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Abstract: We perform in-depth analysis and provide improvements of a systematic component-
wise ultimate-bound computation method recently introduced in the literature. This method was
shown to have many advantages over traditional ultimate-bound computation methods based on
the use of quadratic Lyapunov functions. The analysis performed enhances our understanding of
the componentwise methodology, and simplifies the search for improvements. The improvements
provided aim at reducing the conservatism of the componentwise ultimate-bound computation
methods even further, hence leading to tighter bounds. These improvements do not alter the
systematic nature of the method.
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1. INTRODUCTION

The design of any realistic control system must necessarily
take account of the effect of perturbations on the perfor-
mance of the closed-loop system. Typically, the exact value
of a perturbation variable is unknown but assumed to be
bounded. In the presence of bounded perturbations that do
not vanish as the state approaches an equilibrium point,
asymptotic stability is in general not possible. However,
under certain conditions, the ultimate boundedness of the
system’s trajectories can be guaranteed (Khalil, 2002). A
guaranteed ultimate bound on the system’s trajectories
can be associated with good “attenuation” of the effect of
perturbations. Estimation of an ultimate bound is of in-
terest, e.g., in systems involving quantization (Williamson,
1991), unknown disturbance signals (Rapaport and As-
tolfi, 2002), and controller design via approximate discrete-
time models (Nešić and Teel, 2004).

A standard approach for the computation of ultimate
bounds is the use of level sets of suitable Lyapunov func-
tions (see, e.g., Section 9.2 of Khalil, 2002). This Lyapunov
approach can be applied to very general classes of systems,
including nonlinear, and it is thus very powerful. However,
this approach may result in conservative bounds in the
linear case due to the loss of the structure of the system
and also possibly of the perturbation, whose norm typi-
cally needs to be bounded for the analysis. Kofman (2005),
Kofman et al. (2007a) and Haimovich (2006) presented
a new method for ultimate bound computation based on
componentwise analysis of the system in modal coordi-
nates. This method allows direct derivation of componen-
twise ultimate bounds, exploiting the system geometry as
well as the perturbation structure and requiring neither
1 email: haimo@fceia.unr.edu.ar

the computation of a Lyapunov function for the system
nor bounding the norm of the perturbation vector. The
examples in the latter references show that this componen-
twise approach may in some cases provide bounds that are
much tighter than those obtained via standard Lyapunov
analysis. In addition, this componentwise ultimate-bound
computation approach has been successfully applied to the
analysis of sampled-data systems involving quantization
(Haimovich et al., 2007) and to the development of novel
controller design methods (Kofman et al., 2007b, 2008).

The current work analyzes and improves the component-
wise ultimate-bound computation method of Kofman et al.
(2007a) for continuous-time systems in the case of con-
stant perturbation bounds. We provide three main con-
tributions. First, we modify Theorem 1 of Kofman et al.
(2007a) so that a tighter ultimate-bound can be obtained.
Second, we show exactly in what sense the ultimate bounds
computed with our method are invariant under different
choices of a Jordan decomposition required. The impor-
tance of this result lies in that it indicates whether and how
our method can be further improved. Third, we outline a
method for obtaining the tightest ultimate bound possible
via our componentwise approach, point out the difficulties
involved, and suggest a possible solution. An additional
contribution of the current paper is the illustration of the
shape of the implicit ultimate bounds given, which is not
evident at first sight.

Notation. R and C denote the sets of real and complex
numbers, respectively. |M | and Re(M) denote the elemen-
twise magnitude and real part, respectively, of a matrix
or vector M . If x(t) is a vector-valued function, then
lim supt→∞ x(t) denotes the vector obtained by taking
lim supt→∞ of each component of x(t), and similarly for
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‘max’. If x, y ∈ Rn, the expression ‘x � y’ denotes the
set of componentwise inequalities xi ≤ yi, i = 1, . . . , n,
between the components of x and y. R+ and R+,0 denote
the positive and nonnegative real numbers. Ir denotes the
r× r identity matrix, and j the imaginary unit (j2 = −1).

