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Abstract: In this paper the extension of LaSalle’s Invariance Principle for switched nonlinear
systems is studied. Unlike most existing results in which each switching mode in the system needs
to be asymptotically stable, in this paper we allow the switching modes to be only stable. Under
certain ergodicity assumptions of the switching signals, two extensions of LaSalle’s Invariance
Principle for global asymptotic stability of switched nonlinear systems are obtained, using the
method of common joint Lyapunov function.

1. INTRODUCTION

In recent years, the problem of stability and stabilization
of switched systems has attracted a considerable atten-
tion from control community (refer to Liberzon (1999);
Agrachev (2001); Zhao (2004), et.al). They arise from
many engineer problems, such as in robot manipulators
(Tan (2004)), power systems (Sira-Ranirez (1991)), multi-
agent models (Jadbabaie (2003); Cheng (2007); Moreau
(2005)), etc. The stability of a switched system can be as-
sured by a common Lyapunov function (CLF) of all switch-
ing modes under arbitrary switching law (Dayawansa
(1999); Mancilla-Aguilar (2000)). Finding a common Lya-
punov function is still an interesting and challenging prob-
lem. There is a large amount of literatures concerning
it. We refer to Agrachev (2001), Cheng (2003), Shorten
(2003), Hespanha (1999) and the references therein for
detailed discussions.

The method of multiple Lyapunov functions is also a
useful tool for stability analysis of switched systems. In
comparison with common Lyapunov function, it allows
each switching mode to have its own Lyapunov function
(Branicky (1998)). However, as a compensation, some
additional conditions are necessary to assure the value of
each Lyapunov function on its corresponding mode will
decrease.

In practical applications, many switched systems don’t
share a common Lyapunov function, yet they still may be
asymptotically stable under some properly chosen switch-
ing laws. Searching certain admissible classes of switching
laws is necessary for this kind of problems (Hespanha
(2004)). Roughly speaking, stability can be assured if the
switching is sufficiently slow. Hespanha (2004) introduced
several admissible switching signals.

When the derivative of a candidate Lyapunov function
with respect to each mode is only non-positive, the func-
tion is called a weak Lyapunov function (Bacciotti (2005)).
In order to solve the asymptotic stability problem in such
case, various extensions of LaSalle’s invariance principle
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for switched systems have been investigated. By imposing
some restrictions on the admissible trajectories, global
asympotic stability results using multiple weak Lyapunov
functions are obtained for switched linear systems (Hes-
panha (2004)). Then it is extended to switched nonlin-
ear systems (Hespanha (2005)). A more traditional style
extension of LaSalle’s invariance principle is proposed in
Bacciotti (2005). Its statement is closer in spirit to the clas-
sical one. But it only shows that the solution is attracted
to a weakly invariant set M , and the asymptotical stability
can’t be obtained unless M = {0}. Under certain restric-
tions, another extension of LaSalle’s invariance principle
for switched nonlinear systems and criteria for asymptotic
stability are obtained in Mancilla-Aguilar (2006).

To the best of our knowledge, all these extensions of
LaSalle’s invariance principle require each switching mode
to be asymptotically stable. Naturally, if we do not impose
certain restrictions on the switching signals, each switching
mode must be asymptotically stable. Otherwise, when the
system stays on a non-asymptotically-stable mode for ever,
the overall system will not be asymptotically stable.

In this paper we consider the following nonlinear switched
system

ẋ = fσ(t)(x), x ∈ Rn, (1)

where σ : [0,+∞) → Λ = {1, 2, · · · , N} is a piece-wise
constant function and continuous from the right, called a
switching signal (or switching law). Each fi(x) is a smooth
vector field of Rn such that fi(0) = 0, i ∈ Λ. Lyapunov
function approach is a fundamental and powerful tool for
stability analysis. It is well known that if there exists a
common Lyapunov function, i.e., a positive definite C1

function V (x) > 0, radially unbounded, such that

V̇ |i = ∇V (x)fi(x) < 0, x 6= 0, i = 1, · · · , N,

then the switched system is globally asymptotically stable.
If we ask for globally uniformly asymptotical stability
(GUAS), then the existence of a common Lyapunov func-
tion becomes necessary and sufficient (Dayawansa (1999);
Mancilla-Aguilar (2000)).

