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Abstract: In this article two modeling approaches for Networked Controlled Systems (NCS)
with different types of uncertainly varying bounded transmission delays and static discrete–
time control laws are presented. Different models are offered for each case, all linked to the
objective of designing robust discrete-time controllers. It is analytically shown how the careful
mixing of asynchronous (event–driven) and synchronized (clocked) signals can lead to discrete
time uncertain (possibly switched) systems, where results form robust control analysis and
synthesis can be applied. After showing the implications of these modelling results for control
synthesis purposes, sufficient conditions for the robust stability are given for each approach and
a comparison of the conservatism of results is discussed.
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1. INTRODUCTION

It is well known that one of the primary effects and
major control challenges in Networked Controlled System
(NCS) is the presence of uncertain network-induced de-
lays stemming from the very fact of utilizing a common
communication channel for closing the loop Baillieul and
Antsaklis [2007], Hespanha et al. [2007].

Network-induced delays in NCS commonly appear in the
information flow between the sensor and the controller
(delay τsc(k)), as also between the controller and the
actuator (delay τca(k)), where ‘k’ denotes the dependence
on the kth sampling period. As has been shown, when a
static feedback law is employed, it is allowed to lump τsc(k)

and τca(k) into one delay τk △
= τsc(k) + τca(k) (Nilsson

et al. [1998], Zhang et al. [2001], Tzes et al. [2005]).

The type and the characteristics of the underlying delays
are varying and in most of the cases depend on the
utilized network protocol, the scheduling methods, the
communication overhead (collisions/retrasmissions), the
packet losses, and in general to uncertain factors that can
deteriorate the stability and performance of the controlled
system, sometimes even driving it to instability Zhang
et al. [2001]. Significant effort has hence been invested in
developing control methodologies to handle the network
delay effect in NCSs. A survey of control methodologies
for a closed–loop control system over a data network has
been presented in Tipsuwan and Chow [2003], Hespanha
et al. [2007].

⋆ This work was partially funded by EU’s FP6 Network of Excellence
HYCON, contract number FP6-IST-511368

For NCS using random access MAC protocols (Ether-
net, DeviceNet) the assumption of equidistant sampling
and constant network delay may no longer be valid
(see Naghshtabrizi and Hespanha [2006], Hespanha et al.
[2007] for the variable sampling case). Hence a more cau-
tious treatment of the modeling and discretization pro-
cedure is necessary, and even more so for the control
synthesis.

The remainder of this work starts with the general setup
regarding the modeling of NCS in Section 2. The two
proposed modeling schemes (presented in sections 3 and
4), allow the control designer to embed in a combined
NCS dynamic model (plant,controller,network, sample and
hold devices), network–induced delays smaller that one
sampling period,with known bounds, uncertainly varying,
or constant and unknown. Moreover the ensuing robust
stability conditions do not need the a-priori knowledge
of the probability distribution functions of the uncertain
delays. Comparison of the two approaches is presented in
5, while the conclusions are drawn in Section 6.

Inhere, the case of SISO systems with “less than one
sampling period delay”, (τk < h) is examined. Recent
works concerning Maximum Allowable Transfer Interval
(“M.A.T.I.”) computations, have revived the interest for
this case of systems( Kim et al. [2003]).

2. MODELING ISSUES FOR NCS

The dynamics of the NCS under investigation is described
by the combination of a continuous–time linear time–
invariant plant with a discrete–time controller Zhang et al.
[2001]. The sampling period h is assumed to be constant
and known, whereas both controller and actuator (includ-
ing the zero-order-hold ZOH) are event-driven devices in
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the sense that they update their outputs as soon as they
receive a new sample. The control architecture for this
case is shown in Figure 1 where a remote controller, non-
collocated with the sensor and actuator is employed (see
Dritsas et al. [2007b], Dritsas and Tzes [2007] for further
analysis and a timing diagram). The dynamics of the plant

ZOH Sensor

Periodic
Sampler

PLANT
x =A x (t)+B u(t)c c c c h

DISCRETE TIME
CONTROLLER

x(kh)
y(kh)

r(t)=0

Delay

�ca

k
k

Delay

�sc

u =f(x(kh))k

u(t)

NETWORK

Fig. 1. NCS with uncertain time delays in the measurement
and actuation path

in this case can be cast in the following formulation:

ẋ(t) = Acx(t) + Bcû(t), y(t) = Ccx(t)

t ∈
[

kh + τk, kh + h + τk+1
)