2. PROBLEM STATEMENT AND PREVIOUS
RESULTS

We consider a system defined by
ẋ(t) = Ax(t) + u(t), (1)

where x(t) ∈ Rn denotes the system state, u(t) ∈ Rn a
perturbation input and A ∈ Rn×n is Hurwitz. Although
the precise evolution of the perturbation input u is un-
known, it is assumed that u is componentwise bounded as
follows:

|u(t)| � u, for all t ≥ 0, (2)
where u ∈ Rn

+,0. We emphasize that (2) represents a
bound for each component of the perturbation input u.
The issue that we address in this paper is the computation
of an ultimate bound for the state x of system (1) when
the perturbation u satisfies the componentwise constant
bound (2). We will analyze and improve on the following
result of Kofman et al. (2007a).
Theorem 1. (Theorem 1(ii) of Kofman et al. (2007a)).
Consider system (1) where x(t), u(t) ∈ Rn, and where
A ∈ Rn×n is a Hurwitz matrix with (complex) Jordan
canonical form Λ = V −1AV . Suppose that u(t) satisfies
(2) and define

β(Λ, V,u) ,
∣∣[Re(Λ)]−1

∣∣ · |V −1| · u, (3)

γ(Λ, V,u) , |V |β(Λ, V,u). (4)
Then, given any initial condition x(0) ∈ Rn and positive
vector ε ∈ Rn

+, a finite time tf = tf (ε, x(0)) exists so that
for all t ≥ tf ,

a’) |V −1x(t)| � β(Λ, V,u) + ε,
b’) |x(t)| � γ(Λ, V,u) + |V | ε,
or, equivalently, for any initial condition x(0) ∈ Rn,

a) lim supt→∞ |V −1x(t)| � β(Λ, V,u),
b) lim supt→∞ |x(t)| � γ(Λ, V,u).

Note that the quantities β and γ defined in (3)–(4) are
vectors with nonnegative components, and that a) and b)
above express bounds for each component of V −1x(t) or
x(t) (see also the Notation section above). We refer to the
bound given by a) above as implicit and to that given by
b) as explicit.

The main aim of the current paper is to investigate the
properties of and to derive improvements on the bounds
given by Theorem 1.

3. BOUND PROPERTIES AND IMPROVEMENTS

In this section, we present the main contributions of the
paper. In Section 3.1, we modify the result of Theorem 1
so that tighter ultimate bounds may be obtained in some
cases. In Section 3.2, we derive useful properties of both
the bounds given by Theorem 1 and their improved coun-
terparts derived in Section 3.1. In Section 3.3, we outline
a method to compute the tightest ultimate bounds that

can be obtained by means of the componentwise methods
presented.

3.1 Tighter Bound

The following theorem is only a slight modification of
Theorem 1. This modification gives a tighter ultimate
bound in some cases.
Theorem 2. Consider system (1) where x(t), u(t) ∈ Rn,
and where A ∈ Rn×n is a Hurwitz matrix with (complex)
Jordan canonical form Λ = V −1AV . Suppose that u(t)
satisfies (2) and define

ψ(Λ, V,u) ,
∣∣[Re(Λ)]−1

∣∣ max
|u|�u

|V −1u|, (5)

φ(Λ, V,u) , |V |ψ(Λ, V,u), (6)
where the maximum in (5) is taken componentwise. Then,
for any initial condition x(0) ∈ Rn,

a) lim supt→∞ |V −1x(t)| � ψ(Λ, V,u),
b) lim supt→∞ |x(t)| � φ(Λ, V,u).

In addition, ψ(Λ, V,u) � β(Λ, V,u) and φ(Λ, V,u) �
γ(Λ, V,u), with β and γ as defined in (3)–(4).

Proof. The proof of Theorem 1 of Kofman et al. (2007a) is
based on the coordinate transformation x = V z, whereby
the system equation (1) reads

ż(t) = Λz(t) + v(t),

with v(t) , V −1u(t). Any subsequent derivation is based
on a bound for each component of |v(t)|. We have

|v(t)| = |V −1u(t)| � max
|u|�u

|V −1u| � |V −1|u. (7)

This establishes that max|u|�u |V −1u| is a suitable bound
for |v(t)|, which may be tighter than the bound |V −1|u
employed in Kofman et al. (2007a). Items a) and b) above
are then established by following exactly the same steps
as in the proof of Theorem 1 of Kofman et al. (2007a).
The fact that ψ(Λ, V,u) � β(Λ, V,u) and φ(Λ, V,u) �
γ(Λ, V,u) follows straightforwardly from (7). 2

