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Abstract: An Image-Based Visual Servo (IBVS) control strategy for stabilisation of Vertical Take-Off
and Landing (VTOL) vehicles with respect to a fixed target is proposed. A visual feature based on the
combination of the first order un-normalized spherical moment and the image length of the target image
is considered. To avoid the lack of the measurement of the translational velocity of the camera and the
thrust of the vehicle, a nonlinear observer-based visual servo controller is proposed. Local asymptotic
stability of the system is proved and an estimate of the basin of attraction for the closed-loop system is
provided. Simulation results are finally presented to illustrate the performance of the control algorithm.

INTRODUCTION

Vision based algorithms have been extensively developed over
the last five years to control Unmanned Aerial Vehicles (UAV);
posing a number of unique problems in sensing and control. A
key issue is to provide robust and simple sensing and control
systems that stabilize the vehicle relative to its local environ-
ment. At the core of this problem is the ability of the vehicle to
measure its position and velocity relative to a local environment
and to measure the orientation and orientation velocity with
respect to the inertial frame. For payload and cost reasons,
this must be achieved using a limited sensor suite, typically
an Inertial Measurement Unit (IMU) and a camera. Using an
IMU for attitude and angular velocity estimation has heavily
studied in the last ten years and different algorithms have been
proposed and tested (traditional linear Kalman filter techniques
Jun (1999), EKF techniques Marins (2001); Rehbinder (2004)
and complementary filters Tayebi (2007); Thienel (2003); Ma-
hony (2005)). Using a camera as the primary sensor for relative
position leads to a visual servo control problem. Two main
approaches have been identified in visual servo-control, the
first one, termed Pose-Based Visual Servo (PBVS) involves
reconstruction of the target pose and leads to a Cartesian mo-
tion planning problem Hutchinson (1996). The second method,
termed Image-Based Visual Servo (IBVS), aims to control the
nonlinear dynamics of features in the image plane directly
Espiau (1992). It has the advantage to be inherently robust to
camera calibration and target modelling errors.

Such IBVS controllers have been proposed in recent works
using the first order un-normalized spherical moment of a set
of target points as image feature Hamel (2002); Bourquardez
(2006). This vector is in bijection with the cartesian pose of
the VTOL vehicle and, therefore, it can be used as the first
state of the system dynamics considered. To deal with the
full dynamics, the sum of visual flow of the observed target
points was used in earlier work Mahony (2007) to provide a
velocity estimate. The main drawback of this approach relies
on the fact that the visual flow is closely associated to the
inertial depth, obtained from visual flow integration, leading

to a non-observable system, Le Bras (2007). To overcome
this problem a new visual measurement feature is used in
Le Bras (2007); it is a combination of the first order un-
normalized spherical moment with the visual length of the
target image. The control strategy proposed in Le Bras (2007)
allows stability of the system without velocity measurements.
A virtual state is introduced to overcome the lack of the linear
velocity measurement while assuming perfect measurement of
the thrust input. The performances are satisfying as long as
good measurements of the thrust (magnitude and direction) are
available.

In this paper, an observer-based controller is proposed to allow
the control of the system without linear velocity and thrust mea-
surements. Local asymptotic stability of the system is proven
and an estimate of the basin of attraction for the closed-loop
system is provided.

The paper is organized as follows: In section 1, the nonlinear
visual dynamics presented in Le Bras (2007) is given. In section
2, a new nonlinear adaptive observer, providing specific fea-
tures to control the system, is derived. Section 3, is devoted to
the observer-based adaptive control; a Lyapunov control func-
tion for the positioning task is proposed and the stability anal-
ysis of the closed-loop system is discussed. Section 4 presents
simulation results to illustrate the performance of the control
algorithm. The final section (5) provides a short summary of
conclusions.

