Control Based on Nonlinear 
Dynamic Sliding Manifold 

Equations (17)-(19) (20) have relative degrees equal to two. 
This calls for SOSM algorithms that are able to drive 
corresponding sliding variables and their derivatives to zero 
in finite time. 

Remark 3. It is assumed that the missile mathematical model 
(17)-(19) is of a minimum or slightly non-minimum phase.  

Consider SISO sliding variable dynamics  
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( )f t uσ = + ,    (26) 1ℜ∈σ

where f(t) is an uncertain sufficiently smooth function. 

Proposition (Shkolnikov et. al., 2005). Let , 
 be differentiable, 

, 0,a b b a> >
( )f t 0ρ >  be sufficiently large and a 

control law is defined 
( )u sign Jρ= − ⋅ ,    (27) 

then the close-loop system (26), (27) is finite time stable 
( , 0σ σ →  in finite time) with a nonlinear dynamic sliding 
manifold (NDSM) J defined as  

0.5 0.5( ) ( ),
.

a sign b sign
J
χ σ σ χ σ χ

χ σ

⎧ = − +⎪
⎨

= +⎪⎩

σ+  (28)  

Remark. 4. The SOSM control law (27), (28), called 
SOSM/NDSM control, does not require σ -differentiation. In 
order to achieve a given frequency of control switching, the 
nonlinear dynamic sliding variable J  can be mixed with a 
dither signal of a given frequency. In this case the control 
function (27) will be pulse-width modulated. A graceful 
degradation of stabilization accuracy is expected due to 
reduction of control switching frequency.  

7.2 Design of Pitch Rate Control via Attitude Thrusters 

The pitch rate dynamics are derived based on eqs. (17), (18), 
(20) with thrust vectoring terms containing ς  removed, since 
thrust vectoring is not used altogether with attitude thrusters.  

Following the SOSM/NDSM control design technique the 
pitch-rate sliding variable is introduced 

*

0
( ) , , 50 / sec

t

q q q qd q q radσ ε ϖ ε τ τ ε ϖ= + = − =∫  (29) 

Eq. (29) shows that, once the sliding surface 0qσ =  is 
achieved at the finite time, the pitch rate tracking error qε  
converges to zero asymptotically according to the eigenvalue 
of 0qσ = . Differentiating twice eq. (29) gives 

( )q qf t b uδ δσ = −  (30) 
where 
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One can easily show that, the disturbance  is bounded 

in an operational domain 

( )qf t

: ( )q qf t LΩ ≤ q . Since it is assumed 

that 1dδ < ,  then ,0Mδ > 0bδ > 'b b b"
δ δ< < δ  and the 

SOSM/NDSM based control in (27), (28) can be employed 
for stabilizing qσ  and its derivative qσ  at zero in finite time. 
Corresponding SOSM/NDSM-based attitude thrust controller 
is given by 
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7.3 Design of the Angle of Attack Thrust Vectoring Autopilot 

 The angle of attack dynamics are derived base on eqs. 
(17), (20). It is worth noting that, in practice 
max max , max maxZ Z q Mδ δδ M∆ ∆+ ∆ << >> . 
It means that the missile angle of attack α  is mostly 
governed by the pitch rate q , which itself is controlled by the 
attitude thrusters-force δ . The sliding surface ασ  is defined 

*

0
, , 20

t
d rα α α ασ ε ϖ ε τ ε α α ϖ= + = − =∫ /ad s  (32) 

Differentiating (32) twice with respect to time gives 
( )f t b uα α ςσ = − ς   (33) 

Where one can show that similar to Eq. (30)  is a 
bounded variable while 

( )tf α

b M ςς ςτ= , and the angle of attack 
thrust vectoring controller is given by  
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7.4 Design of flight path Autopilot 

The flight path angle input-output dynamics are derived 
based on Eqs. (19), (20) and are controlled using 
SOSM/NDSM-based attitude control (27), (28). Similarly the 
divert (flight path angle) thrust sliding variable is introduced 

*
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t
d rγ γ γ γσ ε ω ε τ τ ε γ γ ω= + = − =∫  (35) 

Equation (35) shows that, once the sliding surface 0γσ =  is 

achieved in finite time,  asymptotically.  0εγ →

 Differentiating σγ  in (35) twice, the following σγ  
input-output dynamics are derived 

( )f t b uσγ γ= − ∆ ∆  (36) 
where 
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It is assumed that the disturbance ( )f tγ  is bounded in an 

operational domain : ( )f t Lγ γΩ ≤ γ , as well as 1d∆ < , 

 and 0Z∆ > 0.5α ≤ , then , , and the 
SOSM/NDSM-based divert thrust controller is designed 
similar to the one in eqs. (27), (28) 

0b∆ > 'b b b∆ ∆< < "
∆

0.5 0.5
( ) ( )

