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Abstract: The paper investigates Hopf bifurcations in a class of simple nonlinear systems, i.e.,
third order affine control systems described in terms of “quadratic plus cubic” normal forms and
subject to linear state feedback control laws. By employing Harmonic Balance (HB) tools, the set
of system parameters corresponding to supercritical and subcritical bifurcations is analytically
determined. Also, a second order harmonic approximation of the bifurcated periodic solution
is provided. Such analytical results can be exploited as starting points to investigate complex
behaviours of the considered class of simple nonlinear systems.
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1. INTRODUCTION

Recent years have witnessed a strong interest in discover-
ing third order nonlinear systems with very few nonlinear
terms which are able to display rich dynamical behaviours
(see, e.g., Eichhorn et al. [1998], Sprott and Linz [2000],
Sprott [2003], Zhou and Chen [2006], Yang et al. [2006]).
It is believed that these simple systems play a key role
for a deeper understanding of the elementary mechanisms
which are at the basis of the birth of complex behaviours.
The standard approach to single out simple systems con-
sists in selecting a parameterized family of systems with a
fixed structure and employing numerical tools for param-
eter bifurcation analysis. Unfortunately, it is well known
that these tools are not well suited for the analysis of non-
linear systems when many free parameters are involved.
To this respect, the knowledge of suitable starting points
in the parameter space appears of fundamental impor-
tance. Obviously, these starting points should correspond
to behaviours which are close to complex ones and, most
importantly, should be determined analytically.
A first effort to locate starting points has been provided
in Innocenti et al. [2006, 2008], where families of third
order nonlinear systems, described by differential equa-
tions involving only a quadratic term in addition to the
linear ones, are considered. For these systems an analyti-
cal characterization of supercritical Hopf bifurcations has
been provided in the system parameter space via Harmonic
Balance (HB) techniques (see, e.g., Mees [1981], Moiola
and Chen [1996]). Also, approximations of the bifurcated
periodic solutions have been singled out, to be used as
starting points for a more complete bifurcation analysis.
� This work has been supported by the Ministero dellUniversità e
della Ricerca (MiUR), under the Project PRIN 2005 n. 2005098133
003 ‘Nonlinear dynamic networks: techniques for robust analysis of
deterministic and stochastic models’.

The aim of the present paper is to extend the analy-
sis in Innocenti et al. [2006] to a more general setting.
Specifically, we consider the “quadratic plus cubic” normal
form of third order nonlinear affine control systems (Kang
and Krener [1992], Kang [1994]) subject to linear state
feedback control laws. The resulting state space model
involves a quadratic term and three cubic terms in addition
to the linear ones and depends on seven free parameters.
It is first shown that these systems admit a feedback
representation composed by a linear block in the forward
path and an explicit nonlinearity in the feedback path.
Subsequently, employing HB techniques, a general pro-
cedure to analytically determine the system parameters
which activate supercritical Hopf bifurcations in the seven-
dimensional parameter space is derived, together with
second order harmonic approximations of the bifurcated
periodic solutions.
The paper is organized as follows. The quadratic plus cubic
normal form of third order nonlinear affine control systems
is introduced in Section 2. Section 3 contains the equivalent
feedback block representation and some background on the
Hopf theorem in the HB setting. Section 4 provides the
complete characterization of supercritical/subcritical Hopf
bifurcations via HB. An illustrative example is discussed in
Section 5, while some brief comments are drawn in Section
6.
Notation
R: real space;
C: complex space;
j: imaginary unit;
� [x]: real part of x ∈ C;
� [x]: imaginary part of x ∈ C;
D: d/dt operator;
�: the transpose operator.
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2. PROBLEM FORMULATION AND
PRELIMINARIES RESULTS

Consider the third order nonlinear systems described by
the state space equations⎧⎨

⎩
ẋ1 = x2 + ax2

3 + (b1x1 + b2x2 + b3x3)x2
3

ẋ2 = x3

ẋ3 = u
(1)

where x = (x1, x2, x3)� ∈ R
3 is the state vector, u ∈ R is

the control input, and a ∈ R, bi ∈ R, i = 1, 2, 3, are scalar
parameters. For the sake of simplicity, we assume hereafter
a �= 0 and

