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Abstract: A comprehensive approach to the input/output analysis of a class of second-
order sliding mode control (2-SMC) systems is developed. Linear SISO plants with the
“generalized suboptimal” 2-SMC algorithm are investigated. It is shown that in order to evaluate
the properties of robustness against the presence of external perturbations the generalized
suboptimal controller can be replaced by a proper constant gain, which is called “equivalent
gain”. The approximate DF method, and the theoretically exact LPRS method, are developed
for computing the equivalent gain. It results from the presented analysis that the considered
algorithm possesses an higher equivalent open-loop gain as compared to the standard relay. A
thoroughly discussed worked example confirms the theoretical results and shows the feasibility
of the presented procedures.

1. INTRODUCTION

Discontinuous control systems are the oldest, and one of
the most widespread, type of nonlinear control systems, see
Hawkins (1887). It was clearly recognized that discontin-
uous control systems provides several advantages over the
linear ones principally due to: simplicity of design, cheaper
components, and the ability to maintain satisfactory per-
formance as the parameters of the system change, see Gelb
et al. (1968).

The theory of discontinuous control is generally considered
as a rather mature subject. However, many problems,
especially related to periodic motion analysis, still remain
open. One of them is the analysis of the transfer properties
of the discontinuous control system, the knowledge of
which is extremely important in the real applications, that
is going to be introduced later on.

There is a fundamental distinction in that periodic mo-
tions can be autonomous (i.e., self sustained) or induced
by external signals. The majority of the literature on dis-
continuous control systems studied autonomous periodic
modes, whilst much less studies have been devoted to
the periodic motions affected by exogenous signal. The
exogenous signals may include measured or unmeasured
disturbances as well as reference signals.

The servo aspect of discontinuous control is very important
and seemed underestimated in the past literature. The
knowledge of input-output properties is as important as
the knowledge of the autonomous behaviour (self-excited
oscillations) in discontinuous control systems. In fact,
those two aspects complement each other. For example, in
designing an on-off room temperature control system it is
equally important to know what the frequency of the relay

switching will be (autonomous behaviour) as well as how
the average temperature would change under the effect of
the changing outside temperature. The latter problem can
be solved only if the transfer properties of the systems are
considered.

Let us understand by the transfer properties analysis
the problem of investigating the system response to an
external signal, says f0, which can represent a disturbance,
which the system is supposed to reject, or a reference
input, which the system is supposed to track. Clearly, this
is an extension of the autonomous mode analysis, the latter
being included as a special case corresponding to f0 = 0.

The main contribution of this work is the full development
of frequency-domain techniques of analysis of the input-
output properties of a class of second-order sliding mode
control (2-SMC) systems, see Emelyanov et al. (1993)
and Levant (1993). The present treatment is developed
by considering the ”Generalized Sub-optimal” (G-SO)
algorithm, a relay with modified switching function, see
Bartolini et al. (1999) and Bartolini et al. (2003).

The essence of the presented input-output analysis is
the replacement of the discontinuous 2-SMC element
with a certain, properly computed, constant gain called
“equivalent gain”. This replacement makes it possible to
evaluate the transfer properties of the system by using
standard transfer function algebra and frequency-response
analysis.

For linear plants with dynamic actuators and the G-SO
algorithm in the closed loop, we present two distinct
frequency-based approaches to compute the equivalent
gain:
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• An approximate method based on the Describing
Function (DF) concept, see Gelb et al. (1968)

• An exact method based on the concept of the Locus of
a Perturbed Relay System (LPRS), see Boiko (2005)

The paper is organized as follows. Section 2 recalls some
useful related results and formulates the main problem
under analysis. In Sections 3 and 4 the two distinct ap-
proaches to the input/output analysis (DF and LPRS
based) are described. The conclusive Section 5 demon-
strates the proposed methods by means of worked sim-
ulation examples.

2. FREQUENCY-DOMAIN ANALYSIS OF 2-SMC
SYSTEMS

Consider a linear asymptotically stable system controlled
by the generalized sub-optimal algorithm to which an
external constant input f0 is applied as in Fig. 1.
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Fig. 1. 2-SMC system with an external input

The generalized sub-optimal algorithm takes the following
form

u = −Usign (σ − βσMi) (1)

where U and β are the constant controller parameters and
σMi is the latest “singular point” of σ, i.e., the value of
σ at the most recent time instant tMi (i = 1, 2, . . .) such
that σ̇(tMi) = 0.