The computation of (5) requires the solution to the n
optimization problems max|u|�u |V −1u|. We next show
that the solution to these problems can be easily obtained.
Express the matrix V −1 ∈ Cn×n as

W , V −1 = X + jY, (8)
where X = Re(V −1) and Y = Im(V −1). Let WT

i , XT
i , and

Y T
i denote the i-th rows of W , X, and Y , respectively, and

note then that |V −1u| = col(|WT
1 u|, . . . , |WT

n u|). We have

|WT
i u| =

√
(XT

i u)2 + (Y T
i u)2

=
√
uT (XiXT

i + YiY T
i )u. (9)

Therefore, max|u|�u |V −1u| is a set of n constrained convex
maximization problems, each over the convex and bounded
polyhedral constraint set C , {u ∈ Rn : |u| � u}.
Therefore, its solution can be found by evaluating each
component of |V −1u| on the extreme points of C, E(C)
(see, e.g., Borwein and Lewis, 2000):

max
|u|�u

|V −1u| = max
u∈C

|V −1u| = max
u∈E(C)

|V −1u|. (10)

We show how this is computed in Example 1 below.
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Proposition 3. Consider the statements of Theorems 1
and 2, and suppose that all the entries of V are real. Then,
β(Λ, V,u) = ψ(Λ, V,u) and γ(Λ, V,u) = φ(Λ, V,u), for all
possible Λ, V and u.

Proof. Since all the entries of V are real, then those of
V −1 also are real. Let WT

i denote the i-th row of V −1.
Since Wi ∈ Rn, then max|u|�u |WT

i u| = |WT
i |u. There-

fore, max|u|�u |V −1u| = |V −1|u, whence β(Λ, V,u) =
ψ(Λ, V,u). In turn, it follows from this fact, (4) and (6)
that γ(Λ, V,u) = φ(Λ, V,u). 2

Proposition 3 shows that the bounds given by Theorems 1
and 2 coincide if the entries of V are all real. However, if
this is not the case, then the bounds given by Theorem 2
may indeed be tighter than those of Theorem 1, as the
following example shows.
Example 1. Consider system (1) where

A = −

[4.4 9.2 4.1
6.2 7.4 9.4
7.9 1.8 9.2

]
, u =

[3
2
1

]
.

A Jordan canonical form of A above is Λ = V −1AV , with

Λ =

[−19.7 0 0
0 −0.64 + j3 0
0 0 −0.64− j3

]
,

V =

[0.54 0.71 0.71
0.67 −0.045− j0.35 −0.045 + j0.35
0.52 −0.55 + j0.27 −0.55− j0.27

]
.

We directly compute, from (3) and (4) in Theorem 1,

β(Λ, V,u) =

[0.17
7.23
7.23

]
, γ(Λ, V,u) =

[10.32
5.26
8.91

]
. (11)

To compute ψ from (5), we first compute the extreme
points of the polyhedral set C , {u ∈ Rn : |u| � u},
namely E(C). This gives E(C) = {ui : i = 1, . . . , 8}
with u1 = [3, 2, 1]T , u2 = [−3, 2, 1]T , u3 = [3,−2, 1]T ,
u4 = [−3,−2, 1]T , and ui = −ui−4 for i = 5, . . . , 8.
Since |V −1u| = |V −1(−u)|, we need to evaluate |V −1u|
on only half of the extreme points to obtain the required
maximum. We have

|V −1u1| =

[ 3.4
0.87
0.87

]
, |V −1u2| =

[0.04
3.3
3.3

]
,

|V −1u3| =

[1.33
4.2
4.2

]
, |V −1u4| =

[2.1
1.7
1.7

]
.

Therefore, we have

max
|u|�u

|V −1u| = max
u∈E(C)

|V −1u| =

[3.4
4.2
4.2

]
.

We next compute, from (5) and (6) in Theorem 2,

ψ(Λ, V,u) =

[0.17
6.6
6.6

]
, φ(Λ, V,u) =

[9.42
4.81
8.14

]
. (12)

Comparison of (11) and (12) shows that the bounds given
by Theorem 2 are indeed tighter than their corresponding
ones of Theorem 1, i.e., ψ � β and φ � γ. ◦

3.2 Bound Properties

Theorem 1 and its improved counterpart, Theorem 2,
provide ultimate bounds for each component of the system
state. These ultimate bounds require the matrices Λ and
V from a Jordan decomposition of the system matrix A
[see (3)–(6)]. The matrix Λ contains the Jordan blocks
corresponding to the eigenvalues of A, and V the corre-
sponding eigenvectors and additional vectors required to
yield the Jordan canonical form. Recall that for a given
A, these matrices Λ and V are not unique. Therefore, in
this section we answer the question of whether different
choices of Λ and V may yield different bounds according
to the method of Theorem 1 or Theorem 2.

