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Abstract: This paper is concerned with the problem of designing a controller for certain class of
fractional-order systems. The powers of the Laplace variable, s, are limited to rational numbers
and the plant transfer function is assumed to be minimum-phase. The approach used in this
paper is based on shaping the sensitivity function which is a powerful design algorithm in
frequency domain. One advantage of the proposed method is that it does not need heavy
computational efforts. It is a well known result that control objectives such as command tracking
and noise attenuation can be expressed in terms of the sensitivity function. The notion of coprime
factorization is also developed for the systems under consideration and two illustrative examples
are presented.
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1. INTRODUCTION

In recent years there has been an increasing attention
to fractional-order systems. These systems are of interest
for both modelling and control purposes. In the fields
of continuous-time modelling, fractional derivatives have
been used in linear viscoelasticity, acoustics, rheology,
polymeric chemistry etc (Oldham and Spanier, 1974; Hil-
fer, 2000). In general, fractional-order systems are useful
to model various stable physical phenomena (commonly
diffusive systems) with anomalous decay, say those that
are not of exponential type. For example, Miller and Ross
(1993) introduce a system with impulse response

h(t) =

√
2gπ

Γ( 3

2
)

t
1
2
+,

which is not of exponential type. Fractional differential sys-
tems are also used in control field. Among others, an exten-
sion of the classical PID controllers, known as fractional-
order PID (FOPID) or PIλDµ (Podlubny, 1994, 1999),
and the so-called CRONE (Oustaloup et al., 1996) control
are of more interest. Most of the existing controller tuning
methods are based on numerical optimization algorithms.
Monje et al. (2005) proposed a method for auto-tuning of a
fractional order lead-lag compensator using relay feedback
tests, which is robust in some sense.

For integer-order systems, the problem of design for per-
formance is to find a proper C(s) for which the standard
feedback system of Fig. 1 is internally stable and

‖W (s)S(s)‖∞ < 1, (1)

where S(s) , 1/[1 + C(s)P (s)] and W (s) are the sensi-
tivity and the weight functions, respectively. By choosing
a suitable weight function and solving (1), the control
objectives such as command tracking and noise rejection
are achieved. This problem has been fully solved for integer
case, i.e. when the transfer functions of the plant P (s)

and the controller C(s) are of integer orders (Doyle et
al., 1990). This paper is to address the above problem
for fractional systems of commensurate order. The powers
of the Laplace variable, s, in such transfer functions are
rational numbers rather than integer ones. The studies in
this paper are restricted to rational powers because this
allows the use of some algebraic tools (Miller and Ross,
1993). Note that, in practice, all numbers are rational.
It is due to the fact that all numbers are stored with a
limited precision in computer. For simplicities, the term
“fractional system of commensurate order” is addressed
with “fractional-order system” in the rest of this paper.

The rest of this paper is organized as follows. Prob-
lem preliminaries are presented in Section 2, controller
parametrization is discussed in Section 3, and the con-
troller design algorithms for stable and unstable plants are
presented in Sections 4 and 5, respectively. Examples are
also provided and, finally, Section 6 concludes the paper.

2. PROBLEM PRELIMINARIES

Consider the standard closed-loop system shown in Fig.
1, where P (s) is a (multi-valued) fractional-order transfer
function in the form of

P (s) =
bms

m

v + bm−1s
m−1

v + . . . + b1s
1
v + b0

s
n

v + an−1s
n−1

v + . . . + a1s
1
v + a0

. (2)

The domain of definition for P (s) is a Riemann surface
with v Riemann sheets where origin is the branch point (of
order v−1) and the branch-cut is assumed at R−(LePage,
1961). By definition, (2) is strictly proper and proper if
n > m and n ≥ m, respectively. Another useful definition
is the relative degree of (2) which is equal to n − m. Note
that every fractional-order system can be represented in
the form of (2). For example, the transfer function
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Fig. 1. Standard closed-loop system

P (s) =
s

1
2 + 1

s
1
3 + 1

,

can be represented in the equivalent form

P (s) =
s

3
6 + 1

s
2
6 + 1

,

which is in the form of (2). Substituting s
1
v with z in (2)

leads to another transfer function which is denoted by P̃ (z)

in this paper. The domain of definition of P̃ (z) is called
z-plane.