û(t) =

{

ûk−1, t ∈
[

kh − h + τk−1, kh + τk
)

ûk, t ∈
[

kh + τk, kh + h + τk+1
)

.
(1)

In the sequel, for notation simplifications, the following

symbols will be used: 0̄
△
= 01×n is an n-column zero vector,

In (0n) is the n × n identity (zero)matrix, M > 0 (< 0)
means that M is positive (negative) definite. σmax(M)
is the maximum singular value of the matrix M and
σmin(M) its minimum singular value. Furthermore, we
shall hereafter use the notation {xk+1, xk, . . .} in order
to denote the values {x(kh+h), x(kh), ...} of the discrete–
time signal coming out of the periodic sampler.

The total delay within the kth sampling period, is denoted
by τk = τk

sc + τk
ca and is assumed upper bounded as

0 ≤ τmin < τk ≤ τmax = h. The delay τk is in general a
time–varying and uncertain quantity, reflecting the nature
of the network involved, the network load, etc. In (1) û(t)
is the “most recent” control action presented to the event–
driven actuator at the time instance t within a sampling
period (i.e. within the time interval [kh, kh + h)), and can
take either one of the two values ûk−1 or ûk.

It must be emphasized that the discrete–time piecewise
constant control action û(t) experiences a “jump” at
the uncertain time instance kh + τk, in other words
the actuation time instances are not equidistant. Hence
(unless τk is constant) it is not in general possible to
treat the ensuing NCS in a standard “sampled-data” or
“time–delayed” setting. Instead a “hybrid” setup should
rather be used. Initial efforts towards this objective have
been proposed and successfully used specifically for NCS
in Naghshtabrizi et al. [2006], Naghshtabrizi and Hespanha
[2006], Hespanha et al. [2007], Dritsas et al. [2007b],
Dritsas and Tzes [2007].

Despite the “jump” nature of û(t), the discretization of (1)
is straightforward and the ensuing discretization is exact
in the sense that it correctly describes the evolution of the

state vector at the discrete time instances, and is given
by Dritsas et al. [2007b], Dritsas and Tzes [2007]:

xk+1 = Φxk + Γ0(τ
k)ûk + Γ1(τ

k)ûk−1 (2)

where Φ = exp(Ach) and

Γ0(τk) =

h−τk
∫

0

exp(Acλ)Bcdλ ,

=
[

In 0̄T
]

exp

([

Ac Bc

0̄ 0

]

(h − τk)

)

[

0̄T

1

]

Γ1(τk) =

h
∫

h−τk

exp(Acλ)Bcdλ = −Γ0(τk) +

h
∫

0

exp(Acλ)Bcdλ(3)

Equation (2) will be the starting point for two different
modeling procedures. Motivated by the arbitrarily varying
(but bounded) and uncertain nature of the delay τk, and
following procedures and arguments similar to the ones
described in Tipsuwan and Chow [2003], Wang et al.
[1994], the system’s nominal model and the corresponding
control synthesis is intentionally based on the choice of
the average delay τ◦ = (τmin + τmax)/2 as the nominal
value of the uncertain delay. The actual uncertain delay
can then be modelled (decomposed) as τk′

= τ◦ + δτ .
As analytically presented in Dritsas et al. [2007b, 2006b,a,
2007a] the matrices Γ0(τ

k), Γ1(τ
k) can then be accord-

ingly decomposed into constant and known nominal parts
Γ0(τ

◦), Γ1(τ
◦) and uncertain (though bounded) parts

which are related as ∆Γ0(τ
k, τ◦) = −∆Γ1(τ

k, τ◦).

3. NCS-MODELING RELYING ON THE
AUGMENTED CLOSED–LOOP STATE VECTOR

Suppose that a discrete–time state feedback law (for
regulation purposes) with static gain Ksf is employed in
(2), i.e. ûk = −Ksfxk, ûk−1 = −Ksfxk−1. Substituting
into (2) the state space description of the time–varying
closed–loop system is:

xk+1 =
[

Φ − Γ0(τ
k)Ksf

]

xk +
[

−Γ1(τ
k)Ksf

]

xk−1 . (4)

Noting that in (4) above, only periodically–sampled state
vector values {xk+1, xk, xk−1} are present, it is allowable
to express it in terms of an augmented periodic vector ξk

defined as

ξT
k = ξ(kh)T △

=
[

xT
k , xT

k−1

]

, (5)

yielding the following uncertain time–varying discrete–
time description for the closed–loop dynamics