In the sequel, we will employ the following definition.
Definition 1. We say that (Λ, V ) is a Jordan decomposi-
tion of a matrix A ∈ Rn×n if Λ = V −1AV and Λ is in
(complex) Jordan canonical form. ◦

We begin by finding all possible Jordan decompositions
of a given matrix. We will then analyze whether it is
possible to optimize the bounds given by Theorems 1 or 2
by selecting different Jordan decompositions.

Given the system matrix A ∈ Rn×n, let (Λ̄, V̄ ) be a Jordan
decomposition of A. We must have

Λ̄ = diag(J1, . . . , Jk), (13)

Ji =

[ λi 1 0 ... 0
0 λi · · ·
· · · · 0
· · · · 1
0 ... ... 0 λi

]
∈ Cri×ri (14)

where for i = 1, . . . ,k, Ji is a Jordan block of order ri

with eigenvalue λi. The orders ri satisfy
∑k

i=1 ri = n. Let
the columns of V̄ be grouped as follows:

V̄ =
[
V̄1| . . . |V̄k

]
, V̄i ∈ Cn×ri , (15)

where for i = 1, . . . ,k, V̄i is a group of ri columns of
V̄ , corresponding to the Jordan block Ji. From Λ̄ and V̄
we may obtain all other Jordan decompositions of A as
follows. First, we may multiply V̄ by the following matrix:

M , diag(M1, . . . ,Mk), (16)
where each Mi ∈ Cri×ri is a Toeplitz 2 matrix of the form

Mi =

[
1 qi,1 ... qi,ri−1

0 1 · ·
· · · qi,1
0 ··· 0 1

]
. (17)

Second, we may scale the columns of V̄ in such a way
that the same scaling factor αi be applied to each group
of columns V̄i: [

α1V̄1| . . . |αkV̄k

]
= V̄ D,

D , diag(α1Ir1 , . . . , αkIrk), αi ∈ C \ {0}. (18)
Third, we may also reorder the Jordan blocks Ji of Λ̄
and the corresponding groups of columns of V̄ , V̄i. In
matrix notation, this is achieved via multiplication by a
permutation matrix P ∈ {0, 1}n×n, as follows:

V = V̄ P, Λ = P−1Λ̄P. (19)
Combining the three operations mentioned above, we may
thus obtain other Jordan decompositions (Λ, V ) of A from
(Λ̄, V̄ ) as follows:

V = V̄ MDP, Λ = P−1Λ̄P. (20)
We have the following result.
2 Toeplitz matrices are constant along diagonals.
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Lemma 4. Let (Λ̄, V̄ ) be a Jordan decomposition of A.
Then all other Jordan decompositions (Λ, V ) ofA are given
by (20), where M satisfies (16)–(17) for some qi,` ∈ C,
i = 1, . . . ,k, ` = 1, . . . ,ri − 1, k is the number of Jordan
blocks of Λ̄, ri is the order of the i-th Jordan block, D
satisfies (18), and P ∈ {0, 1}n×n is a permutation matrix
such that Λ is just a reordering of the Jordan blocks of Λ̄
and each Jordan block remains unchanged.

Proof. We shall establish that (Λ, V ) is a Jordan decom-
position of A. The proof that these are all possible Jordan
decompositions is left to the reader. Since Λ̄ is in Jordan
canonical form and Λ is just a reordering of the Jordan
blocks of Λ̄, then Λ also is in Jordan canonical form. Next,
we have:

V ΛV −1 = V̄ MDP P−1Λ̄P P−1D−1M−1V̄ −1

= V̄ MDΛ̄D−1M−1V̄ −1.