It is a well-known fact that (2) is BIBO stable if and only
if all roots of the equation

zn + an−1z
n−1 + . . . + a1z + a0 = 0,

lie in the sector

| arg(z)| >
π

2v
, (3)

in z-plane, where z , s
1
v (Matignon, 1998). The above

condition is equivalent to P (s) having no pole in the
closed right half-plane (CRHP) of the first Riemann sheet.
Likewise, P (s) is minimum-phase if and only if all roots
of the equation

bmzm + bm−1z
m−1 + . . . + b1z + b0 = 0,

lie in the sector defined by (3). Note that the above
definition is equivalent to P (s) having no zero in the CRHP
of the first Riemann sheet. It is a natural way to extend
the definition of minimum-phase-ness to systems under
consideration as it implies that P−1(s) is stable if and
only if P (s) is minimum-phase.

As all calculations in this paper are performed in frequency
domain we have to evaluate functions like (2) when s = jω.

But the term s
1
v in (2) is a multi-valued function of s, i.e.,

for every ω ∈ [0,∞) there are v possible values for the

(jω)
1
v . It is a fact that in multi-valued functions only the

first Riemann sheet has its physical significance (Beyer and
Kempfle, 1995; Gross and Braga, 1961). So, the principal

branch of (jω)
1
v is considered in this paper.

Let k be a positive integer and τ a positive real number.
Define J(s) as

J(s) ,
1

τs
k

v + 1
. (4)

Let us discuss the stability properties of J . It follows from
(4) that

J̃(z) =
1

τzk + 1
,

the poles of which are calculated as

z =
1

k
√

τ
ej

(2h+1)π

k , h = 0, 1, . . . , k − 1.

According to (3), J is stable if and only if
π

k
>

π

2v
,

or equivalently
k < 2v. (5)

The following lemma will be instrumental in the analysis
to follow.

Lemma 1. If G(s) is a stable and strictly proper fractional-
order transfer function, and J is the complex function
defined by (4) where the stability condition (5) is satisfied,
then

lim
τ→0

‖G(1 − J)‖∞ = 0.

Proof. Let ǫ > 0 and ω1 > 0 be two arbitrarily chosen real
numbers. Observing the Bode plot of J , if τ is sufficiently
small, then the Nyquist plot of J lies in the disk with center
1 and radius ǫ for ω ≤ ω1, and the disk with center 0 and
radius 1 for ω > ω1. Now ‖G(1−J)‖∞ is the maximum of

max
ω≤ω1

|G(jω)[1 − J(jω)]|,

and
max
ω>ω1

|G(jω)[1 − J(jω)]|.
Again, using the Nyquist plot of J , it is obvious that the
first of these is upper bounded by ǫ‖G‖∞, and the second
by

‖1 − J‖∞ max
ω>ω1

|G(jω)|.
Now considering the fact

‖1 − J‖∞ ≤ ‖1‖∞ + ‖J‖∞ = 2,

it is concluded that

‖G(1 − J)‖∞ ≤ max{ǫ‖G‖∞, 2 max
ω>ω1

|G(jω)|}.
This holds for τ sufficiently small. But the right-hand side
can be made arbitrarily small by suitable choice of ǫ and
ω1 because

lim
ω1→∞

max
ω>ω1

|G(jω)| = |G(j∞)| = 0.

Now it is evident that for every δ > 0, if τ is small enough,
then

‖G(1 − J)‖∞ ≤ δ.

This completes the proof.

Note that the form considered for the function J is not
unique. For example, one may consider J as

J(s) ,
1

(τs
1
v + 1)k

, (6)

which satisfies all the required conditions for our purpose
but obviously it is more complicated than (4) and needs
more computational efforts and it leads to controllers with
more complicated structures. However, the form of (6) has
the advantage that it is stable for every k ∈ N. We confine
our developments in this paper to (4).

3. CONTROLLER PARAMETRIZATION

It can easily be verified that if an integer-order system

with transfer function P̃ (z) be stable and proper, then
the corresponding fractional-order transfer function P (s),

where z = s
1
v , is also stable and proper. For example,

P̃ (z) =
1

z + 1
,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15280



is stable and proper, hence it is concluded that

P (s) =
1

s
1
v + 1

,

is also stable and proper for every v ∈ N.

Introduce the symbol S for the family of all stable, proper,
real-rational (fractional-order) functions. Notice that S is
closed under addition and multiplication: If F, G ∈ S, then
F + G, FG ∈ S.

Note that a controller satisfying (1) is not necessarily a
feasible solution because the resulted closed-loop system
is not guaranteed to be stable. To overcome this difficulty,
first the controller is parameterized in a way that the
resulted closed-loop system be stable (Youla parametriza-
tion). Then a solution to (1) is obtained over the set of
these stabilizing controllers. In the following, the controller
parametrization method is presented for stable and unsta-
ble plants, separately.