Different from other results, in this paper, each mode does
not need to be asymptotically stable. Under certain ergod-
icity assumption on the switching signals, we investigate
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two extensions of LaSalle’s invariance principle, which are
easily verifiable. As we have done in Cheng (2007), if the
switched system is linear, the results are useful for the
consensus of multi-agent systems.

The rest of this paper is organized as follows: Section 2
contains some preliminary knowledge and an introduction
for a new kind of weak Lyapunov functions, called common
joint Lyapunov function (CJLF). Certain properties are
also investigated. Then in Sections 3 and 4, two extensions
of LaSalle’s invariance principle are proposed respectively.
In Section 3, disjoint Z\{0} is assumed. Section 4 considers
a class of {fi}, which have a special relationship with the
largest weakly invariant set contained in Zi. Both assure
the global asymptotical stability of the switched system
under certain ergodicity assumptions. Section 5 is a short
conclusion.

2. PRELIMINARIES

To begin with, we recall some basic concepts used in this
paper.

Definition 1. The equilibrium point x = 0 of (1) is

• stable if for each ǫ > 0, there is a δ = δ(ǫ) > 0 such
that

||x(0)|| < δ ⇒ ||x(t)|| < ǫ, ∀ t ≥ 0;

• asymptotically stable if it is stable and given an η > 0,
and for each ǫ > 0 there exists T > 0 such that

||x(0)|| < η ⇒ ||x(t)|| < ǫ, ∀ t > T ; (2)

• globally asymptotically stable if (2) holds for all η >
0.

It is said that the above stabilities hold “uniformly” if they
hold for all switching law σ.

Definition 2. A function V (x) is said to be

• positive definite, if V (0) = 0 and V (x) > 0 for all
x 6= 0;

• positive semi-definite, if V (x) ≥ 0 for all x 6= 0;
• negative definite or negative semi-definite, if −V (x)

is positive definite or positive semi-definite.

Consider a nonlinear system

ẋ = f(x), x ∈ Rn. (3)

By the well-known LaSalle’s invariance principle (Khalil
(2002)), if there exists a continuously differential, positive
definite, radially unbounded function V (x) : Rn → R

such that V̇ (x) ≤ 0 for all x ∈ Rn, then every solution
of (3) converges to the largest invariant set M contained

in Z = {x ∈ Rn | V̇ (x) = 0}. Moreover, if M = {0}, the
origin of (3) is globally asymptotically stable.

Unfortunately, the classical LaSalle’s invariance principle
can’t be applied to switched systems directly. For switched
systems, there are also some extended results of LaSalle’s
invariance principle as we have mentioned in Section 1.
Among them, certain restrictions on the switching signals
are necessary. A switched system is said to have a non-
vanishing dwell time, if there exists a positive time period
τ0 > 0, such that the switching instances {τk | k =
1, 2, · · · } satisfy

inf
k

(τk+1 − τk) ≥ τ0. (4)

Through this paper we assume

A1. Admissible switching signals have a dwell time τ0 > 0.

We need to recall another concept: weakly invariant set.

Definition 3. (Bacciotti (2005)) A compact set M is
weakly invariant with respect to (1), if for each point
x ∈ M , there exist a λ ∈ Λ, a solution ϕ(t) of the vector
field fλ(x) and a real number b > 0 such that ϕ(0) = x
and ϕ(t) ∈ M for either t ∈ [−b, 0] or t ∈ [0, b].

Now for system (1) assume V (t) is the candidate Lyapunov

function concerned, we denote by Zi = {x | V̇ (x)|fi
=

0}, ∀ i ∈ Λ.

With some mild modification, we state Theorem 1 of
Bacciotti (2005) as

Proposition 4. (Bacciotti (2005)) Assume system (1) has
a CWLF,

Z =
⋃

i∈Λ

Zi,

and M is the largest weakly invariant set contained in Z.
Then every solution ϕ(t, x0) of system (1) is attracted to
M .

This result is the starting point of our following discussion.

Since we only require each mode to be stable, in addition
to A1, we need to pose certain ergodicity property for
switching signals.