2.1 Review of autonomous properties analysis

The autonomous properties of the above system (i.e., the
resulting behaviour with f0 = 0) were investigated recently
in Boiko et al. (2006) and Boiko et al. (2007). It was
shown that if the transfer function W (s) has input-output
relative degree on three, or more, then the system may
feature stable steady state periodic oscillations.

In Boiko et al. (2006) it was derived a simple DF-based
graphical procedure for computing approximately the val-
ues of the frequency Ωp and amplitude σp

M of the periodic
motion that can occur in the above system when f0 = 0.
The frequency and amplitude of the periodic motion are
estimated by solving the complex “harmonic balance”
equation Atherton (1975)

W (jΩp) = −
1

q(σp
M )

(2)

with the DF negative reciprocal, which is a function of the
unknown oscillation amplitude σp

M , taking the following
form

−
1

q(σp
M )

= −
πσp

M

4U

(

√

1 − β2 − jβ
)

(3)

From a graphical point of view, the harmonic balance
equation entails finding the intersection point P of the
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Fig. 2. DF analysis of self-excited oscillations

two loci in the complex plane (see Figure 2). Therefore,
a periodic motion may occur if at some frequency ω =
Ωp

DF the phase characteristic of the transfer function
W (jω) (which may comprise the plant, actuator and
sensor dynamics) is equal to −1800 − arcsin(β). If such
a requirement is fulfilled, so that an intersection point P
between the two loci occurs, then the frequency of the
periodic solution is the “cross-over” frequency Ωp

DF , while
the oscillation amplitude is given by

σp
M,DF =

4U

π
‖W (jΩp

DF )‖ (4)

The subscript DF is added to stress that the present
analysis involves the use of the describing function method.
Clearly an intersection point out of the origin will exist if
the overall relative degree of the combined actuator-plant-
sensor relative degree is three or more.

The previous method gives only approximate values of
the periodic solution parameters, and it is based on the
filtering hypothesis. An exact method is suggested in Boiko
et al. (2007). It is based on the following complex locus:

Φ(ω) = −

√

[σp
M (ω)]2 − σ2

(π

ω
, ω

)

+ jσ
(π

ω
, ω

)

(5)

where

σp
M (ω) = max

t∈[0, 2π
ω

]
|σ(t, ω)| (6)

In order to implement the definition formula in practice
the ω-periodic solution σ(t, ω) can be expressed by means
of its Fourier series:

σ(t, ω) =
4U

π

∞
∑

k=1

1

k
sin

(

1

2
πk

)

sin[kωt + arg W (jkω)]‖W (jkω)‖ (7)

It was shown in Boiko (2005) that function Φ(ω) has the
same imaginary part as the Tsypkin locus, see Tsypkin
(1984). Having computed the function Φ(ω), we can carry
out the graphical analysis of possible periodic motions in
the same way as it was done above via the DF technique,
simply replacing the Nyquist plot of W (jω) with that of
the complex function Φ(ω) given by (5), and computing
the resulting point of intersection. The oscillation fre-
quency Ωp

LPRS is the crossover one, as in the DF-based
procedure. The main difference is that in this case the
amplitude of the oscillation coincides with the distance of
the intersection point from the origin (no scaling like in
(4) is necessary):

σp
M,LPRS = ‖Φ(Ωp

LPRS)‖ (8)
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The more terms are included in computing the series (7),
the more accurate is the result of the computation.

2.2 Transfer properties analysis

The statement of the problem of transfer properties anal-
ysis for the block scheme represented in the Figure 1 is the
subject of the present subsection.

Let f0 6= 0 and assume that the output and error variables
y and σ in the steady state are T -periodic, possibly
asymmetric, signals. y and σ will be oscillating around f0
and around the zero value, respectively. Denote as ap > f0
and an < f0 the maximal and minimal amplitude of y.