ξk+1 =

[

Φ − Γ0(τ
k)Ksf −Γ1(τk)Ksf

In 0n

]

ξk
△
= Asf ξk (6)

The closed–loop system matrix Asf (τk,Ksf ) ∈ R2n×2n

in (6) can be accordingly decomposed into a nominal
time invariant part A◦

sf (τ◦,Ksf ) and an uncertain part

∆Asf (τk, τ◦, τk, τ◦)

Asf =

[

Φ − Γ0(τ
◦)Ksf −Γ1(τ

◦)Ksf

In 0n

]

+

[

−∆Γ0(τ
k, τ◦)Ksf −∆Γ1(τ

k, τ◦)Ksf

0n 0n

]

△
= A◦

sf + ∆Asf (τk, τ◦) (7)
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The corresponding expressions for the output feedback
case (ûk = −Kofy(kh) = −KofCcxk), are easily derived,
formally using Ksf = KofCc in the previous state feed-
back results. Using ∆Γ1(τ

k) = −∆Γ0(τ
k), the uncertain

“perturbation” matrix ∆Asf can be expressed as

∆Asf (τk, τ◦) =

[

In

0n

]

∆Γ1(τ
k, τ◦)Ksf [ In −In ]

△
= S3∆Γ1(τ

k, τ◦)KsfS4 . (8)

where σmax(S3) = 1 and σmax(S4) =
√

2 indepen-
dently of the dimension of the state vector. In the se-
quel, for notation brevity, we omit the dependence of
∆Asf (τk, τ◦),∆Aof (τk, τ◦) and ∆Γ1(τ

k, τ◦) on τk and τ◦.

Inhere, the following issue is addressed: Given a stabilizing

controller ûk = [−Ksf , 0]
T

ξk such that the nominally de-

layed closed–loop system is stable, or
∣

∣

∣
eig(A◦

sf )
∣

∣

∣
< 1, what

is it to be expected (mainly in terms of stability) when the
same control law is used for the uncertain discrete–time
system in (7)? Moreover, since the uncertain varying net-
work delay is reflected into the uncertain matrices ∆Asf

and ∆Γ1, is it possible to quantify the answer in terms
of a “delay–range” for which asymptotic stability of the
closed–loop system is guaranteed?

We are now ready to state a main contribution of our
work (inspired by ideas presented in Konstantopoulos and
Antsaklis [1996], Dritsas and Tzes [2007]), which concerns
sufficient robust stability conditions relating the network
delay with the feedback controller gains for the perturbed
closed-loop system with output and state feedback.

Theorem 1. Consider the closed-loop linear discrete–time
system with the structure presented in (7),(8) and the
feedback controller ûk = −Ksfxk designed such that the
nominal part A◦

sf in (7) is asymptotically stable (a Schur-

Matrix) satisfying the Lyapunov equation

L◦ = (A◦

sf )T PA◦

sf − P = −Q < 0 (9)

with P = PT > 0, Q = QT > 0 both of dimension
R2n×2n. Then the perturbed closed-loop system remains
asymptotically stable if

σ2
max(∆Γ1) <

σmin(Q) − 1
α
σ2

max(A
◦

sf )σ2
max(P )

2 σmax(αI2n + P )σ2
max(Ksf )

(10)

with α any positive number satisfying

α >
σ2

max(A
◦

sf )σ2
max(P )

σmin(Q)
. (11)

Proof The following standard properties of the singular
values of matrices X and Y with compatible dimensions
will be used

σmax(X + Y ) ≤ σmax(X) + σmax(Y ) (12)

σmax(XY ) ≤ σmax(X)σmax(Y ) (13)

If, furthermore, X and Y are symmetric positive definite
matrices the following relation is valid

σmax(X) < σmin(Y ) ⇒ X < Y . (14)

Let the following “perturbed” Lyapunov equation (in-
spired by (9)) be defined for the resulting closed–loop
system

(

A◦

sf + (∆Asf )
)T

P
(

A◦

sf + (∆Asf )
)

− P

= −Q + (∆Asf )T P (∆Asf ) + (∆Asf )T PA◦

sf + A◦T
sf P (∆Asf )

△
= −Q + M∆ (15)

The investigation for sufficient conditions for asymptotic
stability of the closed–loop perturbed system, is trans-
formed into a search of conditions for

−Q + M∆ < 0 . (16)

The quantity M∆ is bounded by

M∆ = ∆AT
sf P∆Asf + α∆AT

sf∆Asf +
1

α
A◦T

sf P T PA◦

sf −

−α

[

(∆Asf ) −
1

α
PA◦

sf

]T [

(∆Asf ) −
1

α
PA◦

sf

]

≤ ∆AT
sf [αI2n + P ]∆Asf +

1

α
A◦T

sf P T PA◦

sf , (17)

where α > 0.