A2. For any T > 0, and any λ ∈ Λ, there exists t > T
such that

σ(t) = λ. (5)

Or a stronger assumption is

A2′. There exists a T > 0, such that for any t0 ≥ 0,

{t | σ(t) = λ}
⋂

[t0, t0 + T ] 6= ∅,∀ λ ∈ Λ. (6)

Remark.

• Assumptions A1 and A2 imply that each mode will be
active infinite times and the total time length for each
mode i being active is infinity, i.e.,

|{t | σ(t) = λ}| = ∞, ∀ λ ∈ Λ,

where | · | denotes the Lebesgue measure. We call such
a switching “ergodic switching”.

• A2′ may be called “finite time ergodic switching”. It
is easy to see that A2′ implies A2.

• If both A1 and A2′ hold, then there exists T > 0
(replacing original T of A2′ by T + τ0) such that

|{t | σ(t) = λ}
⋂

[t0, t0 + T ]| ≥ τ0, ∀ λ ∈ Λ, t0 ≥ 0.
(7)

Next, we recall a new Lyapunov-type function, called the
joint Lyapunov function. The following definition is mimic
to the linear case in Cheng (2007).

Definition 5. Consider system (1).

• If there exists a positive definite C1 function V (x) >
0, radially unbounded, such that

V̇ (x)|fi
= ∇V (x)fi(x) := Qi(x) ≤ 0, x 6= 0, (8)

Qi(0) = 0, i ∈ Λ,

then V (x) is called a common weak Lyapunov func-
tion (CWLF) of system (1).
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• A common weak Lyapunov function of system (1) is
called a common joint Lyapunov function (CJLF) if

N
∑

i=1

Qi(x) < 0, x 6= 0. (9)

Remark. For a switched linear system

ẋ = Aσ(t)x, x ∈ Rn, (10)

where σ : [0,+∞) → Λ = {1, 2, · · · , N} is the switching
signal. If there exists a quadratic function V (x) = xT Px
with P > 0 satisfying

• PAi + AT
i P = Qi ≤ 0, i ∈ Λ;

• Q :=
N
∑

i=1

Qi < 0.

Then V (x) (or briefly, P ) is called a common joint
quadratic Lyapunov function (CJQLF) of system (10).

According to the definition, we get the following property
at once.

Proposition 6. For system (1), assume there exists a
CWLF V (x) > 0, then V is a CJLF if and only if

⋂

i∈Λ

Zi = {0}, (11)

where Zi = {x | Qi(x) = 0} is the kernel of Qi, i ∈ Λ.

Proof. (⇒) Obviously, 0 ∈ Zi, i ∈ Λ. If there exists
0 6= η ∈

⋂

i∈Λ

Zi, then Qi(η) = 0, ∀ i ∈ Λ which implies
∑

i∈Λ

Qi(η) = 0, a contradiction.

(⇐) If V (x) is not a CJLF, then there exists ξ 6= 0 such
that

∑

i∈Λ

Qi(ξ) = 0. Since every Qi(x) is negative semi-

definite, then Qi(ξ) = 0, ∀ i ∈ Λ, that is, ξ ∈ Zi, ∀ i ∈ Λ,
which is a contradiction to (11). 2

Unfortunately, under the assumptions of A1 and A2 (or
A2′), even for a switched linear system, a CJLF is not
enough to assure the global asymptotical stability. Cheng
(2007) gave a counter example.

Therefore, in addition to A1, A2 (A2′) and the existence
of CJLF, in the next two sections we will give some
additional conditions to assure the system being globally
asymptotically stable.

3. LASALLE’S INVARIANCE PRINCIPLE FOR
DISCONNECTED Z \ {0}

Now we present our first LaSalle type of stability result.

Theorem 7. Consider system (1). Assume

• A1, A2 hold;
• there exists a CJLF;
• Z \ {0} is disconnected, where Z =

⋃

i∈Λ

Zi and Zi is

the kernel of Qi, i ∈ Λ.

Then system (1) is globally asymptotically stable.

Proof. By the common weak Lyapunov function, system
(1) is stable. Then we only need to prove the convergence.