∏3
1=1 bi �= 0, to avoid the pure quadratic or

cubic special cases, which due to space limitation are not
dealt with in this paper.
We are interested in characterizing Hopf bifurcations of
the equilibrium point at x = 03 once (1) is subject to a
(negative) linear state feedback control law, i.e.

u = −c1x1 − c2x2 − c3x3 , ci ∈ R, i = 1, 2, 3 . (2)
System (1) is exactly the quadratic plus cubic normal form
of third order nonlinear control systems which are affine
in the control input, i.e.

ẋ = f [1](x) + f [2](x) + . . . + u
(
g[0](x) + g[1](x) + . . .

)
,

where f [i] and g[j] are homogeneous polynomials in x ∈ R
3,

respectively of orders i and j (Kang and Krener [1992],
Kang [1994]). Thus, Hopf analysis of system (1)-(2) can
provide bifurcation conditions for quite general classes of
nonlinear systems subject to linear state feedback control
laws. In the following we will provide analytical tools to
study the properties of the limit cycles activated by means
of (2).
In order to investigate Hopf bifurcations, we first write
system (1)-(2) in the following parametrized form

ẋ = A(μ)x + a(μ)f [2](x) + b�(μ)xf [2](x) (3)
where:

A(μ) =

[ 0 1 0
0 0 1

−c1(μ) −c2(μ) −c3(μ)

]
, (4)

b(μ) =

[
b1(μ)
b2(μ)
b3(μ)

]
, f [2](x) =

⎡
⎣ x2

3
0
0

⎤
⎦ ,

being μ ∈ R the so-called scalar bifurcation parameter.
Without loss of generality, let us suppose the bifurcation
happens at μ = 0 and assume that the system parameters
admit the Taylor series expansion, i.e.⎧⎨

⎩
a(μ) = a0 + a1μ + O(μ2)
bi(μ) = bi0 + bi1μ + O(μ2) i = 1, 2, 3
cj(μ) = cj0 + cj1μ + O(μ2) j = 1, 2, 3.

(5)

Consider the eigenvalues of matrix A(μ) which clearly
define the local stability properties of the equilibrium point
at x = 03. According to the Hopf Theorem and its so-
called “transversality condition” (Farkas [1994], Marsden
and McCracken [1976]), a couple of complex conjugate
eigenvalues of the equilibrium must cross the imaginary
axis as μ crosses 0, while the third eigenvalue must remain
negative real during such a crossing. In other words, the
equilibrium point must be asymptotically stable on one
side of the range of the parameter μ. Without loss of
generality, we can suppose that the equilibrium point at

x = 03 of (3) is asymptotically stable for μ < 0.
It is not difficult to verify that the above stability assump-
tion and the transversality condition amount to impose
the following constraints on the coefficients in (5){

c10 > 0 , c30 > 0
c20c30 − c10 = 0
c11 − c20c31 − c30c21 > 0 .

(6)

In particular, it turns out that the eigenvalues of A(μ) at
the bifurcation point are

−c30 , j
√

c20 , −j
√

c20 ,

and, furthermore, that:
∃ μ̂ > 0 : c1(μ) �= 0 ∀μ ∈ (−μ̂, μ̂) . (7)

Clearly, the eigenvalues analysis is not sufficient to study
the supercritical or subcritical nature of the bifurcation.
A possible way to assess the stability of the bifurcation
is to compute the bifurcation stability coefficient via the
algorithm proposed in Howard [1979] (see also Hassard
et al. [1981], Fu and Abed [1993], Kuznetsov [1995]). On
the contrary, we will follow a different approach based
on the frequency version of the Hopf Theorem which is
related to the HB techniques (see Mees [1981], Allwright
[1977], Moiola and Chen [1996]). Besides the well-known
power of the HB approach for classical control of feedback
systems, our choice is motivated by the observation that
such approach can be easily exploited to provide a local
approximation of the related bifurcated periodic solution.
This approximation may be particularly useful as a start-
ing point for a more complete bifurcation analysis via
standard numerical tools.