, ( )

sign sign

J u sign J
γ γ γ γ γ γ γ γ γ

γ γ γ γ γ

χ ξ σ σ η χ σ χ σ

χ σ ρ∆

⎧ = − +⎪
⎨

= + = − ⋅⎪⎩

+
(37) 

8. SIMULATIONS 

Simulation results of a dual-thrusters and thrust vectoring 
controlled missile interceptor against SS-27-like maneuvering 
target using the designed integrated SOSM-based guidance-
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autopilot are presented in Figures 4-9. The planar 
engagement that ends up in a direct hit is illustrated in Fig. 4. 
Small estimation errors of LOS and LOS rates characterize a 
high accuracy performance of HOSM observers in presence 
of a significant measurement noise. High accuracy estimation 
of target normal acceleration ⊥Γ  via compensated seeker 
and via HOSM observer are shown in Fig 5. 

 
Fig. 4 Incoming intercept (down range versus cross range) 
 

 
Fig. 5 Estimation of target normal acceleration  

The interceptor normal acceleration  closely mimics Γ ⊥Γ  
(fig 6) providing for a small acceleration advantage. The 
performance of the integrated SOSM guidance/autopilot is 
illustrated by a very accurate flight path angle (Fig. 7) and 
pitch rate tracking (fig. 8). Fig. 9 shows typical multiplicative 
normalized disturbance plot. The results are achieved by 
TVC and attitude thruster’s control. 

 
Fig. 6 Comparison of 
interceptor and target wave 
maneuvers 

Fig. 7 Flight path angle 
tracking 

 
Fig. 8 Pitch rate tracking 
performance 

Fig. 9 Typical normalized 
multiplicative disturbance 

9. CONCLUSIONS 

Novel smooth second-order sliding mode (SSOSM) control is 
studied and used for the missile-interceptor guidance design 
against a target performing evasive maneuvers. HOSM 
estimator reconstructs the target normal acceleration. The 
missile autopilot is based on Nonlinear Dynamic Sliding 
Manifold technique. Integrated SOSM-based 
guidance/autopilot performance was studied via computer 
simulations. The excellent results have been obtained against 
stressing sine wave target maneuvers. Not withstanding the 
rapid pace of the maneuvers the algorithm achieves extreme 
estimation and intercept accuracy. The excellent simulation 
results were obtained in the presence of very significant 
model uncertainties and measurement noise. 

REFERENCES 

Garnell P. and East D. J. (1977). Guided Weapon Control 
Systems, Oxford: Pergamon Press. 

P. Zarchan (1998). Tactical and Strategic Missile Guidance. 
176, Progress in Astronautics and Aeronautics, AIAA 
Publications.  

Edwards C., and Spurgeon S. (1998). Sliding Mode Control, 
Taylor & Francis, Bristol, PA.  

Idan, M., Shima, T. and Golan, O., (2007), "Sliding Mode 
Integrated Autopilot-Guidance for Dual Control 
Missiles" AIAA Journal of Guidance, Control, and 
Dynamics, Vol. 30, No. 4, pp. 1081-1089. 

Moon J., and Kim Y. (2000). Design of missile guidance law 
via variable structure control, Proceedings of AIAA 
Guidance, Navigation and Control Conference, Denver, 
CO, Paper AIAA-2000-4068  

Shkolnikov I., Shtessel Y., and Lianos D. (2001). Integrated 
Guidance-Control System of a Homing Interceptor: 
Sliding Mode Approach, Proceedings of AIAA Guidance, 
Navigation, and Control Conference, AIAA Paper 2001-
4218.  

Levant A. (2003). Higher-order sliding modes, differentiation 
and output-feedback control, International Journal of 
Control, Vol. 76, No. 9/10, pp. 924-941. 

Shtessel Y., Shkolnikov I., and Levant A., (2007). Smooth 
Second Order Sliding Modes: Missile Guidance 
Application, Automatica, Vol. 43, No.8, pp. 1470-1476. 

Shtessel Y., Shkolnikov I., and Levant, A. (2005). Missile 
Interceptor Guidance and Control Using Second Order 
Sliding Modes, Proceedings of IFAC World Congress, 
Prague, Czech Republic. 

Tournes, C. Shtessel, Y. and Shkolnikov, I. (2006), Autopilot 
for Missiles Steered by Aerodynamic Lift and Divert 
Thrusters Using Nonlinear Dynamic Sliding Manifolds, 
AIAA Journal on Guidance, Control, and Dynamics, 
Vol. 29, No. 3, pp. 617-625. 

Filippov A. F. (1988). Differential Equations with 
Discontinuous Right-Hand Side, Kluwer, Dordrecht, 
Netherlands. 

Shkolnikov I., Shtessel Y., and Lianos D. (2005). The effect 
of sliding mode observers in the homing guidance loop, 
IMechE Journal on Aerospace Engineering, Part G, 219, 
2, pp. 103-111. 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6231


