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Abstract: Based on T-S fuzzy model, the guaranteed cost control problem of a class of uncertain
nonlinear systems with input and state time delay is discussed. By constructing state-feedback
controller, a sufficient condition that for the given performance index and control law, the
closed-loop system is quadratic guaranteed cost stable is presented and expressed in terms of
linear matrix inequality (LMI). A numerical example shows that the proposed design method
is effective.

1. INTRODUCTION

Since proposed by Zadeh(1965), fuzzy logic control has
been developed into a conspicuous and successful branch
of automation and control theory. With the development of
fuzzy systems, some fuzzy control systems design methods
have appeared in fuzzy control field. Among various kinds
of fuzzy control methods, Takagi and Sugeno(1985) pro-
posed a design and analysis method for overall fuzzy sys-
tems, in which the qualitative knowledge of a system was
first represented by a set of local Takagi and Sugeno(T-
S) fuzzy model. In this approach, the T-S fuzzy model
substitutes the consequent fuzzy sets in a fuzzy rule by
a linear equation of the input variables. Local dynamics
in different state-space regions are represented by linear
models and the overall model of the system is repre-
sented as the fuzzy interpolation of these linear models.
Therefore, it has a convenient dynamic structure so that
some well-established linear systems theory can be easily
applied out based on the fuzzy model via the so-called
parallel distributed compensation (PDC) scheme(Takagi
and Sugeno,1992;H.O.Wang et al.1996). The idea is that
for each local linear model, a linear feedback control is
designed and the resulting overall controller, which is
nonlinear in general, is fuzzy blending of each individual
linear controller. Just because of this, T-S fuzzy model has
attracted considerable attention and is widely used in the
control design of nonlinear systems(B.S. Chen et al. 2000;
M.C. Teixeira and S.H. Zak,1999;X. G. Yang et al. 2005).
In traditional T-S models, there is no delay in the state
and input. On the other hand, time-delay often occur
in many dynamical systems such as rolling mill systems,

? This work is supported by the National Science Funds of
China(60574011).

biological systems, metallurgical processing systems, net-
work systems, and so on. It is shown that the existence
of delay usually becomes the source of instability and de-
teriorating performance of systems. In recent years, some
authors have paid their attention to control of nonlinear
systems with time-delay systems. In(Y. Y. Cao and P.
M. Frank,2000) , the stability analysis and synthesis of
nonlinear systems with time-delay systems via linear T-
S fuzzy models was addressed. The Krasovskii-Lyapunov
function was employed to develop a sufficient condition of
delay-independent stability. And then, the fuzzy controller
design schemes for state feedback were proposed in terms
of linear matrix inequality (LMI). By using a quadratic
Lyapunov functional approach instead of the Krasovskii-
Lyapunov function approach, the similar work was done
in (Y. Y. Cao and P. M. Frank,2001). The results of both
(Y. Y. Cao and P. M. Frank,2000) and (Y. Y. Cao and P.
M. Frank,2001) are obtained under the assumption that
the systems contain no uncertainty. In ( K. R. Lee et al.
2000), the problem of robust output feedback H∞ control
has been discussed for fuzzy dynamical systems with time-
delay. Sufficient conditions for the existence of H∞ con-
troller are given by means of matrix inequalities. Recently,
the reliable fuzzy control design approach for the T-S fuzzy
model systems with time-delay was proposed in (B.S. Chen
and X.P. Liu,2004). This paper mainly focuses on a class of
uncertainty fuzzy control design problem for fuzzy control
systems with time-delay. The robust stabilization schemes
via state feedback and output feedback have been proposed
by means of LMI.
In addition to the simple stabilization, there have been
various efforts to assign certain performance criteria when
designing a controller, such as quadratic cost minimiza-
tion, H∞ norm minimization, pole placement, etc. Among
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them, the guaranteed cost control aims at stabilizing the
systems while maintaining an adequate level of perfor-
mance represented by quadratic cost function(S. H. Es-
fahain and S.O. R. Moheimani,1998;S. H. Esfahain and
I.R.Petersen,2000; Y. S. Lee et al. 2001;L. Yu and J.
Chu,1999).Although it is an important problem to design
a guaranteed cost controller for nonlinear systems, it seems
that this field is still open to fuzzy control theory.
Unlike the results of above cited papers on T-S fuzzy
systems with time-delay, in this paper, we mainly focus
on the problem of fuzzy guaranteed cost control for T-S
fuzzy systems with input and state time-delay. A quadratic
cost function is used as a guaranteed performance index.
The Krasovskii -Lyapunov function approach is employed
to analyse the stability and design a guaranteed cost con-
troller. The problem of guaranteed cost control via state
feedback, its guaranteed cost controller design scheme is
developed in terms of LMI. The controller designed here
minimized a bound on a quadratic performance index and
ensure the resulting closed-loop system is asymptotically
stable. It is shown that the problem addressed here can be
solved in terms of the feasibility of some linear matrix in-
equalities. An LMI-based design procedure is proposed for
the guaranteed cost control problems of nonlinear systems
with time-delay systems via state feedback control.
This paper is organized as follows. Section 2 provides
preliminaries and the formulation of the fuzzy guaran-
teed cost control problem. In Section 3, a state feedback
guaranteed cost control law for the fuzzy systems with
the state and input time-delay is proposed based on the
parallel distributed compensation in terms of linear matrix
inequalities approach. A numerical example is given in
Section 4 to illustrate the design methods presented in this
paper. These are followed by some concluding remarks in
Section 5.