1. PROBLEM FORMULATION

Consider the images of n marks constituting a planar target
observed by a vision system mounted on the VTOL vehicle
throughout the flight. The dynamics of the visual feature along
with the dynamics of an idealised of VTOL vehicle in quasi-
hover have been previously presented in Le Bras (2007). As-
suming that the camera frame coincides with the VTOL frame
and the target marks form a convex set with known orthogonal
direction, these dynamics are given by (Le Bras (2007)):
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Fig. 1. Target length L(t) =
√

S and centroid q0 = ∑
RT (Pi−ξ )
‖Pi−ξ‖ .

q̇(ξ ) = −sk(Ω)q(ξ )− 1

d(t)
Q0V (1a)

V̇ = −sk(Ω)V + f/m (1b)

Ṙ = Rsk(Ω) (1c)

IΩ̇ = −sk(Ω)IΩ + Γ (1d)

where (ξ ,V,R,Ω) denote respectively the position, velocity,
orientation matrix and the angular rate vector of the VTOL,
(m, I) denote its mass and inertia matrix, d(t) is the inertial
depth of the camera, i.e, the inertial distance from the focal
point to the target plane and ( f ,Γ) denote the force and torque
applied at the vehicle on its center of mass. The force f com-
bines thrust, lift, gravity and drag components. It is convenient
to separate the gravity component from the combined aero-
dynamic forces and assume that the aerodynamic forces are
always aligned with the thrust in the body fixed frame 1 ,

f := −Te3 + mgRT e3 (2)

where T ∈ ℜ is a scalar input representing the magnitude of
external force (or thrust) applied in direction e3 = (0,0,1)′.
Control of the airframe is obtained by using the torque control
Γ = (Γ1,Γ2,Γ3) to align the force f as required to track the goal
trajectory.

The visual feature used q(ξ ),

q = q0 + nln(L) (3)

is a combination of the un-normalized centroid vector q0 (the
sum of the spherical image points of the target marks, Hamel
(2002)) and the image length L (the length of the target image
on the tangent plane to the image surface parallel to the target,
Le Bras (2007)), see Figure 1 .

Finally Q0 is a known positive definite matrix. Its expression is
described in Le Bras (2007).

The visual length L (Le Bras (2007)) is measurable with the
available sensors and is linked with the inertial depth:

L(t)d(t) =
1

ma
(4)

where a > 0 is an unknown parameter depending of the target
size.

It has been shown in Le Bras (2007) that a pertinent method
to control a VTOL through IBVS approach is to consider
separately dynamics (1a-1c) in the one hand, and dynamics (1d)
in the other hand.

An inner-loop controller regulates the orientation dynamics,
while the first dynamics (1a-1c) are controlled by the following
new control input:

u = ḟ + sk(Ω) f = (−Ω2T,Ω1T,−uT ) (5)

1 This is a reasonable assumption for the dynamics of a VTOL vehicle in quasi-

stationary flight where the exogenous force is dominated by the propeller force

while drag and forward thrust are negligible.

The magnitude of the thrust, is now considered as an internal
state of the system thanks to the following dynamic extension:

Ṫ = uT

The inner-loop provides a high gain stabilization of the vehicle
angular velocity based on direct measurement of the angular
velocity from the IMU. The outer-loop controller uses visual
features along with outputs of the partial observer. For a typical
VTOL vehicle, the time-scale separation between the two loops
is sufficient that the interaction terms can be ignored in the
control design.

Let b⋆ be a stationary desired centroid vector expressed in the
inertial frame and denote q⋆ = RT b⋆, it yields:

q̇⋆ = −sk(Ω)q⋆ (6)

Define δ1 = q−q⋆ a measurable centroid error, note that

δ1 = 0 ⇔ RT (Pi − ξ )

‖Pi − ξ‖ = RT b⋆ ⇔ Pi − ξ

‖Pi − ξ‖ = b⋆ ⇔ ξ = ξ ⋆

the above relation holds because the considered function ξ →
Pi−ξ
‖Pi−ξ‖ is a diffeomorphism since Q > 0. Finally denote Q =

L(t)Q0 the Jacobian matrix, W = amV the visual relative ve-
locity and F = a f the relative force. The following system is
considered in the sequel for the control design:

δ̇1 = −sk(Ω)δ1 −QW (7a)

Ẇ = −sk(Ω)W + F (7b)

Ḟ = −sk(Ω)F + au (7c)

Note that a appears as an unknown scale factor of the control
input u.