Henceforth, (16) is satisfied if

Q − ∆AT
sf [αI2n + P ]∆Asf −

1

α
[A◦T

sf PPA◦

sf ] > 0. (18)

Since both Q (by selection) and ∆AT
sf [αI2n + P ]∆Asf +

1
α
[A◦T

sf PPA◦

sf ] are symmetric (and positive definite) ma-

trices, (18) is satisfied if

σmax

(

∆AT
sf [αI2n + P ]∆Asf +

1

α
[A◦T

sf PPA◦

sf ]

)

≤ σ2
max

(

∆Asf

)

σmax (αI2n + P ) +
1

α
σ2
max

(

A◦

sf

)

σ2
max (P )

≤ σmin(Q) (19)

where the first inequality stems from properties (12),(13)
and the latter stems from (14).

It is now clear that if condition

σ2
max(∆Asf ) <

σmin(Q) − 1

α
σ2
max(A◦

sf
)σ2

max(P )

σmax (αI2n + P )
, (20)

is satisfied, then our “wish” for robust stability (expressed
via (18)) is guaranteed with α any positive number sat-

isfying α >
σ2

max
(A◦

sf )σ2

max
(P )

σmin(Q) , since the numerator of (20)

must be a positive scalar. The perturbation matrix ∆Asf

in (8) can be bounded as

σmax(∆Asf ) ≤
√

2σmax(∆Γ1) σmax(Ksf ) (21)

which combined with (20) gives

σ2
max(∆Γ1) <

σmin(Q) − 1
α
σ2

max(A
◦

sf )σ2
max(P )

2 σmax(αI2n + P )σ2
max(Ksf )

Q.E.D.�

Expression (10) along with the constraint (11), can now
be used either as an “a posteriori” robust stability check
for a given (range of) stabilizing gains Ksf s, or for the
synthesis of a Ksf that maximizes the uncertainty bounds
that can be tolerated without losing stability. The latter
approach was followed in Konstantopoulos and Antsaklis
[1996], where both stabilization and performance objective
functions were considered and the Broyden family of non-
linear minimization algorithms was used for an iterative
search on the optimum Ksf . Note also that although the
“α–constraint” in (11) reads for “any positive number”, it
is advised to select an α that maximizes the right hand
side (RHS) of the expression (10).
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From a robust control point of view, given Q, τ◦, h and a
set of stabilizing gains Ksf , the objective is to maximize
over all feasible values of the positive scalar α, the quantity

F (αopt) = max
α

∣

∣

∣

Q,τ◦,Ksf ,h

σmin(Q) − 1

α
σ2
max(A◦

sf
)σ2

max(P )

2 σmax(αI2n + P )σ2
max(Ksf )

.

subject to

α >
σ2
max(A◦

sf
)σ2

max(P )

σmin(Q)
(22)

After the computation of F , the maximum allowable total
delay can be computed, using a nonlinear optimization al-
gorithm for the computation of the values of τk,max, τk,min

such that

τk,max = max
(

τk
)

subject to σmin

(

∆Γ1(τ
k)

)

≤
√

F

τk,min = min
(

τk
)

subject to σmin

(

∆Γ1(τ
k)

)

≤
√

F .

Consider the following open–loop stable continuous–time
system G(s) = 2

s2+3s+2 , with state space description:

ẋ(t) =

[

0 1
−2 −3

]

x(t) +

[

0
2

]

u(t)

y(t) = [ 1 0 ]x(t) (23)

The system is sampled with h = 1.3333 seconds, while the
uncertain delay varies between the bounds τmin = 0 and
τmax = h. The nominal delay upon which the nominally
delayed discrete–time system is obtained is the average
value of τ◦ = 0.6667 seconds. The output–feedback version
of the Theorem 1 will be used, for which the sufficient
conditions are formally expressed (by setting Ksf →
KofCc) as

σ2
max(∆Γ1) <

σmin(Q) − 1
α
σ2

max(A
◦

of )σ2
max(P )

2 σmax(αI2n + P )σ2
max(KofCc)

(24)

with α any positive number satisfying α >
σ2

max
(A◦

of )σ2

max
(P )

σmin(Q) .