From (13) and (18), it follows that DΛ̄ = Λ̄D. Also,
from (13)–(14) and (16)–(17), it can easily be shown that
M Λ̄ = Λ̄M . Using these facts in the equation above yields

V ΛV −1 = V̄ MDΛ̄D−1M−1V̄ −1

= V̄ Λ̄MDD−1M−1V̄ −1 = V̄ Λ̄V̄ −1,

which establishes that (Λ, V ) is indeed a Jordan decompo-
sition of A. 2

We are now ready to state the main result of this section.
Theorem 5. Let (Λ̄, V̄ ) be a Jordan decomposition of A ∈
Rn×n and let Λ and V satisfy (20), where M satisfies
(16)–(17), D satisfies (18), and the permutation matrix
P ∈ {0, 1}n×n is such that Λ is just a reordering of the
Jordan blocks of Λ̄. Then, for all u ∈ Rn

+,0

γ(Λ, V,u) = γ(Λ̄, V̄ M,u), (21)
φ(Λ, V,u) = φ(Λ̄, V̄ M,u). (22)

Before proving Theorem 5, the following comments are
in order. First, note that Theorem 5 establishes that the
explicit bounds given by either Theorem 1 or Theorem 2
are invariant under reordering of the Jordan blocks of Λ̄.
Second, Theorem 5 shows that these bounds are, in addi-
tion, invariant under scaling of the groups of columns of
V̄ corresponding to each Jordan block of Λ̄. Consequently,
the only operation on V̄ that may alter the explicit bounds
provided by Theorems 1 or 2 is multiplication by M , as
defined in (16)–(17).

The proof of Theorem 5 requires the following result,
whose proof is immediate.
Lemma 6. Let T ∈ Cn×n be an arbitrary invertible ma-
trix, D ∈ Cn×n be diagonal and nonsingular, and P ∈
{0, 1}n×n be a permutation matrix. Then,

i) |D−1| = |D|−1.
ii) |TD| = |T ||D|.
iii) |D−1T | = |D−1||T |.

iv) |TP | = |T |P .
v) |P−1T | = P−1|T |.

Proof of Theorem 5. Since Re(Λ) constitutes a com-
ponentwise operation on the elements of Λ, and since
Λ = P−1Λ̄P is just a reordering of the elements of
Λ̄, then Re(Λ) = P−1Re(Λ̄)P , whence [Re(Λ)]−1 =
P−1[Re(Λ̄)]−1P . Applying Lemma 6 iv) and v), then∣∣[Re(Λ)]−1

∣∣ = P−1
∣∣[Re(Λ̄)]−1

∣∣P. (23)

From (20), we have

|V | = |V̄ MDP | iv)
= |V̄ MD|P ii)

= |V̄ M ||D|P (24)

|V −1| = |P−1D−1M−1V̄ −1| v)
= P−1|D−1M−1V̄ −1|

iii)
= P−1|D−1||M−1V̄ −1|, (25)

where the text over the equal signs above shows which part
of Lemma 6 is being applied. From (13), it follows that∣∣[Re(Λ̄)]−1

∣∣ = diag(|Re(J1)−1|, . . . , |Re(Jk)−1|),
and from (18)

|D| = diag(|α1|Ir1 , . . . , |αk|Irk).
It thus follows that

|D|
∣∣[Re(Λ̄)]−1

∣∣ =
∣∣[Re(Λ̄)]−1

∣∣ |D|. (26)
Combining (23)–(25) yields

|V |
∣∣[Re(Λ)]−1

∣∣ |V −1|
= |V̄ M ||D|PP−1

∣∣[Re(Λ̄)]−1
∣∣PP−1|D−1||M−1V̄ −1|

(26)
= |V̄ M |

∣∣[Re(Λ̄)]−1
∣∣ |D||D−1||M−1V̄ −1|

i)
= |V̄ M |

∣∣[Re(Λ̄)]−1
∣∣ |M−1V̄ −1|. (27)

Therefore, (21) is established from (4), (3), and (27). Next,
we have

max
|u|�u

|V −1u| = max
|u|�u

P−1|D−1||M−1V̄ −1u|

= P−1|D−1|max
|u|�u

|M−1V̄ −1u|. (28)

Therefore,

|V |
∣∣[Re(Λ)]−1

∣∣ max
|u|�u

|V −1u| =

|V̄ M |
∣∣[Re(Λ̄)]−1

∣∣ max
|u|�u

|M−1V̄ −1u|. (29)

Then, (22) is established from (6), (5), and (29). This
concludes the proof of Theorem 5. 2

Corollary 7. Suppose that the system matrix A ∈ Rn×n

is diagonalizable and let (Λ̄, V̄ ), (Λ, V ) be any two Jordan
decompositions of A. Then, for all u ∈ Rn