3.1 Stable Plant

Theorem 2. Assume that P ∈ S and C is proper. The
set of all C’s for which the feedback system of Fig. 1 is
internally stable is given by{

Q

1 − PQ
, Q ∈ S

}
. (7)

Proof. First, we must show that the members of (7)
internally stabilize the system of Fig. 1. In order to do
that, it must be proved that the transfer functions from all
external signals to all internal signals in Fig. (1) are stable.
Without loss of generality, we show that the transfer
function from r to y is stable. It follows that

Y (s)

R(s)
=

CP

1 + CP
. (8)

Substituting (7) in (8) yields

Y (s)

R(s)
=

QP
1−PQ

1 + QP
1−PQ

= QP, (9)

which is stable providing that P and Q are stable. Now,
we show that if the system of Fig. 1 is internally stable
then the controller can be parameterized as in (7). Let Q
denote the transfer function from r to u, that is,

Q ,
C

1 + PC
. (10)

Then, obviously Q ∈ S and

C =
Q

1 − PQ
. (11)

This completes the proof.

Based on the above parametrization, the sensitivity func-
tion is given by

S(s) = 1 − PQ. (12)

3.2 Unstable Plant

In this case, the transfer function P is proper but no
longer assumed to be stable. Let P = N/M be a coprime
factorization over S and let X, Y be two functions in S
satisfying the equation

NX + MY = 1.

Theorem 3. The set of all proper C’s for which the feed-
back system of Fig. 1 is internally stable is given by{

X + MQ

Y − NQ
,Q ∈ S

}
. (13)

Proof. A procedure similar to the one presented in Theo-
rem 2 can be followed to provide the proof which is omitted
here.

Using this parametrization, the sensitivity function is

S(s) = M(Y − NQ). (14)

4. CONTROLLER DESIGN FOR STABLE PLANTS

4.1 Controller Design Algorithm

The following is the controller design procedure for stable
plants. It is an extension for the method presented in Doyle
et al. (1990) for integer-order systems.

Step 1: Set k equal to the relative degree of P .

Step 2: If k < 2v then define J as in (4), else

J(s) =
1(

τs
2v−1

v + 1
)q (

τs
r

v + 1
) , (15)

where the positive integers q and r are the quotient and
reminder of the division k/(2ν − 1), i.e. k = (2ν − 1)q + r.

Step 3: Choose τ so small that

‖W (1 − J)‖∞ < 1.

Step 4: Set Q = P−1J .

Step 5: Set C = Q/(1 − PQ).

Note that according to (12) and Step 4 the sensitivity and
complementary sensitivity functions are calculated as

S(s) = 1 − J =
τs

k

v

τs
k

v + 1
, T (s) =

1

τs
k

v + 1
.

Hence
WS = W (1 − J),

which is suitably minimized in Step 3. It is easily verified
that the function J defined in (15) is also stable. Obviously,
the Q calculated in Step 4 is proper and stable, so it leads
to a stabilizing proper controller in Step 5 according to
Theorem 2. In Fig. 1, the error signal corresponding to
the unit step is calculated as

E(s) = S(s) × 1

s
=

τs
k

v

τs
k

v + 1
× 1

s
,

which implies that

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

τs
k

v

τs
k

v + 1
= 0,

i.e., the proposed controller design algorithm guarantees
tracking of the step input without steady-state error. Note
that s = 0 is the branch point of E(s) and, thus, taking
the limit in the latter equation needs further care (LePage,
1961). Indeed, Appendix A shows that the Final-value
Theorem can be extended and used in this case.
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4.2 Example

According to (Podlubny, 1999), the fractional-order model
of a heating furnace is given by

P (s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
, (16)

which is proved to be more exact than the integer-order
model. To control this system, Zhao et al. (2005) proposed
a tuning method which led to the FOPID controller

C1(s) = 736.8054 − 0.5885

s0.6
− 818.4204s0.35. (17)

Integer-order PID controller (using the Åström-Hägglund
tuning algorithm (Åström and Hägglund, 1995)) is also
designed for this system by Zhao et al. (2005) and it is
shown that the step response of the closed-loop system
with FOPID is much faster than the corresponding one
with PID and also the overshoot is smaller in FOPID case
(Zhao et al., 2005). The main drawback of this method
is that it is based on complex numerical optimization
algorithms. It is easily verified that the transfer function
(16) is stable. Let us design a controller for this system
using the proposed algorithm in this section.