2. PROBLEM FORMULATION

The continuous fuzzy dynamic model was proposed fuzzy
model is a piecewise interpolation of several linear mod-
els through membership functions. The fuzzy model is
presented by fuzzy IF-THEN rules and will be employed
here to deal with the control design problem for the non-
linear uncertain system with the state and input time-
delay,which can be described by the following T-S fuzzy
time-delay systems.
Plant Rule i :
IF ξ1 (t) is M1i and· · · and ξp (t) is Mpi, THEN

·
x (t) = (Ai + ∆Ai (t))x (t) + (A1i + ∆A1i (t))x (t− τ1)

+Biu (t) + B1iu (t− τ2)

y (t) = Cix (t) (1)

x (t) = ψ (t) , t ∈ [−τ0, 0], i = 1, · · · , r

where Mij is the fuzzy set, x (t) ∈ Rn is the state vector,
u (t) ∈ Rm is the control input, y (t) ∈ Rq is the output
vector, Ai, A1i, Bi, B1i, Ci are some constant matrices of
compatible dimension, r is the number of IF-THEN rules,
and ξ (t) = [ξ1 (t) , · · · , ξp (t)] are the premise variables.
It is assumed that the premise variables do not depend
on the input variable u (t). ψ (t) ∈ Cn,τ0 is a vector-valued
initial continuous function. ∆Ai (t) ,∆A1i (t) are the time-

varying uncertain matrices. It is also assumed that the
following.

Assumption 1. The uncertainty of the systems can be
described as:

[∆Ai (t) ,∆A1i (t)] = HF (t) [E1i, E2i]

where H, E1i, E2i are given constant matrices,F (t) is not
known function matrix and satisfied FT (t) F (t) ≤ I.

Given a pair of (x (t) , u (t)), the final output of the fuzzy
time-delay system is inferred as follows:

·
x (t) =

r∑

i=1

λi(ξ (t))[(Ai + ∆Ai (t))x (t)

+(A1i + ∆A1i (t))x (t− τ1)

+Biu (t) + B1iu (t− τ2)]

y (t) =
r∑

i=1

λi(ξ (t))Cix (t) (2)

where λi(ξ (t)) = βi(ξ(t))
r∑

j=1

βj(ξ(t))

, βj(ξ (t)) =
p

Π
k=1

Mkj(ξj (t)),

Mkj(ξj (t)) is the grade of membership of ξj (t) in Mkj . It

is assumed that
r∑

i=1

λi(ξ (t)) = 1, λi(ξ (t)) > 0, i = 1, · · · , r

for all t.

Given positive-definite symmetric matrices Q,R,we con-
sider the cost function

J =

∞∫

0

{xT (t)Qx (t) + uT (t) Ru (t)}dt (3)

Associated with the cost function (3), the fuzzy guaranteed
cost control is defined as follows.

Definition (B.S. Chen and X.P. Liu,2005): Consider the
system (2). If there exists a fuzzy control law u (t) and a
scalar J0 such that the closed-loop system is asymptoti-
cally stable and the closed-loop value of the cost function
(3) satisfies J ≤ J0 , then J0 is said to be a guaranteed
cost and the control law u (t) is said to be a guaranteed
cost control law for (2).
The objective of this paper is to develop a procedure to
design a state-feedback guaranteed cost control law.