+,0

γ(Λ̄, V̄ ,u) = γ(Λ, V,u), (30)
φ(Λ̄, V̄ ,u) = φ(Λ, V,u). (31)

Proof. Since A is diagonalizable, then any Jordan decom-
position of A must necessarily comprise n Jordan blocks,
each of order 1. Consequently, given an arbitrary Jor-
dan decomposition (Λ̄, V̄ ) any other Jordan decomposition
(Λ, V ) must satisfy (20), with M = In from (16)–(17)
because k = n and ri = 1 for i = 1, . . . ,k. The result
is then established by application of Theorem 5. 2

The main conclusion of this subsection is thus that the
explicit bounds provided by either Theorem 1 or Theo-
rem 2 might be improved by selecting a suitable Jordan
decomposition only in the case when the system matrix A
is not diagonalizable, and that this may be achieved only
via multiplying the eigenvector matrix V by a matrix M
satisfying (16)–(17).

3.3 Optimized Bound

We have already shown that the explicit bounds given
by Theorems 1 and 2 are invariant under reordering of
the Jordan blocks of the system matrix and under scaling
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of columns of V . In this section, we outline a method to
optimize the bounds given by Theorems 1 or 2.

Given a Jordan decomposition (Λ̄, V̄ ) of the system ma-
trix A, according to Theorem 5 we know that the only
other Jordan decompositions of A that may yield differ-
ent explicit componentwise ultimate bounds are given by
(Λ̄, V̄ M), where M satisfies (16)–(17). We next seek the
matrix M that yields the smallest explicit componentwise
ultimate bounds γ or φ, as given by Theorems 1 and 2.
We thus pose the following optimization problems.
Problem 8. Given a Jordan decomposition (Λ̄, V̄ ) of the
system matrix A ∈ Rn×n, such that Λ̄ satisfies (13)–(14),
where k is the number of Jordan blocks of Λ̄ and ri is the
order of the i-th Jordan block, for i = 1, . . . ,k, solve

γ̃s , min
M

γs(Λ̄, V̄ M,u), or φ̃s , min
M

φs(Λ̄, V̄ M,u)

for s = 1, . . . , n, where γs and φs denote the s-th compo-
nents of the bounds γ and φ given by Theorems 1 and 2,
respectively, subject to

• M satisfies (16)–(17), qi,` ∈ C for i = 1, . . . ,k and
` = 1, . . . ,ri − 1. ◦

The solution to Problem 8 gives the tightest explicit
ultimate bounds that can be obtained by application
of Theorems 1 or 2. However, the complexity of these
optimization problems increases with the order of the
Jordan blocks of Λ̄, as we next show for γ. A similar
analysis can be performed for φ.

From (4) and (3), it follows that
γ(Λ̄, V̄ M,u) = |V̄ M |

∣∣[Re(Λ̄)]−1
∣∣ |M−1V̄ −1|u. (32)

Let the rows of V̄ −1 be grouped as follows:
V̄ −1 = col(ZT

1 , . . . , Z
T
k ), (33)

where ZT
i ∈ Cri×n, and recall grouping the columns of V̄

as in (15). With this notation and recalling (13) and (16),
we can write

γ(Λ̄, V̄ M,u) =
k∑

i=1

|V̄iMi||Re(Ji)−1||M−1
i ZT

i |u. (34)

From (17), it follows that M−1
i is Toeplitz of the form

M−1
i =

[
1 pi,1 ... pi,ri−1

0 1 · ·
· · · pi,1
0 ... 0 1

]
, (35)

where pi,` satisfy the recursion

pi,` = −
∑̀
m=1

qi,mpi,`−m, with pi,0 , 1, (36)

for i = 1, . . . ,k and ` = 1, . . . ,ri − 1. Note from (36)
that each quantity pi,` is a polynomial in the variables
qi,1, . . . , qi,`, and that the degrees of these polynomials
increase with the order ri of the corresponding Jordan
block. As an example, we have, for a Jordan block Ji of
order ri = 4:

pi,1 = −qi,1, pi,2 = −qi,2 + q2i,1, (37)

pi,3 = −qi,3 + 2qi,2qi,1 − q3i,1. (38)
Therefore, the combination of (32), (34), and (35)–(36)
shows that Problem 8 involves optimizing over sums and
possibly products of absolute values of polynomials in the
quantities qi,`, where the complexity of such optimization
problem increases with the order of the Jordan blocks of