The average value of σ is denoted as σ0, and the maximal
and minimal amplitude of σ are denoted as σmax > 0 and
σmin < 0, respectively. Since σ = f0 − y, it follows that

σmin = f0 − ap (9)

σmax = f0 − an (10)

With such a periodic steady-state evolution of σ, we
can replace the suboptimal algorithm by an asymmetric
hysteretic relay (Fig. 3), with the following hysteresis
values b1 and b2:

b1 = −βσmin b2 = −βσmax (11)

( )sW
uσ

−

y
0f +

U

1
b2b 

U−y

 

Fig. 3. The suboptimal algorithm as an asymmetric hys-
teretic relay.

In order to derive an equivalent representation having
a symmetric hysteretic relay, a modified, shifted, error
variable σ∗ is considered, which is defined as follows

σ∗(t) = σ(t) − ∆σ ∆σ =
b2 + b1

2
(12)

By considering σ∗ as the input of the nonlinear element,
the suboptimal algorithm can be actually replaced by a
symmetric relay with the hysteresis value b = b1−b2

2 and
an additional input ∆σ (Figure 4).
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Fig. 4. The equivalent system with error augmentation
(12)

In the steady state, the plant input u(t) will be a T-
periodic pulse-width modulated square wave signal with

the positive and negative pulse duration θ1 and θ2 (θ1 +
θ2 = T ). The mean value u0 of u is defined as follows:

u0 = U
θ1 − θ2
θ1 + θ2

=
2θ1 − T

T
U (13)

The average error σ0 and the average control u0 are
both functions of the magnitude of the constant input f0.
Consider now the dependence of u0 on σ0, which will be
referred to as the bias function. Simulations show that the
bias function is close to linear in a wide range of f0 varia-
tion. Then the following first-order Taylor approximation
can be made

u0 = knσ0 (14)

The gain kn, the slope of the approximated bias function,
is called equivalent gain for the average values, equivalent
gain for brevity. The equivalent gain will be determined
as the slope of the exact bias function u0 = u0(σ0) at the
origin.

By approximating the bias function with a gain, we are
able to analyze the propagation of the averaged system
variables by standard linear analysis making reference to
the scheme in Fig. 5. This result constitutes the core of
the present method of analysis.
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Fig. 5. The equivalent system for the averaged motion
analysis

In the next sections two methods for computing the
equivalent gain are suggested. The first method, the DF-
based approach (Section 3), is based on the filtering
hypothesis on W (jω). The second method, the LPRS-
based approach (Section 4) dispenses with the filtering
hypothesis and gives a more accurate (theoretically exact)
value of kn.

3. DF BASED INPUT OUTPUT ANALYSIS

Let us compute the equivalent gain of the suboptimal
algorithm by using the DF approach, i.e. considering only
the fundamental harmonics of the periodic signals.

The following relationships occur between the hysteresis
values b1, b2 in (11) and the amplitudes σmin, σmax, ap, an

of the signal oscillations:

b1 =−βσmin = −βf0 + βap (15)

b2 =−βσmax = −βf0 + βan (16)

By considering (15)-(16) into (12) it yields that ∆σ is
expressed as follows

∆σ = −
β

2
(2f0 − ap − an) (17)
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The derivative d∆σ

du0

is therefore

d∆σ

du0
=
β

2

(

dap

du0
+
dan

du0
− 2

df0
du0

)

(18)

The above derivative is to be evaluated at the point u0 = 0.
The derivative of u0 with respect to θ1, that will be used
later on, can be computed easily from (13) and it is given
by

du0

dθ1
=

2U

T
→

dθ1
du0

=
T

2U
(19)

According to the filtering hypothesis, consider the first-
order Fourier expansion of the asymmetric T -periodic
control u(t):

u(t) = u0 +
4U

π
sin(πθ1/(θ1 + θ2)) × cos(

2π

T
(t− θ1/2))(20)

By propagating the input (20) through the plant transfer
function one can express as follows the maximal and
minimal values of y

ap = u0W (j0) +
4U

π
sin(πθ1/(θ1 + θ2))‖W (jΩp)‖(21)

an = u0W (j0) −
4U

π
sin(πθ1/(θ1 + θ2))‖W (jΩp)‖(22)

where Ωp = 2π/T is the frequency of the oscillation.