3. FEEDBACK BLOCK REPRESENTATION AND
HARMONIC BALANCE

Our approach requires first the transformation of the
system from the state space model (3) to a feedback block
representation form, which is instrumental for applying the
HB method.
To this purpose, we first transform system (3) into a
differential equation form.
Proposition 1. Suppose constraints (6) hold and let μ̂ be
defined as in (7). Then, for each μ ∈ (−μ̂, μ̂), system (3)
admits the differential equation form:

...
y + c3(μ)ÿ + c2(μ)ẏ + c1(μ)y = −a(μ)c1(μ)ẏ2+
− (b2(μ)c1(μ) − b1(μ)c2(μ))yẏ2+ (8)
− (b3(μ)c1(μ) − b1(μ)c3(μ))ẏ3 + b1(μ)ÿẏ2 .

Proof. Since detA(μ) = −c1(μ) �= 0, it turns out that
for each μ ∈ (−μ̂, μ̂) A(μ) is invertible. Under the co-
ordinate change imposed by the linear transformation
x = A−1(μ)z, system (3) boils down to:

ż = A(μ)z +
(
a + b�A−1(μ)z

)A(μ)f [2]
(A−1(μ)z

)
=

= A(μ)z + h(z) (9)
where

h(z) =

⎡
⎢⎢⎢⎣

0
0

−a(μ)c1(μ)z2
2+

−(b2(μ)c1(μ) − b1(μ)c2(μ))z1z
2
2+

−(b3(μ)c1(μ) − b1(μ)c3(μ))z3
2 + b1(μ)z3z

2
2

⎤
⎥⎥⎥⎦ .

(10)
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Nonlinear subsystem

Linear subsystem

Fig. 1. Block diagram representation of the differential
equation system (15).

Since the explicit state space form of (9) is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 = z2

ż2 = z3

ż3 = −c1(μ)z1 − c2(μ)z2 − c3(μ)z3 − a(μ)c1(μ)z2
2+

−(b2(μ)c1(μ) − b1(μ)c2(μ))z1z
2
2+

−(b3(μ)c1(μ) − b1(μ)c3(μ))z3
2 + b1(μ)z3z

2
2 ,

(11)
it is straightforward to derive (8) from (11) once y is chosen
as y = z1, and thus y = x2 in the original variables. �
It is well known that differential equations of the form (8)
can be represented in the feedback block diagram of Fig. 1,
where the linear subsystem is described by a linear time-
invariant operator L(D) and the nonlinear subsystem by
a scalar time-invariant nonlinear operator N . Hence, the
next result pertains to system (3).
Proposition 2. Suppose constraints (6) hold and let μ̂ be
defined as in (7). Then, for each μ ∈ (−μ̂,+μ̂), system (3)
admits the feedback block diagram of Fig. 1, once

L(D) =
1

D3 + c3(μ)D2 + c2(μ)D + c1(μ)
.= Lμ(D) (12)

and the nonlinear operator N is such that:

N ◦ y = a(μ)c1(μ) (Dy)2 + (13)

+ (b2(μ)c1(μ) − b1(μ)c2(μ)) (Dy)2 y+

+ (b3(μ)c1(μ) − b1(μ)c3(μ)) (Dy)3 +

− b1(μ) (Dy)2
(
D2y

) .= nμ(y,Dy,D2y) .

Proof. Consider the differential equation form (8). Intro-
ducing the derivative operator D, it can be rewritten into
the form:

y = − 1
(D3 + c3(μ)D2 + c2(μ)D + c1(μ))

· (14)

·
(
a(μ)c1(μ) (Dy)2 +

+ (b2(μ)c1(μ) − b1(μ)c2(μ)) (Dy)2 y+

+ (b3(μ)c1(μ) − b1(μ)c3(μ)) (Dy)3 +

−b1(μ) (Dy)2
(
D2y

))
.