Rather than examining the bounds τk,min and τk,max for
one stabilizing gain Kof , in the sequel the stability re-
gion is presented in the domain

[

K, τk ∈
[

τk,min, τk,max
]]

within which the closed–loop system remains stable.

In Figure 2, one can compare the stability margins for two
values of α and Q = 0.5×I4 for the Lyapunov equation: a)
the blue-colored one (denoted as αopt) corresponds to the
bounds using the optimum-α, while b) the red-colored one
corresponds to the bounds obtained using as α the next
largest integer (denoted as αceil) that satisfies the “alpha”
inequality.

The continuous system’s response in combination with the
asynchronous command input for a set of output feedback
gains Kof ∈ {−1, . . . , 1} (stabilizing the nominal system)
and a randomly varying delay τk ∈

{

τk,min, τk,max
}

is
presented in Figure 3. As expected, the closed–loop system
is stable, while the speed of the output’s convergence
depends heavily on the selected gain. For small values of
Kof (≃ −1) the system responds slower since the real part
of one of its poles approaches one.
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Fig. 2. Stability Contours for Kof ∈ {−1, . . . , 1}, h =
1.333s, Q = 0.5 × I4, and two admissible choices for
α.
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Fig. 3. Family of controlled system responses and input
commands for Kof ∈ {−1, . . . , 1}, h = 1.333s, Q =

0.5 × I4, x(0) = [1, 100]
T

and αopt.

4. NCS-MODELING RELYING ON THE
AUGMENTED OPEN–LOOP STATE VECTOR

Starting again from equation (2), a second modeling ap-
proach will be presented. The “peculiarity” of this ap-
proach is that the proposed augmented vector consists of
a mixing of periodic and aperiodic (asynchronous / event–
based) discrete–time variables. The ensuing state equa-
tions must thus be treated as “iteration maps” rather than
classical sampled–data state equations, and the analysis
must be carried out in the context of “Asynchronous (Hy-
brid) Dynamical Systems” as described in Hassibi et al.
[1999]. Apart from the arising mathematical subtleties, a
clear benefit is that the state equations can be formally
treated in a “classical” control formalism. Indeed defining
the augmented state vector zk as

zT
k

△
=

[

xT
k , ûT

k−1

]

(25)

the exact discretization given by equation (2), can be
formally expressed as

zk+1 =

[

Φ Γ1(τ
k)

0̄ 0

]

zk +

[

Γ0(τ
k)

1

]

ûk

△
= A(τk)zk + B(τk)ûk. (26)

Using the delay and matrix decomposition presented be-
fore, a decomposition of the open–loop dynamics (26) into

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6356



a nominal and an uncertain part is possible as follows Drit-
sas and Tzes [2007], Dritsas et al. [2007b, 2006a,b]:

zk+1 =
(

A(τ◦) + ∆A(τk)
)

zk +
(

B(τ◦) + ∆B(τk)
)

ûk

△
=

(

A◦ + ∆A(τk)
)

zk +
(

B◦ + ∆B(τk)
)

ûk (27)

where τ◦ is the assumed nominal value of τ .

The relation ∆Γ1(τ
k) = −∆Γ0(τ

k) allows to decompose
the uncertain matrices ∆A(τk),∆B(τk) as:

∆A(τk) =

[

In

0̄

]

∆Γ1(τ
k)

[

0̄ 1
]

△
= S1∆Γ1(τ

k)S2 (28)

∆B(τk) = −
[

In

0̄

]

∆Γ1(τ
k)

△
= −S1∆Γ1(τ

k) , (29)

with σmax(S1) = σmax(S2) = 1.

Closing the loop with a discrete–time state feedback ûk =

−Ksfxk = [−Ksf 0] zk
△
= −Ka

sfzk results in the following
state equation for the closed–loop system:

zk+1 =

[

Φ − Γ0(τk)Ksf Γ1(τ
k)

−Ksf 0

]

zk
△
= Asf zk. (30)

The decomposition of the closed–loop system matrix in
(30), into a nominal part and an uncertain part is

Asf =

[

Φ − Γ0(τ
◦)Ksf Γ1(τ

◦)
−Ksf 0

]

+

[

−∆Γ0(τ
k)Ksf ∆Γ1(τ

k)
0̄ 0

]

△
= A◦

sf + ∆Asf (τk,Ksf ). (31)

Analogous results can be easily derived for the static
output–feedback case, by formally using Ksf → KofCc

in the previous results. Note that the symbols Asf , Aof in
this section have a different notion and different dimen-
sion compared to the same symbols used in the previous
section. The following relation between the open–loop sys-
tem matrices A◦, B◦,∆A,∆B and the closed–loop system
matrices A◦

sf , ∆Asfcan be easily derived.