2. NONLINEAR PARTIAL OBSERVER

This section presents a new partial nonlinear observer aimed
to provide filtered variables allowing to control the system
without measurement of both state variables (W, f ). The main
idea is deduced from the research works of Krstic and Koko-
tovic Krstic (1995) and consists in defining virtual estimates
(q̂,Ŵ , F̂) of (q,W,F) built from the sum of two filtered vari-
ables:

q̂ = q1 + aq2, Ŵ = W1 + aW2, F̂ = F1 + aF2 (8)

such that (q̂,Ŵ , F̂) converges exponentially to (q,W,F). As
the parameter a is unknown, only a partial knowledge of the
estimate is given by this observer termed hereafter “partial
observer”.

Theorem 1. Consider the visual dynamics given by Equations
(7a-7c), assume that the UAV evolves in a domain such that:

∃σ > 0 such that: Q > σ Id (9)

Consider the following dynamics of the filter:

q̇1 = −sk(Ω)q1 −A1(q−q1)−QW1 (10a)

q̇2 = −sk(Ω)q2 + A1q2 −QW2 (10b)

Ẇ1 = −sk(Ω)W1 −A2(q−q1)+ F1 (10c)

Ẇ2 = −sk(Ω)W2 + A2q2 + F2 (10d)

Ḟ1 = −sk(Ω)F1 −A3(q−q1) (10e)

Ḟ2 = −sk(Ω)F2 + A3q2 + u (10f)

where (A1,A2,A3) are three feedback matrices defined as:
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A1 =
(k(γ2

2 −8)+ λ γ2γ2
1 )Id −4γ1Q

2(8− γ2
1 + γ2

2 )

A2 =
(2kγ1 −2λ γ1γ2)Id + 8Q

2(8− γ2
1 + γ2

2 )

A3 = λ
(λ γ3

1 + kγ1γ2 −8λ γ1)Id + 4γ2Q

2(8− γ2
1 + γ2

2 )

(11)

If the observer gains (γ1,γ2,λ ) are such that:

(γ1,γ2) ∈ (0;2)× (0;2)
λ < σ/4

16λ − γ2γ1σ < 0
(12)

then the virtual estimates (q̂,Ŵ , F̂), Eq. 8, converge exponen-
tially to (q,W,F).

Proof the proof lies on the design of a Lyapunov function
depending on observation errors

q̃ = q− q̂, W̃ = W −Ŵ , F̃ =
F − F̂

λ
(13)

Differentiating Eq. 13 and recalling Eqn’s 1a-1c and the filter
dynamics Eqn’s 10a-10f, yields:

˙̃q = −sk(Ω)q̃ + A1q̃−QW̃
˙̃W = −sk(Ω)W̃ + A2q̃+ λ F̃

˙̃F = −sk(Ω)F̃ +
1

λ
A3q̃

(14)

Now, consider the following Lyapunov function candidate:

L0 =
1

2

(

|q̃|2 + γ1q̃TW̃ + |W̃ |2 + |W̃ |2 − γ2W̃ T F̃ + |F̃|2
)

(15)

Introducing dynamics (14) in the time derivative of L0, we get:

L̇0 = q̃T (A1 +
γ1A2

2
)q̃ +W̃T (2A2 −Q+

γ1A1

2
− γ2A3

2λ
)q̃

+F̃T (
A3

λ
− γ2A2

2
+

γ1λ Id

2
)q̃

− γ1

2
W̃ T QW̃ + 2λW̃T F̃ − γ2λ

2
|F̃ |2

(16)

Introducing the expressions of the feedback matrices (11), the
time derivative of the Lyapunov function candidate becomes:

L̇0 = −k|q̃|2 − γ1

2
W̃ T QW̃ + 2λW̃T F̃ − γ2

2
λ |F̃|2 (17)

Using hypothesis (9) along with Eq. 12, one can insure that
the derivative of the Lyapunov function candidate is strictly
negative. Indeed, rewritten L̇0 as follows:

L̇0 ≤ −k|q̃|2 − γ1σ

4
|W̃ |2 − γ2λ

4
|F̃ |2

−
(

γ1σ

4
|W̃ |2 −2λW̃T F̃ +

γ2λ

4
|F̃ |2

) (18)

The term into the brackets, is a positive definite polynomial
function if:

16λ − γ2γ1σ < 0 (19)

which is compatible with the constraints on the observer
gains (Eq. 12). The Lyapunov function derivative can then be
bounded as follows

L̇0 < −k|q̃|2 − γ1σ

2
|W̃ |2 − γ2

2
|F̃ |2 (20)

and therefore, application of Lyapunov’s direct method (Khalil
(2002)) ensures that (q̃,W̃ , F̃) converge exponentially to zero.

3. CONTROL DESIGN

The proposed control strategy stabilizes the system (7a-7c) with
respect to the image features and observed data. A Lyapunov
function is designed through a backstepping process.

Define a first temporary storage function T1 as

T1 =
1

2
|δ1|2 (21)

Taking the time derivate of T1 yields:

Ṫ1 = −δ T
1 QW (22)

The following change of variable is also proposed:

ε = W − k1δ1 (23)

where k1 is a positive control gain. Define

ε1 = W1 − k1(q1 −q⋆) ε2 = W2 − k1q2

ε̂ = ε1 + aε2 ε̃ = ε − ε̂
(24)

The derivative of T1 can be written as:

Ṫ1 = −k1δ T
1 Qδ1 − δ T

1 Q(ε1 + aε2)− δ T
1 Qε̃

Define ρ = 1/a and ρ̂ an estimate of ρ , the estimation error is
denoted:

ρ̃ = ρ − ρ̂ (25)

The dynamics of T1 become:

Ṫ1 = −k1δ T
1 Qδ1 − δ T

1 Qδ2 −aρ̃δ T
1 Qε1 − δ T

1 Qε̃ (26)

where δ2 is a second visual error term defined as:

δ2 = ε2 + ρ̂ε1 (27)

Extend, now, T1 with the adaptation error ρ̃ to define the first
storage function S1:

S1 = T1 + a
ρ̃

2κρ

2

(28)

where κρ is a positive gain and design ρ̂ through:

˙̂ρ = −κρδ T
1 Qε1 (29)

Differentiating Eq. 28 and recalling (26) and (29), we obtain:

Ṡ1 = −k1δ T
1 Qδ1 − δ T

1 Qδ2 − δ T
1 Qε̃ (30)

The first term of S1 acts as a stabilizer of δ1, the second one
will be compensated through a second storage function, and, as
explained later in the proof, the last term will be compensated
by the observer dynamics.

Define, now, a second storage function

S2 =
a

2
|δ2|2 (31)

The dynamics of δ2 can be written as:

δ̇2 = −sk(Ω)δ2 + ∆obs
2 + F2 (32)

where ∆obs
2 is a term gathering measurable variables and ob-

server outputs (see its expression in Appendix, Eq. 54). Define

Fd
2 = −∆obs

2 + Qδ1 − k2δ2 (33)

where k2 is a positive control gain, and define a new error term
δ3 in the backstepping process as

δ3 = F2 −Fd
2 (34)

we obtain:

Ṡ2 = −k2|δ2|2 + δ T
2 Qδ1 + δ T

2 δ3 (35)

Note that the first term of these dynamics stabilizes the error
term δ2. The second term is cancelled in the dynamics of the
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sum S1 + S2. Then the last term has to be compensated by the
last storage function, that we define as follows:

S3 =
|δ3|
2

2

+
ã

2κa

2

(36)

where ã = a− â is the difference between the unknown param-
eter a and an adaptive variable â.

First, consider the dynamics of δ3:

δ̇3 = −sk(Ω)δ3 + ∆obs
3 + Mobs

3 W + u (37)

where ∆obs
3 and Mobs

3 are respectively a vector and a matrix
designed with measured and observed data. Their expressions
are given in Appendix (Eqn’s 56 and (55).

Then, design the control input u as follows:

u = −δ2 − k3δ3 −∆obs
3 −Mobs

3 (W1 + âW2)

−κ0MobsT
3 Mobs

3 δ3
(38)

where k3 and κ0 are two positive gains.