Then, exploiting the linear operator (12) and the nonlinear
one in (13), we finally obtain:

y = −Lμ(D) · nμ(y,Dy,D2y) = −L(D) · (N ◦ y) (15)
which exactly describes the feedback block interconnection
of Fig. 1. �
The remaining part of this section briefly summarizes the
HB approach to Hopf bifurcations in systems which admit
the block diagram representation of Fig. 1.

Such an approach relates the solution of the so-called sec-
ond order HB problem with the supercritical or subcritical
nature of the bifurcation. More specifically, consider the
following prototype periodic solution of period 2π/ω:

yp(t) = A + B cos(ωt) + P cos(2ωt) + Q sin(2ωt) =
= � [

A + Bejωt + (P − jQ) ej2ωt
]

(16)

with B �= 0, P 2 + Q2 �= 0.
For any μ the output of the nonlinear subsystem corre-
sponding to (16) is given by nμ(yp(t),Dyp(t),D2yp(t)),
whose Fourier development can be written by using polar
notation as

nμ(yp(t),Dyp(t),D2yp(t)) = (17)
= � [

N0A + N1Bejωt + N2 (P − jQ) ej2ωt
]
+ Δμy(t) ,

where Δμy(t) contains the higher harmonics and
N0 = N0(A,B, P,Q, ω;μ) ∈ R

N1 = N1(A,B, P,Q, ω;μ) ∈ C

N2 = N2(A,B, P,Q, ω;μ) ∈ C

can be computed analytically.
The periodic output of the linear subsystem driven by the
signal in (17) is given by

−� [
Lμ(0)N0A + Lμ(jω)N1Bejωt+ (18)

+Lμ(j2ω)N2 (P − jQ) ej2ωt
]
+ Δ̂μy(t),

where Lμ(D) is as in (12) and Δ̂μy(t) contains the higher
harmonics.
Then, balancing the terms up to the second harmonic
between (16) and (18), thus neglecting Δ̂μy(t), we arrive
at the second order HB problem:⎧⎨

⎩
A = −L0N0A (19)
B = −L1N1B (20)
(P − jQ) = −L2N2(P − jQ), (21)

where L0
.= Lμ(0) ∈ R, L1

.= Lμ(jω) ∈ C, L2
.=

Lμ(j2ω) ∈ C.
Note that (19) is a real equation related to the continuous
component of (16), while (20) and (21) are complex and
are due to the first and second order harmonics, respec-
tively. Hence, it follows that the second order HB prob-
lem consists of five scalar equations in the five unknowns
(A,B, P,Q, ω), for each value of the bifurcation parameter
μ.
Next, we summarize known results on the relation between
Hopf bifurcation and the solution of the second order
HB problem (19)-(21). Such rigorous results are based
on the intuitive idea that the limit cycle arising from the
bifurcation initially has a small distortion, so that it can
be approximated by yp(t) for small values of μ (see for
details Mees [1981], Allwright [1977]).
Proposition 3. Suppose constraints (6) hold and let μ̂ be
defined as in (7). The equilibrium at x = 03 of (3)
undergoes a Hopf bifurcation for μ = 0 if and only if there
exists μ̄ ∈ R : 0 < μ̄ ≤ μ̂ such that the solution of second
order HB problem (19)-(21) exists and it is defined either
∀μ ∈ (0, μ̄) (supercritical case) or ∀μ ∈ (−μ̄, 0) (subcritical
case).
Remark 4. The solution of the second order HB problem
provides the prototype periodic solution

yp(t) = A(μ) + B(μ) cos(ω(μ)t)+ (22)
+ P (μ) cos(2ω(μ)t) + Q(μ) sin(2ω(μ)t),
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which is, for any μ sufficiently small, a strict approxima-
tion of the real limit cycle arising from the Hopf bifurca-
tion. Moreover, when μ → 0 such a solution collapses to
the equilibrium point at x = 03, according to the following
conditions: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

A(μ) → 0
B(μ) → 0
P (μ) → 0
Q(μ) → 0
ω(μ) → √

c20 .