Consider the weighting function as

W (s) =
0.9

s + 1
,

which signifies a bandwidth of 1 rad/s. 1 Following the
algorithm results:

Step 1: For this system v = 100, m = 0 and n = 131 and
the relative degree is k = n − m = 131.

Step 2: Since k < 2v then

J(s) =
1

τs1.31 + 1
.

Step 3: Choose τ so that the infinity norm of

0.9

s + 1
× τs1.31

τs1.31 + 1
,

is less than unity. A value of τ ≈ 20 works well.

Step 4:

Q(s) =
14994s1.31 + 6009.5s0.97 + 1.69

20s1.31 + 1
.

Step 5:

C(s) =
14994s1.31 + 6009.5s0.97 + 1.69

20s1.31
. (18)

The magnitude plot of WS and the closed-loop system
responses are shown in Fig. 2. Figure 2(a) shows that
‖WS‖∞ ≈ 1. It is observed from Fig. 2(b) that the
step response corresponding to the proposed controller
(18) competes the one proposed by Zhao et al. (2005)
(17). Important feature of (18) is that it cancels all
poles of the plant transfer function. Since (17) is non-
proper, the corresponding control signal contains impulse
due to the discontinuity in step signal. Note that in the
proposed algorithm, the closed-loop bandwidth can easily
be adjusted by changing W (s) (or equivalently, τ).

1 Note that, in general, the weighting function can also be of

fractional order.
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proposed controller

C
1

Fig. 2. (a) The magnitude plot of WS, (b) closed-loop step
responses corresponding to (17) and (18)

This example shows efficiency of the proposed definition
for J . In the case of using the function J as defined in
(6), 131 terms appear in the denominator of C which
considerably increases the computational effort.

5. CONTROLLER DESIGN FOR UNSTABLE PLANTS

Before introducing the design procedure, we have to de-
velop the concept of coprime factorization for fractional-
order systems.

5.1 Coprime Factorization

The coprime factorization for unstable fractional-order
systems can be developed as follows.

Step 1: Transform G̃(z) to Ĝ(λ) under the mapping

z = (1− λ)/λ. Write Ĝ as a ratio of coprime polynomials:

Ĝ(λ) =
n(λ)

m(λ)
.

Step 2: Using Euclid’s algorithm, find polynomials x(λ),
y(λ) such that

nx + my = 1.

Step 3: Transform n(λ), m(λ), x(λ), y(λ) to Ñ(z), M̃(z),

X̃(z), Ỹ (z) under the mapping λ = 1/(z + 1).

Step 4: Transform Ñ(z), M̃(z), X̃(z), Ỹ (z) under the

mapping z = s
1
v .

The mapping used in Step 1 is not unique; the only
requirement is that the polynomials in terms of λ are
mapped to stable and proper transfer functions in terms
of z. It can easily be verified that if e.g. n(λ) = 0 has no
unstable roots then neither N(s) will have.
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5.2 Controller Design Algorithm

The following is the controller design algorithm when the
plant is unstable.

Step 1: Do a coprime factorization of P (s), i.e., find four
stable proper transfer functions satisfying the equations

P =
N

M
, NX + MY = 1.

Step 2: Set k equal to the relative degree of P .

Step 3: If k < 2v define J as (4), else use (15).

Step 4: Choose τ so small that

‖WMY (1 − J)‖∞ < 1,

Step 5: Set Q = Y N−1J.

Step 6: Set C = (X + MQ)/(Y − NQ).

Note that according to (14) and Step 5 we have

WS = WMY (1 − J),

which is suitably minimized in Step 4. Obviously, the Q
calculated in Step 5 is proper and stable (N−1 is stable
because P is minimum-phase by assumption), so it leads
to a stabilizing proper controller in Step 6 according to
(13). In Fig. 1, the error signal corresponding to the unit
step is calculated as

E(s) = S(s) × 1

s
= MY (1 − J) × 1

s
,

which implies that

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

MY (1 − J) = 0,

provided that M and Y are stable. As a result, the pro-
posed controller design algorithm guarantees the tracking
of the step input without steady-state error when the plant
is unstable.

5.3 Example

Consider the closed-loop system of Fig. 1 where

P (s) =
s

1
2 + 2

s
3
2 − 3s + s

1
2 + 5

.

Obviously,

P̃ (z) =
z + 2

z3 − 3z2 + z + 5
,

the poles of which are located at z1 = −1, z2,3 = 2 ± j.
This system is unstable because

| arg(z2,3)| ≯
π

2v
=

π

4
.