Finally design the dynamics of the adaptive variable â as:

˙̂a = −κaδ T
3 Mobs

3 W2 (39)

and differentiate the storage function S3, it yields:

Ṡ3 = −δ T
2 δ3 − k3|δ3|2 + δ T

3 Mobs
3 W̃ −κ0|MobsT

3 δ3|2 (40)

The combination of results obtained through the storage func-
tions design with the dynamics of the Lyapunov function (17)
of the observer allows to prove the stability of the closed-loop
system in a large basin of attraction. The following theorem
presents the main contribution of this paper:

Theorem 2. Consider the system dynamics (7a-7c) along with
the control input u defined by (5). Denote σ a positive parame-
ter such that

Q(ξ ⋆) > σ Id

where ξ ⋆ denotes the desired set point. Consider the following
Lyapunov function candidate

L = S1 + S2 + S3 + µL0 (41)

which combines the storage functions (S1,S2,S3) given by (21),
(31) and (36), and the Lyapunov function L0 of the filter (15)
(µ is a positive parameter).

Design the control input u as proposed in (38) along with
dynamics (39) and (29) of â and ρ̂ respectively.

Then there exists two positive parameters (µ ,Λ) such that L

is a Lyapunov function with a definite negative derivative all
initial condition such that:

L (0) < Λ, (42)

Therefore, the closed-loop trajectories converge asymptotically
to the desired set point ξ ⋆, the Jacobian matrix verifies

∀t ≥ 0 Q(t) > σ Id

and the observation errors (q̃,W̃ , F̃) converge exponentially to
zero.

Proof : First consider the dynamics of the storage function S3

(40) and note that the control input u (38) depends on the term
”−κ0MobsT

3 Mobs
3 δ3”, introduced by using Nonlinear Damping

Assignment techniques Krstic (1995) to provide the following
expression in the time derivative of S3:

δ T
3 Mobs

3 W̃ −κ0|MobsT
3 δ3|2

This expression verifies:

δ T
3 Mobs

3 W̃ −κ0|MobsT
3 δ3|2 ≤

1

κ0

|W̃ |2

Therefore, the proposed storage function S3 satisfies:

Ṡ3 = −δ T
2 δ3 − k3|δ3|2 +

1

κ0

|W̃ |2 (43)

Summing the three proposed storage functions (21), (31) and
(36), and computing the dynamics of their sum, we obtain:

d

dt
∑Si ≤−k1δ T

1 Qδ1 − k2|δ2|2 − k3|δ3|2 + δ T
1 Qε̃ +

|W̃ |
κ0

2

≤−(k1 −
1 + k1

2κ1

)δ T
1 Qδ1 − k2|δ2|2 − k3|δ3|2

+
k1κ1

2
q̃T Qq̃+W̃ (

κ1

2
Q+

1

κ0

Id)W̃

where κ1 is a positive gain designed such that:

k1 −
1 + k1

2κ1

> k1/2 (44)

Since the time derivative of the sum of the storage functions Si

depends on the observation error terms (q̃, w̃), let us extend this
sum with the Lyapunov function of the observer (15).

L = S1 + S2 + S3 + µL0

The next step of the proof consists in differentiating the above
function to prove that its time derivative is a definite negative
function. Note, However, that the time derivative of the Lya-
punov function of the observer (17) is exploitable only if the
trajectory remains in the area in which the hypothesis, Eq. 9, on
the jacobian matrix is ensured. This is done below by reducing
the initial condition set to a basin of attraction. This illustrates
a classical complexity in nonlinear observation: the observer
convergence may depend from the controller developed.