(23)

4. MAIN RESULTS

According to Proposition 3, Hopf bifurcations of the equi-
librium point at x = 03 of (3) are completely characterized
once the second order HB problem (19)-(21) is solved.
Hence, let us consider the real equation (19) which via
some straightforward computations boils down to:

− a(μ)c1(μ)
(

1
2
B2 + 2P 2 + 2Q2

)
ω2+

− (b2(μ)c1(μ) − b1(μ)c2(μ)) · (24)

·
(

1
2
AB2 +

3
4
B2P + 2AP 2 + 2AQ2

)
ω2+

+
3
2

(b3(μ)c1(μ) − b1(μ)c3(μ)) B2Qω3 − c1(μ)A = 0 .

Equation (20) instead is a complex one. Then, it can be
equivalently written as two scalar equations, which assume
the following explicit forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2a(μ)c1(μ)Pω2 − (b2(μ)c1(μ) − b1(μ)c2(μ)) ·
·
(

1
4
B2 + 2AP + 2P 2 + 2Q2

)
ω2+

−b1(μ)
(

1
4
B2 + 2P 2 + 2Q2

)
ω4+

+c3(μ)ω2 − c1(μ) = 0
−2a(μ)c1(μ)Qω2+

−2 (b2(μ)c1(μ) − b1(μ)c2(μ)) AQω2+
+ (b3(μ)c1(μ) − b1(μ)c3(μ)) ·
·
(

3
4
B2 + 6P 2 + 6Q2

)
ω3+

−ω3 + c2(μ)ω = 0

(25)

where B has been simplified according to the hypothesis
B �= 0. In the same way, the complex equation (21) boils
down to the following two scalar equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
a(μ)c1(μ)B2ω2 − (b2(μ)c1(μ) − b1(μ)c2(μ)) ·(

−1
2
AB2 +

1
2
B2P + P 3 + PQ2

)
ω2+

− (b3(μ)c1(μ) − b1(μ)c3(μ)) ·(
3B2Q + 6P 2Q + 6Q3

)
ω3+

+b1(μ)
(
2B2P − 4P 3 − 4PQ2

)
ω4+

+8ω3Q + 4c3(μ)ω2P − 2c2(μ)ωQ − c1(μ)P = 0
− (b2(μ)c1(μ) − b1(μ)c2(μ)) ·(

1
2
B2Q + P 2Q + Q3

)
ω2+

+ (b3(μ)c1(μ) − b1(μ)c3(μ)) ·(
3B2P + 6P 3 + 6PQ2

)
ω3+

+b1(μ)
(
2B2Q − 4P 2Q − 4Q3

)
ω4+

−8ω3P + 4c3(μ)ω2Q + 2c2(μ)ωP − c1(μ)Q = 0 .
(26)

Observe that in the second order HB equations (24)-(26)
the amplitude of the first harmonic appears only through
B2. Then, the sought solution can be represented in the
following vector form:

S(μ) = [ A(μ) B(μ) P (μ) Q(μ) ω(μ) ]� ∈ R
5 (27)

where B(μ) .= B2(μ). Clearly, such a solution exists only
for the values of μ > 0 such that B(μ) > 0.
To compute (27), we find it convenient to express S(μ) via
its Taylor series expansion:

S(μ) = S0 + S1 · μ + O(μ2) (28)
where

S0
.=

⎡
⎢⎢⎢⎣

A0

B0

P0

Q0

ω0

⎤
⎥⎥⎥⎦ ∈ R

5 , S1
.=

⎡
⎢⎢⎢⎣

A1

B1

P1

Q1

ω1

⎤
⎥⎥⎥⎦ ∈ R

5 . (29)

We first note that S0 is indeed already known, since from
Remark 4 it follows that A0 = 0, B0 = 0, P0 = 0, Q0 = 0,
and ω0 =

√
c20. Hence, we need to compute S1 only.