3. FUZZY GUARANTEED COST CONTROLLER
DESIGN VIA STATE-FEEDBACK

In this section, we consider the design of a fuzzy guaran-
teed cost controller via state-feedback. Suppose the follow-
ing fuzzy controller is employed to deal with the design of
a fuzzy control system (2).
Control Rule i:

IF ξ1 (t) is M1i and· · · and ξp (t) is Mpi, THEN
u (t) = Kix (t) , i = 1, · · · , r (4)

Hence the overall fuzzy control law is represented by

u (t) =
r∑

i=1

λi(ξ (t))Kix (t) (5)
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where Ki(i = 1, · · · , r) are the local control gains. The
design of a fuzzy guaranteed cost controller is to determine
feedback gains Ki(i = 1, · · · , r) and a positive scalar J0

such that the resulting closed-loop system is asymptot-
ically stable and closed-loop value of cost function (3)
satisfies J ≤ J0. With control law (5), the overall closed-
loop system can be written as

·
x (t) =

r∑

i=1

r∑

j=1

λi(ξ (t))λj(ξ (t))[(Ai + ∆Ai (t) + BiKj)x (t)

+(A1i + ∆A1i (t))x (t− τ1) + B1iKjx (t− τ2)]

y (t) =
r∑

i=1

λi(ξ (t))Cix (t) (6)

Then, the main result on the guaranteed cost control via
state-feedback for the continuous-time T-S fuzzy model
with the state and input time delay is summarized in the
following theorem.
Theorem 1. Consider the system (6) associated with cost
function (3). Suppose that there exist matrices Ki(i =
1, · · · , r), P > 0, S1 > 0, S2 > 0 satisfying the following
LMI:

[ Λ P (A1i + ∆A1i (t)) PB1iKj

∗ −S1 0
∗ ∗ −S2

]
< 0 (7)

where Λ = (Ai + ∆Ai + BiKj)T P + P (Ai + ∆Ai +

BiKj) + S1 + S2 + Q +
−
KT R

−
K and ”*” denotes the

transposed elements in the symmetric positions. Then, the
control law (5) is a fuzzy guaranteed cost control law and
Ki = GiX

−1, i = 1, · · · , r.

Proof. Choose a Lyapunov function candidate for (6) as

V (x, t) = xT (t)Px(t) +
t∫

t−τ1

xT (α) S1x (α) dα

+
t∫

t−τ2

xT (α) S2x (α) dα

For the simplicity,denote λi(ξ (t)) by λi.By differentiating
V (x, t) along the trajectory of the system (6), we obtain
·
V (x, t) =

·
x

T
(t)Px(t) + xT (t)P

·
x(t) + xT (t)(S1 + S2)x(t)

−xT (t− τ1)S1x(t− τ1)− xT (t− τ2)S2x(t− τ2)

=
r∑

i=1

r∑
j=1

λiλj [xT (t) , xT (t− τ1), xT (t− τ2)]×



Λ′ P (A1i + ∆A1i (t)) PB1iKj

∗ −S1 0
∗ ∗ −S2




[
x(t)

x(t− τ1)
x(t− τ2)

]

where Λ′ = (Ai+∆Ai+BiKj)T P +P (Ai+∆Ai+BiKj)+
S1 + S2. And (5) is equivalent to the following matrix
inequalities:

·
V (x, t)<

r∑

i=1

r∑

j=1

λiλj

[
xT (t) xT (t− τ1)xT (t− τ2)

]


−(Q +

−
KT R

−
K) 0 0

0 0 0
0 0 0




[
x(t)

x(t− τ1)
x(t− τ2)

]

=−
r∑

i=1

r∑

j=1

λiλjx
T (t) (Q +

−
KT R

−
K)x(t)

< 0 (8)

Which implies that (6) is asymptotically stable. Integrat-
ing (8) from 0 to T produces

xT (T )Px(T )− xT (0)Px(0)

+

T∫

T−τ1

xT (α)S1x (α) dα

−
0∫

−τ1

xT (α)S1x (α) dα +

T∫

T−τ2

xT (α) S2x (α) dα

−
0∫

−τ2

xT (α)S2x (α) dα

<−
T∫

0

xT (t) (Q + Kj
T RKj)x (t) dt (9)

Because of closed-loop system (6) is asymptotically stable,

thus, lim
T→∞

xT (T ) Px(T ) = 0, lim
T→∞

T∫
T−τ1

xT (α) S1x (α) dα =

0, lim
T→∞

T∫
T−τ2

xT (α) S2x (α) dα = 0 and using zero initial

condition. Therefore, the following matrix inequalities can
be obtained:

∞∫

0

xT (t) {Q + KT
j RKj}x (t) dt

< ϕT (0)Pϕ (0) +

0∫

−τ1

ϕT (α) S1ϕ (α) dα

+

0∫

−τ2

ϕT (α) S2ϕ (α) dα

(10)

J0 = ϕT (0)Pϕ (0) +

0∫

−τ1

ϕT (α) S1ϕ (α) dα

+

0∫

−τ2

ϕT (α)S2ϕ (α) dα

(11)

This completes the proof.