First, note that

Q(ξ ⋆) > σ Id and δ1(ξ
⋆) = 0

then, there exists mδ > 0 such that

∀ξ ∈ R3, |δ1(ξ )| < mδ ⇒ Q(ξ ) > σ Id (45)

Note that

L <
m2

δ

2
⇒ |δ1| < mδ

For all initial conditions such that

L (0) <
m2

δ

2
(46)

one can insure that Q(0) > σ Id . Invoking the continuity of the
solution, there exists a maximal time t0 > 0 (possibly infinite)
such that:

∀t ∈ [0;t0[, Q(t) > σ Id (47)

Consequently, for any t ∈ [0;t0[, we can introduce the observer
result (17) in the dynamics of L :

L̇ ≤ −k1

2
δ T

1 Qδ1 − k2|δ2|2 − k3|δ3|2 − q̃T (µkId −
k1κ1

2
Q)q̃

−W̃ T

(

(
µγ1σ

2
− 1

κ0

)Id −
κ1

2
Q

)

W̃

First, choose µ > 2
κ0γ1σ and note that (47) implies

∀t ∈ [0;t0[,
Q

σ
> −Id

we also get:

L̇ ≤ −k1

2
δ T

1 Qδ1 − k2|δ2|2 − k3|δ3|2 − (
µk

σ
− k1κ1

2
)q̃T Qq̃

−
(

µγ1

2
− 1

κ0σ
− κ1

2

)

W̃ T QW̃

Choosing the gain µ such that:

µ > max

(

2

κ0γ1σ
,

k1κ1σ

2k
,

2 + κ0κ1σ

κ0σγ1

)

(48)
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the time derivative of L becomes a definite negative function
on [0;t0[ which verifies:

∀t ∈ [0;t0[, L̇ ≤−k1σ

2
|δ1|2 − k2|δ2|2 − k3|δ3|2 (49)

Assume now that there exists any trajectory such that its maxi-
mal time t0 < ∞, the Lyapunov function decreasing in [0;t0], we
get:

L (t0) ≤ L (0) ⇒ Q(t0) > σ Id

Therefore, there exists δ t > 0 such that the condition in (47)
holds on [0;t0 +δt [. This contradicts the existence of a maximal
t0 < ∞ and implies that every trajectory starting in the basin of
attraction (46) is defined for all t ≥ 0 and verifies

Q(t) > σ Id ∀t ≥ 0

Consequently, Eq.49 holds for all time t ≥ 0.

Therefore, Lyapunov’s direct method ensures convergence of
all error terms to zero and stabilization of the closed-loop
system. This completes the proof.

Remark: In the above development we introduced the control
variable u (5) that is fully actuated by the system inputs (Ṫ ,Ω).
In practice, this assignment can be achieved leaving Ω3 free
to control independently the yaw dynamics (see e.g. Le Bras
(2007)).

4. SIMULATION RESULTS OF PRACTICAL
STABILIZATION OF A VTOL

In this section, the control algorithm presented in Sections 2-3
is applied to an idealized model of VTOL vehicle (m = 5kg,
helicopter type).

The simulations undertaken consider the case of tracking four
target marks on a vertical plane, centered three meters above
the ground level:

P′
i = (0,±0.5,−3± .5), i = 1, ..,4

The desired image of the target is chosen such that the camera
set point is located three meters ago from the target plane:

ξ ⋆ = (−3,0,−3) (50)

To define the size of the basin of attraction (46) around the
desired position we consider the simple situation in which the
vehicle is in hover conditions, such that 2 :

ξ0 = (−4.5,−2,−4)T , R0 = Id, ξ̇0 = Ω̇ = 0

This ensures that (W,F,Ω) ≈ 0. Choose the initial conditions
of the observer such that the estimate error terms be small
(q̃,W̃ , F̃)≈ 0. To simplify the following discussion, we assume
that the initial adaptation errors are small (ã, ρ̃) ≈ 0. This
corresponds, in practice, to a knowledge of the target.

In this situation, the initial value of the Lyapunov function,
giving the basin attraction, is approximated as a function of the
initial visual error term (L (0) ≈ Φ(δ1(0))):

L (0) ≈ a

2
δ1(0)T

(

Q+
(

k̄1 + k̄2δ1(0)T Qδ1(0)
)

Id

)

δ1(0)

+
a + k2

1

2a
|δ1(0)|2

(51)
where k̄1 = k1k2a−1 and k̄2 = κρ k2

1a−2 are two positive con-
stants. The control gains chosen for this example are k1 = k2 =

2 According to standard aeronautical conventions, height is measured down

relative to the aircraft, and hence, the height of the UAV is negative with respect

of the inertial frame.