Exploiting (5) and (28) and taking into account the known
expression of S0, it is not difficult to verify that system
(24)-(26) can be written as

(M1 · S1 − V1)μ + O(μ2) = 05, (30)
for suitable M1 ∈ R

5×5 and V1 ∈ R
5×1. Indeed, let us

consider (24) along with the μ power developments of
all its terms. Since S0 solve the HB problem at μ = 0,
all the constant terms cancel each other. Moreover, it is
straightforward to check that the first order μ powers
contain at most one element of S1. Analogous results hold
for each equation in (25) and (26), leading to the form
(30). Hence, the sought S1 can be computed as

S1 = M−1
1 · V1 . (31)

We can now prove the main result of the paper.
Theorem 5. Suppose constraints (6) hold and detM1 �= 0.
Then, the equilibrium at x = 03 of (3) undergoes a Hopf
bifurcation for μ = 0 which is supercritical if B1 > 0 and
subcritical if B1 < 0.

Proof. According to Proposition 3, the nature of the Hopf
bifurcation can be assessed by evaluating the existence
range of the solution S(μ) in (28)-(29) of the second order
HB equations (24)-(26). Since detM1 �= 0, S1 can be
computed according to (31). From Remark 4 it follows that
B0 = 0 and thus we have B(μ) > 0 if and only if B1μ > 0.
Hence, the proof follows directly from Proposition 3. �
Remark 6. Once S1 has been computed according to (31),
an approximation of the bifurcated periodic solution, sim-
ilar to that in Remark 4, can be computed analytically as
follows:
ŷ(t;μ) = A1μ +

√
B1μ cos(

√
c20t + ω1μt)+ (32)

+ P1μ cos (2
√

c20t + 2ω1μt) + Q1μ sin (2
√

c20t + 2ω1μt) .

According to Proposition 1, it turns out that ŷ(t;μ)
provides an approximation of the component x2 of the real
bifurcated solution of (3).

5. DISCUSSION AND NUMERICAL EXAMPLE

To show how Theorem 5 can be efficiently exploited
to characterize Hopf bifurcations in system (3), let us
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Table 1.

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

c20c30
1

2
a0c220c30 0 0 0

0
1

4
b20c220c30 2a0c220c30 0 −2c30

√
c20

0 −3

4
(b30c20c30 − b10c30)c20

√
c20 0 2a0c220c30 2c20

0 −1

2
a0c220c30 −3c20c30 −6c20

√
c20 0

0 0 6c20
√

c20 −3c20c30 0

⎤
⎥⎥⎥⎥⎥⎥⎦

V1 =

⎡
⎢⎢⎣

0
0

−√
c20

0
0

⎤
⎥⎥⎦

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
2

x 3

Fig. 2. Comparison between the real limit cycles (solid
line) and the approximated ones (dotted line) on the
plane x2-x3 (i.e. y-ẏ) for μ = 0.05 , μ = 0.10, μ = 0.20
and μ = 0.50.

6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

x 2

Fig. 3. Time behaviour of the real periodic solution x2(t;μ)
(solid line) and its approximation ŷ(t;μ) (dotted line)
for μ = 0.25.

consider the case in which the system parameters in (5)
are given by: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a = a0

bi = bi0 , i = 1, 2, 3
c1 = c20c30

c2 = c20 − μ , c20 > 0
c3 = c30 > 0

It is straightforward to check that the constraints in (6)
are then satisfied and that μ̂ = +∞. Hence, the expansion
of the second order HB problem (24)-(26) as a power series
of μ leads to the following explicit form of (30):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
c20c30A1 +

1
2
a0c

2
20c30B1

)
μ + O(μ2) = 0(

−2c30
√

c20ω1 + 2a0c
2
20c30P1 +

1
4
b20c

2
20c30B1

)
μ+

+O(μ2) = 0(√
c20 + 2c20ω1 + 2a0c

2
20c30Q1+

−3
4
(b30c20c30 − b10c30)c20

√
c20B1

)
μ + O(μ2) = 0(

−6c20
√

c20Q1 − 3c20c30P1 − 1
2
a0c

2
20c30B1

)
μ+

+O(μ2) = 0
(6c20

√
c20P1 − 3c20c30Q1) μ + O(μ2) = 0 .