For any x0, construct a nonempty compact set

W = {x ∈ Rn | V (x) ≤ V (x0)}.

Since
⋃

i∈Λ

Zi\{0} is disconnected, without loss of generality,

we assume it is composed of two connected components,
denoted by

ZI =
⋃

i∈I

Zi \ {0}, ZJ =
⋃

j∈J

Zj \ {0},

where I
⋃

J = Λ and I
⋂

J = ∅.

Define NI = {x ∈ W | d(x,ZI) < ǫ0}, NJ = {x ∈
W | d(x,ZJ) < ǫ0}, and N c

I = W \ NI , N c
J = W \ NJ ,

where ǫ0 > 0 can be chosen properly. Then under subspace
topology NI , NJ are open sets containing 0 and N c

I , N c
J

are compact sets.

For any ǫ > 0, let Wǫ = {x ∈ W | ||x|| < ǫ}. We can choose
ǫ0 > 0 small enough such that NI

⋂

NJ ⊂ Wǫ and N̄I \Wǫ

and N̄J \Wǫ are disjoint. Let d = d(N̄I \Wǫ, N̄J \Wǫ) > 0.

Note that when i ∈ I mode is active, V̇ (x)|fi
<

0, ∀ x ∈ N c
I , then there exists a δI > 0 such that

max
x∈Nc

I
, i∈I

V̇ (x)|fi
= −δI < 0. Similarly, there exists a

δJ > 0 such that max
x∈Nc

J
, i∈J

V̇ (x)|fj
= −δJ < 0 and

max
x∈Nc

I
∩Nc

J
, i∈Λ

V̇ (x)|fi
= −δ < 0 with δ = max{δI , δJ}.

We claim that there exists T > 0 such that

x(t) ∈ NI

⋂

NJ ⊂ Wǫ, ∀ t > T, (12)

where x(t) is any solution of system (1).

We prove it case by case as follows:

(i) If x(t) ∈ (NI

⋃

NJ)c, then no matter which mode is ac-

tive, V (x) decreases strictly, because V̇ (x)|fi
≤ −δ, ∀ i ∈

Λ. Then we have

V (x(t + △t)) ≤ V (x(t)) − δ△t. (13)

(13) remains true as long as x(t) stays in (NI ∪NJ)c. Then
V (x(t + △t)) → −∞ as △t → ∞. Therefore, we assume
x(t) will not stay in (NI

⋃

NJ)c for ever.

(ii) If x ∈ NI

⋃

NJ , V (x) remains non-increasing. Since
the switching set is ergodic, system (1) can not dwell on
any one mode for ever.

If x(t) enters NI (same for NJ) only finite times, then after
a T0 > 0, the trajectory will stay in N c

I for ever. Then

V (x(t)) < V (x(T0)) − δIτ, (14)

where
τ = |{T0 < s < t | σ(s) ∈ I}| .

Since as t → ∞, τ → ∞, we have V (x(t)) → −∞, t → ∞,
a contradiction.

(iii) Assume x(t) travels between NI \ Wǫ and NJ \ Wǫ

infinite times. Since fi(x) is continuous, there exists bi > 0
such that as mode i is active, ‖ẋ(t)‖ = ‖fi(x)‖ ≤ bi, x ∈
(NI

⋃

NJ)c. Taking 0 < b = max
i∈Λ

bi, then the time that

x(t) travels between NI\Wǫ and NJ\Wǫ satisfies |△t| ≥
d

b
.

Denote W0 = W c
ǫ

⋂

N c
I

⋂

N c
J . Then there exists an infinite

time sequence t1, t2, · · · at which x(t) goes through the

following regions: NI
t1→ W0

t2→ NJ
t3→ W0

t4→ NI
t5→ W0

t6→

· · · , with x(t) ∈ W0 for t ∈ [t2k−1, t2k] and t2k−t2k−1 ≥
d

b
.

By (13)
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V (x(t2k)) ≤V (x(t2k−1)) − δ
d

b
≤ V (x(t2k−3)) − 2δ

d

b

≤ · · · ≤ V (x(t1)) − kδ
d

b
→ −∞, k → ∞,

a contradiction.