Comment 1: There exists uncertainties in (7), we solve
controller parameter after processing the uncertainties. For
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the guaranteed cost control for the uncertainties system
(6), we have the following lemma.
Lemma 2. Suppose that there exist matrices of compatible
dimension Y, H, E,R, where R > 0 is symmetric, then

Y + HF (t)E + ET FT (t) HT < 0

where FT (t) F (t) ≤ R, for all F (t) ,if only and if there
exist ε > 0 satisfying the following inequality:

Y + ε2HHT + ε−2ET RE < 0
Theorem 3. Consider the system (6),inequality (7) holds
if only and if there is common positive-definite symmetric
matricesX, W1,W2,Mj , Lj , j = 1, · · · , r as well as scalar
ε > 0 satisfying the following inequality:




Ξ Z1i Z2ij H Z3i MT
j X X X

∗ −W1 0 0 Z3i 0 0 0 0
∗ ∗ −W2 0 0 0 0 0 0
∗ ∗ ∗ −ε2I 0 0 0 0 0
∗ ∗ ∗ ∗ −ε2I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −R−1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Q−1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −W1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −W2




< 0, i, j = 1, · · · , r (12)

where Ξ = (AiX + BiMj)
T + (AiX + BiMj) , Z1i =

A1iW1, Z2ij = B1iLj , Z3i = XET
1i and ”*” denotes the

transposed elements in the symmetric positions, then the
control law (5) is a fuzzy guaranteed cost control law and
Kj = GjX

−1, j = 1, · · · , r.

Proof. Set
˜

Ξ = (Ai + BiKj)
T

P + P (Ai + BiKj) + S1 +
S2 + Q + KT

j RKj , then inequality (7) is equivalent to the
following matrix inequality:



˜

Ξ PA1i PB1iKj

∗ −S1 0
∗ ∗ −S2


 +

[
PH
0
0

]
F (t) [ E1i E2i 0 ]

+




ET
1i

ET
2i
0


FT (t)

[
HT P 0 0

]
< 0

Applying lemma 2,we obtain



˜

Ξ PA1i PB1iKj

∗ −S1 0
∗ ∗ −S2


 + ε2

[
PH
0
0

]
[
HT P 0 0

]

+ε−2




ET
1i

ET
2i
0


 [ E1i E2i 0 ] < 0

using Schur complement, pre- and post-multiplying above
inequality by diag(P−1, I, I, I, I, I, I, I, I), respectively,
and let X = P−1,Mj = KjP

−1, Lj = KjW2,W1 =
S−1

1 ,W2 = S−1
2 , we obtain (12). This completes the proof.

Theorem 1 and 3 provide a sufficient condition for the ex-
istence of guaranteed cost controller via state-feedback for
(2). When LMIs (7) or (12) are feasible, each guaranteed
cost controller ensures the resulting closed-loop system is

asymptotically stable and minimizes an upper bound of
the closed-loop cost function. In view of this, it is desirable
to find a guaranteed cost control law which minimizes
the upper bound. For the fuzzy guaranteed cost control
problem, it is given by the following theorem.
Theorem 4. Consider the system (1) associated with cost
function (3). Suppose that the optimization problem

min
α,ε,W1,W2,S1,Q,Mj

α + tr(V1) + tr(V2) (13)

subject to

1) LMI(12)

2)
[
−α ϕT (0)
ϕ(0) −X

]
< 0 (14)

3)
[
−V1 NT

1
N1 −W1

]
< 0 (15)

4)
[
−V2 NT

2
N2 −W2

]
< 0 (16)

Has solutions α, ε, W1,W2, S1, Q, Mj ,where
0∫
−τ1

ϕ (α) ϕT (α) dα = N1N
T
1 ;

0∫
−τ2

ϕ (α) ϕT (α) dα = N2N
T
2 ;

tr(·) denotes the trace of the matrix (·). Then, the cor-
responding guaranteed cost controller (5) is an optimal
guaranteed cost controller in the sense that with this
controller the upper bound on the closed-loop cost function
(3) in minimal.