Λ̄. Should the complexity of the optimization problem be
prohibitive, a suboptimal solution can easily be obtained
by optimizing over only some of the qi,`, leaving the rest
fixed at an arbitrary value. For example, for a Jordan
block Ji of order ri = 4, setting qi,1 = 0 yields linear
expressions in (37)–(38). The resulting bounds, though
possibly suboptimal, will nonetheless be not worse than
those obtained by direct application of Theorem 1 using
the given Jordan decomposition (Λ̄, V̄ ) of A.

We next provide an example of application of the bound
optimization procedure of Problem 8.
Example 2. Consider system (1) where

A =
[
0.2 −0.8
1.8 −2.2

]
, u =

[
2
3

]
. (39)

A Jordan decomposition (Λ̄, V̄ ) of A in (39) is

Λ̄ =
[
−1 1
0 −1

]
, V̄ =

[
0.4 0.2
0.6 −0.2

]
. (40)

Direct application of Theorems 1 or 2 (recall that accord-
ing to Proposition 3, there is no difference in applying
either theorem in this case, since the entries of V̄ are all
real) yields:

γ(Λ̄, V̄ ,u) = φ(Λ̄, V̄ ,u) = [9.2 12.6]T . (41)
We see that Λ̄ = J1 ∈ R2×2, i.e., Λ̄ consists of only one
Jordan block of order 2 (k = 1, r1 = 2). The matrix M
over which the optimization of Problem 8 is performed has
the form

M =
[
1 q1,1

0 1

]
, with M−1 =

[
1 p1,1

0 1

]
, (42)

where, according to (36), we have p1,1 = −q1,1. Defining
q , q1,1 and operating as outlined above, we obtain

γ(Λ̄,V̄ M,u) =

[
γ1

γ2

]
=

[
0.8 |1− 3q|+ 3.6 |1 + 2q|+ 4.8
3.6 |1− 3q|+ 1.8 |1 + 2q|+ 7.2

]
(43)

Eq.(43) clearly shows that γ(Λ̄, V̄ M,u) depends on the
value of q, and hence depends on the matrix M . The
optimized bound is γ̃1 = minq∈C γ1 = 6.8, (at q =
−1/2), γ̃2 = minq∈C γ2 = 10.2, (at q = 1/3).We thus
obtain the optimized bound [6.8 10.2]T , tighter than (41).
Note that the tightest bounds for each component are
obtained for different values of q, and hence correspond
to different Jordan decompositions of A. This means that
the optimized bound cannot result from application of
Theorem 1 using a single Jordan decomposition of A. ◦

4. IMPLICIT BOUND RESULTS

The main aim of this section is to give insight into
the shape of the implicit ultimate bounds provided by
Theorems 1 and 2. These implicit ultimate bounds are
given by Theorems 1a) and 2a). According to these results,
if (Λ̄, V̄ ) is a Jordan decomposition of the system matrix
A ∈ Rn×n, note that associated with each Jordan block
Ji ∈ Cri×ri of Λ̄, there is a set of ri inequalities:

• Theorem 1a):
lim sup

t→∞
|ZT

i x(t)| � |Re(Ji)−1||ZT
i |u, (44)

• Theorem 2a):
lim sup

t→∞
|ZT

i x(t)| � |Re(Ji)−1|max
u�u

|ZT
i u|, (45)
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for i = 1, . . . ,k, where k is the number of Jordan blocks
of Λ̄ and ZT

i ∈ Cri×n is a group of ri rows of V̄ −1 that
corresponds to Jordan block Ji, as in (33).

The following result shows that not all inequalities above
are necessarily independent.
Lemma 9. Let (Λ̄, V̄ ) be a Jordan decomposition of the
system matrix A ∈ Rn×n. Let Λ̄ satisfy (13)–(14), where
k is the number of Jordan blocks of Λ̄ and ri is the order of
the i-th Jordan block. Suppose that J` is a Jordan block
of Λ̄ with complex eigenvalue λ` /∈ R and of order r`.
Then, there exists Js, another Jordan block of Λ̄, with
eigenvalue λs = λ∗` , the complex conjugate of λ`, and of
order rs = r`. Then, the two sets of rs = r` inequalities
given by (44) above for i = `, s coincide, and the same
happens for the two sets given by (45) for i = `, s.