Thus, the related matrix M1 and vector V1 in (30) are
given according to Table 1. It turns out that Theorem 5
applies if

det M1 = 9c5
20c

2
30

[ (
2c20 +

1
2
c2
30

)
· (33)

· (b20c20 + 3b10c30 − 3b30c20c30) − 2a2
0c

2
20c

2
30

]
�= 0 .

In this case, (31) yields the following expression for S1:

⎡
⎢⎢⎢⎣

A1

B1

P1

Q1

ω1

⎤
⎥⎥⎥⎦ =

3c4
20c

2
30

det M1

⎡
⎢⎢⎢⎢⎢⎢⎣

3a0c20

(
4c20 + c2

30

)
−6

(
4c20 + c2

30

)
a0c20c

2
30

2a0c20c30
√

c20

c
3
2
20

(
3b20c20 − 3

4
c2
30 + a2

0c20c
2
30

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(34)

The bifurcation is supercritical if B1 > 0, which turns out
to be equivalent to detM1 < 0. Hence, the bifurcation is
supercritical if the following condition holds:

b20c20 + 3b10c30 − 3b30c20c30 <
2a2

0c
2
20c

2
30

2c20 + 1
2c2

30

. (35)

Numerical example. To provide an idea of the level of
approximation related to (32), let us consider the following
numerical values:⎧⎪⎨

⎪⎩
a0 = b30 = c10 = c20 = c30 = 1
b10 = b20 = 0
c20 = −1
a1 = b11 = b21 = b31 = c11 = c31 = 0 ,

which identify the specific system
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Fig. 4. The bifurcation diagram. Starting from negative
values of μ, the stable equilibrium (solid line) under-
goes a supercritical Hopf bifurcation at μ = 0. For
positive values of μ, it becomes unstable (dashed line)
and a new stable solution, the limit cycle (solid line),
arises. The behaviour of the latter is compared with
the amplitude of the approximated solution ŷ(t;μ)
(dotted line).⎧⎨

⎩
ẋ1 = x2 + x2

3 + x3
3

ẋ2 = x3

ẋ3 = −x1 − (1 − μ)x2 − x3 .
(36)

In order to define the nature of its Hopf bifurcation for
μ = 0 at x = 03, it is sufficient to compute condition
(35). It is straightforward to verify that such a relation is
satisfied, thus, the origin undergoes a supercritical Hopf
bifurcation. Moreover, according to (34) we obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩

A1 = −0.5263
B1 = 1.0526
P1 = −0.0350
Q1 = −0.0701
ω1 = −0.0350

and thus, according to Remark 6, the approximation of the
second component of the real bifurcated periodic solution
x(t;μ) of (36) has the following form:

ŷ(t;μ) = −0.5263μ +
√

1.0526μ cos(t − 0.035μt)+
− 0.035μ cos (2t − 0.07μt) − 0.0701μ sin (2t − 0.07μt) .

The numerical evidence of the level of approximation of
ŷ(t;μ) is illustrated by some diagrams.
Fig. 2 shows the comparison between the real limit cycle
and the approximated one in the x2-x3 plane projection
for different values of μ. The time evolution of the second
component of the real periodic solution of (36) and its
approximation are depicted in Fig. 3 for μ = 0.25. Finally,
Fig. 4 reports the real bifurcation diagram of the system
in comparison with the behaviour of the amplitude of its
approximating quantity ŷ(t;μ).

6. CONCLUSION

An analytic description of the system parameters which ac-
tivate supercritical and subcritical Hopf bifurcations in the
class of “quadratic plus cubic” normal forms of third order

affine control systems, under linear state feedback con-
trol laws, has been provided via Harmonic Balance (HB)
techniques. A distinguished feature of the HB approach,
besides its popularity in classical control of feedback sys-
tems, is that it provides analytical approximations of the
bifurcated periodic solutions, as shown in the numerical
example. It is believed that such analytical results can be
fruitfully exploited as starting points for a more complete
bifurcation analysis of these control system normal forms.
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