A◦

sf = A◦ − B◦Ka
sf

∆Asf (τk) = ∆A(τk) − ∆B(τk)Ka
sf . (32)

The Theorem below is derived in a manner analogous
to the previous Theorem 1, while the output–feedback
version can be found in Dritsas and Tzes [2007].

Theorem 2. Consider the linear discrete–time system in
(30) with the uncertain matrices ∆A,∆B obeying the
structure presented in (28) and (29) respectively, and the
feedback controller ûk = −Ksfxk = −Ka

sfzk designed

such that A◦

sf is asymptotically stable, (a Schur-Matrix)
satisfying the Lyapunov equation

(

A◦

sf

)T
PA◦

sf − P = −Q, (33)

with P = PT > 0, Q = QT > 0. Then the perturbed
closed-loop system remains asymptotically stable if

σ2
max(∆Γ1) <

σmin(Q) − 1
α
σ2

max(A
◦

sf )σ2
max(P )

σmax(αIn+1 + P )(1 + σmax(Ka
sf ))2

(34)

with α any positive number satisfying α >
σ2

max
(A◦

sf )σ2

max
(P )

σmin(Q) .

Considering the same system G(s) = 2
s2+3s+2 presented in

(23) before with sampling period h = 1.3333s, the stability
contours generated via the output–feedback version of
the Theorem 2 are shown in Figure 4. As expected, the
bounds generated by the optimum-α (αopt) embrace those
generated via the αceil. Furthermore, although the bounds
computed using the αceil are continuous, these are not
differentiable due to the discontinuous nature of the ceiling
function.
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Fig. 4. Stability Contours (for SYS2) with {h = 1.333s,
τ◦ = h/2 = 0.666, Q = 0.5 × I3}.

5. COMPARISON OF THE TWO APPROACHES IN
TERMS OF THE DELAY BOUND

A comparison of the two modeling approaches will now be
presented. From a control theoretic point of view the two
approaches reflect two completely different “philosophies”.
The augmented state vector “ξ” of the first approach,
section 3, appears only after closing the loop with a
static state or output feedback law, giving rise to closed–
loop analysis and synthesis results in a way closely re-
sembling the “classical” sampled-data theory for systems
with norm bounded uncertainties. On the other hand the
augmented state vector “z” in section 4 is an open loop
state vector that mixes clocked with “event–based” signals
and thus must be interpreted in the context of hybrid
(“Asynchronous Dynamical”) systems. The clear benefit
of this approach is that it offers itself not only to a wider
interpretation (analysis) of the NCS dynamics but also to
a broader range of synthesis procedures for the closed–loop
control law.

Regarding the conservatism of the robust stability results
achieved when following these two approaches, is interest-
ing to compare via simulation the delay bounds achieved
for the same range of stabilizing gains. Such a comparison
is presented in Figure 5 below where the outer curve is
the guaranteed stability bound achieved via Theorem 1
employing the ξ augmented state vector whereas the inner
curve corresponds to the result achieved via Theorem
2 employing the z augmented state vector. Simulations
concern the same continuous–time system employed for
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the previous numerical results, a constant sampling period
of h = 1.333 s and the same range of stabilizing output
gains for both cases (value range between −0.99 and 0.99).
The horizontal axis is the normalized delay (τ/h) showing
that for low gain range, the first approach covers the
whole delay range contrary to the second approach which
guarantees robust stabilization for the 90% of the delay
range.
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Fig. 5. Comparison of the two approaches in terms of the
delay bound (h = 1.333)

The experiment was repeated for many different second
order systems, values of sampling period and range of sta-
bilizing gains, with the result being always the same: the
first approach gave wider delay bounds for robust stability,
whereas the second approach is more conservative.

6. CONCLUSIONS

Two discrete–time modeling approaches for Networked
Controlled Systems (NCS) with uncertainly varying and
bounded transmission delays and static discrete–time con-
trol laws were presented in this article. A delay decom-
position was proposed which results in models well–suited
for control synthesis using established robust control tech-
niques, without any requirement for a priori information
about the probability distributions of network–induced de-
lays. Sufficient conditions for the robust stability problem
were given for each approach and a comparison of the
conservatism of results was discussed.
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