Proof. That Js must exist follows from the fact that A
has real entries and Λ̄ is a Jordan canonical form of A.
The entries of J` and ZT

` necessarily are the complex
conjugates of those of Js and ZT

s , respectively. Then,
Re(J`) = Re(Js), |ZT

` | = |ZT
s |, and |ZT

` u| = |ZT
s u| and

|ZT
` x| = |ZT

s x|, since x, u ∈ Rn. Therefore,
|Re(J`)−1||ZT

` |u = |Re(Js)−1||ZT
s |u

|Re(J`)−1|max
u�u

|ZT
` u| = |Re(Js)−1|max

u�u
|ZT

s u|.

The result follows from these equalities, jointly with the
fact that |ZT

` x| = |ZT
s x| for all x ∈ Rn. 2

Lemma 9 shows that only half of the inequalities given
by Theorems 1a) or 2a) for a pair of complex conjugate
eigenvalues need to be considered, since the other half is
equivalent. We next provide an illustration of this fact.
Example 3. Consider again A and u, and the Jordan
decomposition (Λ, V ) given in Example 1. We have Λ =
diag(J1, J2, J3) with J1 = −19.7, J2 = −0.64 + j3, J3 =
−0.64− j3, and we can straightforwardly compute

V −1 =

[
ZT

1

ZT
2

ZT
3

]
=

[ 0.56 0.52 0.68
0.49−j0.47 −0.2+j0.9 −0.26−j0.68
0.49+j0.47 −0.2−j0.9 −0.26+j0.68

]
. (46)

Note that we can apply Lemma 9 with ` = 2 and s = 3.
Recalling (11) and (12), it follows from:

• Theorem 1a):
lim sup

t→∞
|ZT

2 x(t)| � 7.23, lim sup
t→∞

|ZT
3 x(t)| � 7.23.

• Theorem 2a):
lim sup

t→∞
|ZT

2 x(t)| � 6.6, lim sup
t→∞

|ZT
3 x(t)| � 6.6.

Since the entries of ZT
2 are the complex conjugates of

the corresponding ones of ZT
3 [see (46)], then each pair

of inequalities above is equivalent. ◦

We next analyze the shape of the implicit bounds given
by Theorems 1a) and 2a). Again, express V −1 as in (8),
where X = Re(V −1) and Y = Im(V −1), and let WT

i , XT
i ,

and Y T
i denote the i-th rows of W , X, and Y , respectively.

According to Theorems 1a) and 2a), we have
lim sup

t→∞
|WT

i x(t)| ≤ σi, for i = 1, . . . , n, (47)

and where σi ∈ R+,0 is a component of either β or ψ,
depending on whether Theorem 1 or 2 is employed. Define

Ui , {x ∈ Rn : |WT
i x| ≤ σi}. (48)

Then, (47)–(48) show that the state x(t) ultimately tends
to the ultimate-bound set U =

⋂n
i=1 Ui. Note that

Ui =
{
x ∈ Rn : xT (XiX

T
i + YiY

T
i )x ≤ σ2

i

}
,

which constitutes an ellipsoid. It can be shown that if, for
some s ∈ {1, . . . , n}, WT

s corresponds to a Jordan block of
Λ with real eigenvalue, then rank(XsX

T
s +YsY

T
s ) = 1 and

hence Us degenerates into the space contained between
two parallel hyperplanes. On the other hand, if WT

s
corresponds to a complex eigenvalue in the same sense,
then rank(XsX

T
s +YsY

T
s ) = 2, but according to Lemma 9,

there will be some U` = Us among the n−1 remaining sets
Ui.

5. CONCLUSION

We have performed in-depth analysis and provided im-
provements of a systematic componentwise ultimate-
bound computation method previously introduced in the
literature. As a result of our analysis, we have established
the invariance of the componentwise ultimate bounds
given by such method under certain choices of Jordan de-
compositions, and we have illustrated the shape of the im-
plicit componentwise bounds. The improvements provided
consist in (a) a modification of the method that allows
the obtention of tighter bounds, and (b) the derivation
of a set of optimization problems whose solutions yield
tighter bounds for each component of the system state. A
noteworthy conclusion is that the improved bounds can
still be obtained in a systematic way, a key feature of the
method analyzed.
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