It is also evident that the system is minimum-phase since
it has only one (stable) zero at z = −2. We will assume
that

W (s) =
100

10s + 1
.

Step 1: Using the coprime factorization algorithm pre-
sented in 5.1 we have

n(λ) = λ2 + λ3, m(λ) = 1 − 6λ + 10λ2,

x(λ) =
356

17
− 860

17
λ, y(λ) = 1 + 6λ +

86

17
λ2,

then

Ñ(z) =
z + 2

(1 + z)3
, M̃(z) =

5 − 4z + z2

(1 + z)2
,

X̃(z) =
4

17

−126 + 89z

1 + z
, Ỹ (z) =

1

17

205 + 136z + 17z2

(1 + z)2
,

which implies that

N(s) =
s

1
2 + 2

(1 + s
1
2 )3

, M(s) =
5 − 4s

1
2 + s

(1 + s
1
2 )2

,

X(s) =
4

17

−126 + 89s
1
2

1 + s
1
2

, Y (s) =
1

17

205 + 136s
1
2 + 17s

(1 + s
1
2 )2

.

Step 2: k = n − m = 3 − 1 = 2.

Step 3: Since k < 2v we use

J(s) =
1

τs + 1
.

Step 4: Choose τ such that the infinity norm of

WMY (1 − J) =
100

10s + 1

5 − 4s
1
2 + s

(1 + s
1
2 )2

1

17
×

205 + 136s
1
2 + 17s

(1 + s
1
2 )2

(
1 − 1

τs + 1

)
, (19)

is less than unity. τ ≈ 0.0058 is an approximate solution.
The magnitude plot of (19) is shown in Fig. 3(a) when
τ = 0.0058. It is obvious from the figure that ‖WS‖∞ ≈ 1.

Step 5:

Q(s) =
5000

17

(1 + s
1
2 )(205 + 136s

1
2 + 17s)

(2 + s
1
2 )(5000 + 29s)

.

Step 6:

C(s) =
B(s)

A(s)
,

where

B(s) = 4(1 + s
1
2 )×

(21250 + 85000s
1
2 + 120192s + 86508s

3
2 + 23831s2),

A(s) = 29s(2 + s
1
2 )(205 + 136s

1
2 + 17s).

The closed-loop system response to unit step is depicted in
Fig. 3(b). Unlike the open-loop system that is unstable, the
closed-loop system is stable and gives a desirable transient
response. By decreasing the value of τ , the closed-loop
system becomes faster at the cost of more noise and larger
control.

6. CONCLUSION

An efficient controller design method for a class of
fractional-order systems is presented. The proposed method
is based on the method of shaping the sensitivity function.
Since the control objectives such as command tracking and
noise attenuation can be explained in terms of the sensi-
tivity function, the proposed algorithm provides a general
approach. The only restriction is that the plant must be
minimum-phase. One important feature of the proposed
method is that it is an analytic algorithm and needs no
complex numerical optimizations. Moreover, all control
objectives are explained in terms of a weight function. The
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Fig. 3. (a) The magnitude plot of WS, (b) closed-loop step
responses

design method is developed for both stable and unstable
plants. Two numerical examples are solved to confirm the
efficiency of the proposed design algorithms. Similar to the
classical case, the proposed method suffers two drawbacks.
First, it may lead to conservative solutions, and second, an
order reduction algorithm may be needed at the final stage
as the controllers obtained using this method are complex.
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Appendix A. THE FINAL-VALUE THEOREM FOR
FRACTIONAL CASE

Here, we show that the final-value theorem is applicable
when there is a branch point at s = 0. Assume that
F (s) = L{f(t)} is a multi-valued function of s with a
branch point at s = 0. Then∫ ∞

0

f ′(t)e−stdt = sF (s) − f(0). (A.1)

Now, let s tend to zero in the direction of positive real
axis:

lim
s→0

∫ ∞

0

f ′(t)e−stdt = lim
s→0

[sF (s) − f(0)]. (A.2)

Since the Laplace integral is uniformly convergent we can
change the order of limit and integral:∫ ∞

0

lim
s→0

[f ′(t)e−st]dt = lim
s→0

[sF (s)] − f(0), (A.3)

which implies that∫ ∞

0

f ′(t)dt = f(∞) − f(0) = lim
s→0

[sF (s)] − f(0), (A.4)

or
f(∞) = lim

s→0
[sF (s)]. (A.5)
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