Therefore, after a finite time, the trajectory of x(t) will
stay in NI

⋂

NJ for ever, which means (12) holds. The
conclusion follows. 2

Taking Proposition 6 into consideration, the second con-
dition in Theorem 7 can be replaced by CWLF, because
CWLF plus the third condition implies CJLF.

Also note that when N = 2, we have Z1

⋂

Z2 = {0},
so condition 3 is automatically satisfied. This observation
leads to

Corollary 8. Theorem 7 remains true if the last condition
is replaced by N = 2.

Taking Proposition 4 into consideration, we have the
following stronger result.

Corollary 9. Let M be the largest weakly invariant set
contained in Z. Then Theorem 7 remains true if in the
last condition Z \ {0} is replaced by M \ {0}.

Remark. Obviously, Theorem 7 is also true for switched
linear system (10). To assure the global asymptotical sta-
bility, we can find a CJQLF.

Before ending this section, we give two simple examples
to illustrate the effectiveness of our theorem. The first
example is for the linear case.

Example 10. Consider the following switched system

ẋ = Aσ(t)x, x ∈ R3, (15)

where σ(t) ∈ Λ = {1, 2, 3},

A1 =

[

0 −3 −2
3 −9 −5
−3 9 5

]

, A2 =

[

−4 3 1
−6 5 2
8 −7 −3

]

,

A3 =

[

4 −6 −2
8 −12 −4
−9 12 3

]

.

Choosing

P =

[

5 −4 −1
−4 6 3
−1 3 2

]

> 0,

Then Qi = PAi + AT
i P , which are

Q1 =

[

−18 21 8
21 −30 −13
8 −13 −6

]

≤ 0, Q2 =

[

−8 6 2
6 −6 −3
2 −3 −2

]

≤ 0,

Q3 =

[

−6 11 5
11 −24 −13
5 −13 −8

]

≤ 0.

And

Q = Q1 + Q2 + Q3 =

[

−32 38 15
38 −60 −29
15 −29 −16

]

< 0.

Obviously,

Z1 = {x ∈ R3 | x1 = x2 = 0},

Z2 = {x ∈ R3 | x1 = x3 = 0},

Z3 = {x ∈ R3 | x2 = x3 = 0},

and
3
⋃

i=1

Zi \ {0} is not connected.

We conclude by Theorem 7 that system (15) is globally
asymptotically stable if the switching signal satisfies A1
and A2. Choose the initial values [6, 1, −5]T. Fig.1- Fig.3
show the convergence of each component of system (15)
with T = 2 and different dwell time τ0. 2
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Fig. 1. the convergence of system (15) with τ0 = 0.01
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Fig. 2. the convergence of system (15) with τ0 = 0.1
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Fig. 3. the convergence of system (15) with τ0 = 0.5

Example 11. Consider the following switched system

ẋ = fσ(t)(x), x ∈ R2, (16)

where σ(t) ∈ Λ = {1, 2} and

f1(x) =

(

−(2x2)
k

−2k−1xk
2

)

, f2(x) =

(

−(x1 − 2x2)
k

0

)

,

k ≥ 1 is an odd integer. Obviously, every switching mode is
stable, but not asymptotically stable. Choose V (x) = (x1−
2x2)

2 + 4x2
2, then

Q1(x) := V̇ (x)|f1
= −2(2x2)

k+1 ≤ 0,

Q2(x) := V̇ (x)|f2
= −2(x1 − 2x2)

k+1 ≤ 0,

Q1(x) + Q2(x) = −2[(2x2)
k+1 + (x1 − 2x2)

k+1] < 0,

∀ (x1, x2) 6= (0, 0).

Therefore, V (x) is a CJLF. We get by Corollary 8 that sys-
tem (16) is globally asymptotically stable if the switching
signal satisfies A1 and A2. 2
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4. LASALLE’S INVARIANCE PRINCIPLE FOR A
CLASS OF FI

In this section, we impose certain constrains on system (1).
We need some preparations first.