Fig. 2. Cross section in the (y, x) plane of the basin of attraction
in blue, along with regions for which Q > 0.3Id (Dσ ) and
|δ1| < 2.5 (Dδ ). Trajectory shown is the projection onto
the (y, x) plane of the ideal closed-loop response of the
system starting on (−4.5,−2,−3).

0.1 along with small adaptive gains, as the adaptation dynamics
should be slow. Moreover given the UAV mass and the target
size, we get a = 0.2.

To evaluate the basin of attraction, we first plot the level
lines of the Jacobian matrix Q and choose a minimal value
σ compatible with a large basin. The corresponding level line
delimitates a first domain Dσ , we then consider the level lines
of |δ1| and choose a value mδ such that the delimitated area
Dδ be strictly contained in Dσ . Thus the basin of attraction is

given by the area delimitated by the level line L (0) =
m2

δ
2

and
plotted on Figure 2 along with σ = 0.3, mδ = 2.5. We notice
that it contains a large basin around the desired position (about
6 meters along the y-axis and 3 along the x-axis).

On Fig.3, the performance of the control algorithm in the ideal
case is shown; it clearly shows the asymptotic convergence of
the error signals. The UAV achieves perfect tracking after a
short transient, the initial oscillations are well damped and the
set point is accurately reached.

Figure 4 shows the performance of the observer along x-axis.
Both relative velocity, W , and force, F , are plotted with their
estimates (Ŵx, F̂x). The estimations are available in simulation
since the parameter a might be calculated with the target marks
coordinates. This illustrates the exponential convergence of the
observer.

5. CONCLUSION

In this paper, we have presented a combined observer and con-
troller for dynamic image based visual servo control of a VTOL
vehicle. The control task considered consists in stabilizing the
vehicle with respect to an unknown stationary target. Visual
data has been used to derive a partial observer and control
design, based on an adaptive backstepping control design with
nonlinear damping assignment, along with the an estimation
of basin of attraction for the closed-loop system has been pro-
vided. Finally, simulation results have been presented to illus-
trate the performance of the observer-based control algorithm.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8562



Fig. 3. Simulation results in the ideal case, upper figures show
resp. the position and attitude responses. The third figure
shows the 3D motion and the last one represents the
evolution of the target image in the scaled camera frame.

Fig. 4. Simulation results in the ideal case of the observer
outputs Ŵx (left) and F̂x (right). The real variables are in
blue and the observer outputs in red dash-lines.
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APPENDIX

The complex expressions of ∆obs
2 , ∆obs

3 and Mobs
3 are given in

this annexe, they are obtained by tedious calculations in the
backstepping process. To calculate ∆obs

3 and Mobs
3 , we used the

following lemma giving an expression of the time derivative of
the Jacobian matrix Q :

Lemma 3. Consider the following system:

ẋ = −sk(Ω)x + y (52)

along with the jacobian matrix Q, then:

d

dt
(Qx) = −sk(Ω)Qx + Qy + M1(x)W (53)

where M1(x) is a known matrix (see Le Bras (2007) for its
detailed expression)♦

Introducing

α2 = − 2k1γ1 + 4

8− γ2
1 − γ2

2

We also obtain:

∆obs
2 = −κρ(δ T

1 Qε1)ε1 +(k1A1 −A2)(ρ̂(q−q1)−q2)
+k1Q(ρ̂W1 +W2)+ ρ̂F1

(54)

Mobs
3 = −ρ̂(k1A1 −A2)Q+ Q2 + κρε1εT

1

(

M1(δ1)−Q2
)

−M1 (α2(ρ̂(q−q1)−q2)+ k1(ρ̂W1 +W2)− δ1)
(55)

∆obs
3 = ((k1A1 −A2)A1 −A3 − k1QA2) (ρ̂(q−q1)−q2)

+Q(ρ̂W1 +W2)+ k1Q(ρ̂F1 + F2)
+κρδ T

1 Q((k1A1 −A2)(q−q1)+ k1QW1 + F1)ε1

(56)
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