Proof. In fact, according to
0∫
−τ1

ϕ (α) S1ϕ
T (α) dα =

0∫
−τ1

tr(ϕ (α))S1ϕ
T (α) dα

= tr(N1N
T
1 S1) = tr(NT

1 S1N1)
0∫
−τ2

ϕ (α) S2ϕ
T (α) dα =

0∫
−τ2

tr(ϕ (α))S2ϕ
T (α) dα

= tr(N2N
T
2 S2) = tr(NT

2 S2N2)

And subject to 2) in the problem (13) is equivalent
to NT

1 S1N1 < V1;NT
2 S2N2 < V2, respectively. Thus,

min{α+tr(V1)+tr(V2)} guaranteed cost controller with re-
spect to (13) is an optimal guaranteed cost controller.This
completes the proof.

4. COMPUTER SIMULATION

In this section, to illustrate the proposed results, we apply
the above design technique to design a fuzzy guaranteed
cost controller for the following nonlinear systems.
Consider the following uncertain time delay system:
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·
x1 (t) = 0.2 sin (t) + (0.25 + sin (t))x1 (t− 4)

−1.5x2 (t) + 0.1x1 (t) x2 (t)

−u (t) + 0.1u (t− 6)
·

x2 (t) = x1 (t)− (3 + 0.2 cos (t))x2 (t)

+(0.1 + 0.3 cos (t))x2 (t− 4)

+0.1u (t)− 0.1u (t− 6)

y (t) = ϕ (t) =
[ −e

t
2

−1.2e
t
2

]
, t ∈ [−6, 0]

Setting up following fuzzy model:

Rule 1: IF x1 (t) is Max(M1), THEN
·
x (t) = (A1 + ∆A1)x (t) + A11x (t− τ1)

+B1u (t) + B12u (t− τ2)

Rule 2: IF x1 (t) is Min(M2) , THEN
·
x (t) = (A2 + ∆A2)x (t) + A12x (t− τ1)

+B2u (t) + B22u (t− τ2)

The membership functions of fuzzy sets are chosen as

µ1(x1 (t)) = x1(t)+1.5
3 , µ2(x1 (t)) = 1− µ1(x1 (t))

We have

A1 =
[

0 −1
1 −3

]
, A2 =

[
0 −2
1 −3

]
, B1 = B2 =

[−1
0.1

]

B11 = B12 =
[

0.1
−0.1

]
, F (t) =

[
sin (t) 0

0 cos (t)

]

A11 = A12 =
[

0.25 0
0 0.1

]
,H =

[
1 0
0 −1

]

E11 = E12 =
[

0.2 0
0 0.2

]
, E21 = E22 =

[
1 0
0 −0.3

]

Q =
[

1 0
0 1

]
, R = 1, ϕ(0) =

[ −1
−1.2

]

N1 =
[

0.6369 0.7590
0.7590 0.9152

]
, N2 =

[
0.7872 0.6147
0.6147 1.16

]
,

For the state-feedback guaranteed cost control, we choose
ε = 1 , applying Theorem 4, the feasible solutions to (13)
are given as following:

P =
[

0.2923 0.0963
0.0963 0.4009

]
, S1 =

[
2.7416 −0.2971
−0.2971 0.4203

]

S2 =
[

3.2150 −0.434
−0.434 0.3596

]
, α = 2.44, J0 = 25.626

K1 = [ 8.5153 −0.8178 ] ,K2 = [ 8.5328 −0.8899 ]

V1 =
[

3.9269 4.7122
4.7122 5.6547

]
, V2 =

[
4.9877 5.9847
5.9847 8.6173

]

With control law u (t) = µ1K1x (t)+µ2K2x (t), the closed-
loop system is asymptotically stable and a guaranteed cost
of the closed-loop system is J0 = 25.626 .The simulation
result on state feedback guaranteed cost control is shown
in Fig.1.

Fig. 1. Response of state via state feedback.

5. CONCLUSION

In this paper, we have considered the fuzzy guaranteed cost
control design problem for nonlinear uncertain systems
with state and input time-delay. The fuzzy guaranteed cost
control design methodology for state feedback is developed
in terms of the feasibility of linear matrix inequality. The
controller designed achieves a closed-loop asymptotically
stability and results in a minimal upper bound of the
closed-loop value of cost function. A numerical example
is also given to illustrate the design procedures and the
effectiveness of the approach developed in this paper.
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