Lemma 12. Consider system (1). Assume every switching
mode is stable. Denote Ki = ker(fi) = {x | fi(x) = 0},
K =

⋂

i∈Λ

Ki, and let y ∈ K. Assume the switching signal

satisfies A1 and A2′, then for any R > 0, there exists r > 0,
such that if x0 ∈ Br(y) then

ϕ(t, x0) ∈ BR(y), 0 ≤ t ≤ T, (17)

where ϕ(t, x0) is the solution of system (1) with ϕ(0, x0) =
x0 and T is the same as in A2′.

Proof. Since every switching mode is stable, y ∈ K is
a stable equilibrium for every switching mode. Then for
any R > 0, we can find ri > 0 (i ∈ Λ), associated with
every subsystem of (1), such that as long as ‖x0 −y‖ < ri,
‖ϕ(t, x0) − y‖ < R, t ≥ 0.

Now suppose the switching moments over [0, T ] are ti, i =
1, 2, · · · , s. Denote xi = ϕ(ti, x0), i = 1, 2, · · · , s. Since
every switching mode is stable, for any R > 0, there
exists 0 < Rs < R such that ‖xs − y‖ < Rs implies
‖ϕ(t, xs) − y‖ < R, ts ≤ t ≤ T . For Rs > 0, there exists
0 < Rs−1 < Rs such that ‖xs−1 − y‖ < Rs−1 implies
‖ϕ(t, xs−1) − y‖ < Rs, ts−1 ≤ t ≤ ts. Continuing this
argument, then for R1 > 0, there exists 0 < r < R1 such
that ‖x0 − y‖ < r implies ‖ϕ(t, x0)− y‖ < R1, 0 ≤ t ≤ t1.
From the above procedure, it follows that as long as
x0 ∈ Br(y), (17) holds. 2

Lemma 13. ker(fi) ⊂ ker(Qi), ∀ i ∈ Λ.

Proof. For any x0 ∈ ker(fi), we have fi(x0) = 0. Then

Qi(x0) = V̇ (x0)|fi
= ∇V (x0)fi(x0) = 0. The conclusion

follows. 2

Denote by M the largest weakly invariant set contained in
Z =

⋃

i∈Λ

Zi, and let

Vi = M
⋂

Zi, i ∈ Λ.

It is easy to see that ker(fi) itself is a weakly invariant set
contained in Zi ⊂ Z, hence ker(fi) ⊂ Vi. Next, we give
one more assumption.

A3. ker(fi) = Vi, i ∈ Λ.

The next proposition was obtained in Bacciotti (2005),
which gives a property of the ω-limit set.

Proposition 14. (Bacciotti (2005)) Let ϕ(t, x0) be a solu-
tion of system (1) with dwell time τ0. Ω(x0) is its ω-limit
set. Then Ω(x0) is a weakly invariant set contained in Z.

Now we are ready to state our second main result.

Theorem 15. Consider system (1). Assume A1, A2′ and
A3 hold and there exists a CJLF, then system (1) is
globally asymptotically stable.

Proof. Let x(t) = ϕ(t, x0) be any solution of system
(1) with ϕ(0, x0) = x0. Since V (x) is monotonically not
increasing and bounded, we have

lim
t→∞

V (x(t)) = V0.

If V0 = 0, we are done. So we assume V0 > 0 and will draw
a contradiction.

Since x(t) is bounded, then there exists an infinite se-
quence {tk} such that

xk := x(tk) → y, t → ∞,

and lim
k→∞

V (x(tk)) = V (y) = V0. Now since y is an ω-limit

point, by Proposition 14, we have y ∈ M ⊂ Z and by the
assumption V0 > 0, y 6= 0.

Split Λ into two disjoint subsets, I ⊂ Λ and J = Λ \ I,
satisfying

y ∈ Zi,∀ i ∈ I, y /∈ Zj ,∀ j ∈ J.

Since y ∈ M , thus I 6= ∅ and y ∈ Vi, ∀ i ∈ I. According to
Proposition 6, J 6= ∅.

Denote
d = min

j∈J
d(y, Zj) > 0, (18)

we can choose 0 < R < d/2 and define a ball BR(y) = {x |
||x − y|| < R}. Then we have

d(x,Zj) > R, ∀ x ∈ BR(y), j ∈ J. (19)

For any x ∈ B̄R(y), the closure of BR(y), when mode j ∈ J
is active, we have

V̇ (x(t))|fj
< 0.

Since B̄R(y) is compact, there exists an α > 0 such that

max
x∈B̄R(y),j∈J

V̇ (x(t))|fj
= −α < 0.

Now assume 0 < R1 < R is small enough such that as
x0 ∈ BR1

(y), x(t) ∈ BR(y), ∀ t ∈ [t0, t0 + τ0]. Then when
x0 ∈ BR1

(y) and t0 is the moment when mode j ∈ J
becomes active, we have

V (x(t0 + τ0)) < V (x0) − ατ0. (20)

On the other hand, using Lemma 12 associated with
assumption A3, we can find 0 < r < R1 such that when
x0 ∈ Br(y) and only modes i ∈ I are active, we have

ϕ(t, x0) ∈ BR1
(y), 0 ≤ t ≤ T. (21)

Since y belongs to the ω-limit set, there exists N > 0
such that xk ∈ Br(y) for all k > N . Recalling assumption
A2′, the finite time ergodic property, on every interval
[tk, tk + T ], all the modes will be active at least once. Let
t′k ∈ [tk, tk + T ] be the moment when a j ∈ J mode is
triggered, then by (21), ϕ(t′k, xk) ∈ BR1

(y). According to
(20), we get

V (x(t′k + τ0)) < V (x(t′k)) − ατ0, ∀ k > N.

Then

V (x(t′N+l + τ0)) ≤V (x(t′N+l)) − ατ0

≤V (x(t′N+l−1)) − 2ατ0 ≤ · · ·

≤V (x(t′N+1) − lατ0 → −∞, l → ∞,

which is a contradiction. 2

In general, it is not straightforward to verify A3. We thus
give a sufficient condition here.

Proposition 16. If ker(fi) = Zi, i ∈ Λ, then A3 is
satisfied.

Proof. If ker(fi) = Zi, then Vi ⊂ ker(fi). The conclusion
follows. 2
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Remark. In general, for nonlinear switched systems, it
is not easy to get the global asymptotic stability result.
Sometimes, we only need the local stability. If the Lya-
punov function is defined on a neighborhood of the origin
which is a compact set, then the conclusions of Theorem 7
and 15 hold locally.

Example 17. Consider the following switched system

ẋ = fσ(t)(x), x ∈ R4, (22)

where σ(t) ∈ Λ = {1, 2, 3},

f1(x) =









−x5
1

x3
1x2 − x3

2
0

−2x3
4 − x2

3x4









, f2(x) =







0
0

−x3
3

2x2
3 − 3x4






,

f3(x) =







0
−2x3

2 + x2x
2
3

−x3
3

0






.

Choosing V (x) =
1

2

4
∑

i=1

x2
i , then

Q1(x) := V̇ (x)|f1
= −(x3

1−
1

2
x2

2)
2−

3

4
x4

2−2x4
4−x2

3x
2
4 ≤ 0,

Q2(x) := V̇ (x)|f2
= −(x2

3 − x4)
2 − 2x2

4 ≤ 0,

Q3(x) := V̇ (x)|f3
= −2(x2

2 −
1

4
x2

3)
2 −

7

8
x4

3 ≤ 0.

Obviously,
3
∑

i=1

Qi(x) < 0, ∀ x 6= 0. Thus, V is a CJLF. In

a addition,

ker(f1) = Z1 = {x | x1 = x2 = x4 = 0}

ker(f2) = Z2 = {x | x3 = x4 = 0}

ker(f3) = Z3 = {x | x2 = x3 = 0}.

According to Theorem 15 we conclude that system (22)
is globally asymptotically stable if the switching signals
satisfy A1 and A2′. 2

5. CONCLUSION

In this paper, we investigated the stability of switched non-
linear systems. By introducing common joint Lyapunov
function, two extensions of LaSalle’s invariance principle
were obtained. Unlike traditional extensions, our results
do not require individual switching modes to be asymp-
totically stable, while certain ergodicity restrictions are
imposed on the switching signals. It has been shown that
in a practical dynamic process, such as joint connection of
multi-agent systems (Jadbabaie (2003); Moreau (2005)),
ergodicity assumption is reasonable.
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