We can now compute the derivative terms in (18). Let us

compute the derivative
dap

du0

in the point u0 = 0, i.e. letting

θ1 = θ2 = T/2. After simple manipulations obtain

dap

du0
= W (j0) + |W (jΩp)|cos(π/2) = W (j0) (23)

The same applies to the derivative of an, therefore we get

dap

du0

∣

∣

∣

∣

u0=0

=
dan

du0

∣

∣

∣

∣

u0=0

= W (j0) (24)

The remaining derivative term df0

du0

in (18) can be obtained
from the balance equation of the average signal values in
the considered system:

(f0 − u0W (j0))knDF = u0 (25)

where knDF is the equivalent gain of the sub-optimal
algorithm, which we aim to find. The subscript DF
indicates that the present analysis involves the use of the
describing function method.

Relationship (25) is rewritten as f0/u0 = 1/knDF +W (j0),
differentiating which one obtains

df0
du0

=
1

knDF
+W (j0) (26)

Considering (24) and (26) into (18) obtain the final form
of d∆σ/du0:

d∆σ

du0

∣

∣

∣

∣

u0=0

= βW (j0) − β

(

1

knDF
+W (j0)

)

= −
β

knDF
(27)

Once the error augmentation term ∆σ satisfy the formula
(27), it makes sense to consider an approximate linear

relationship between ∆σ and u0, obtaining the equivalent
system representation as in Fig. 6, where the gain k∗nDF
is the equivalent gain of the symmetric hysteretic relay
with the hysteresis value b = βσp

M,DF . k∗nDF was derived

in Boiko (2005) as:

k∗nDF =
2U

π

√

(

σp
M,DF

)2

− b2
=

2U

πσp
M,DF

√

1 − β2
(28)

It should be noted that the computation of the equivalent
gain depends on σp

M,DF , then the amplitude of the self-
sustained oscillations affect the transfer properties of the
system. Thus the autonomous oscillations must be prelim-
inarily studied using the methods previously described.
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−
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nDFk/β

Fig. 6. The equivalent system for the averaged motion
analysis

The equivalent gain knDF is by definition the ratio between
u0 and σ0. It can be then obtained by referring to the
scheme in Figure 6 and solving the inner feedback loop. It
results the implicit relationship

knDF =
u0

σ0
=

k∗nDF

1 − βk∗nDF /knDF
(29)

which yields to the following expression for the equivalent
gain of the suboptimal algorithm:

knDF = k∗nDF (1 + β) =
2U(1 + β)

πσp
M,DF

√

1 − β2
(30)

The equivalent system of average values propagation can
be depicted as in Fig. 7

 

( )sW
0u 0y

0σ0f +

−
( )β+1*

nDFk

0y

Fig. 7. Simplified equivalent system for averaged motion
propagation analysys

Once the equivalent representation in Fig. 7 is achieved,
the propagation of the input f0 can be studied by classical
linear frequency methods of analysis. The results will be
reliable as long as the input signal f0 will be character-
ized by frequency components well below the chattering
frequency Ωp.

Note that the application of the sub-optimal 2-SMC algo-
rithm instead of the standard relay results in an increase
of the equivalent gain. Such an increase is governed by
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the parameter β of the algorithm, the larger β the larger
knDF .

4. LPRS BASED INPUT OUTPUT ANALYSIS

We now carry out the input-output analysis via the
Locus of a Perturbed Relay System (LPRS) method,
which takes into account the higher harmonics of the
oscillation variables and is therefore theoretically exact
without requiring any filtering assumption on the plant
transfer function.

The following relationship holds by definition

dσ0

du0
=

1

knLPRS
(31)

with the subindex “LPRS” denoting the used approach. It
follows from (12) that σ0 = σ∗

0 +∆σ, differentiating which
with respect to u0 yields the following:

dσ0

du0
=
dσ∗

0

du0
+
d∆σ

du0
=

1

k∗nLPRS

+
d∆σ

du0
(32)

where k∗nLPRS is the equivalent gain obtained via the
LPRS for the equivalent system with symmetric relay
having the hysteresis value b = βσp

M,LPRS .

The gain k∗nLPRS was computed in Boiko (2005) as follows

k∗nLPRS =
1

−2 Re [J(Ωp
LPRS)]

(33)

as a function of the LPRS J(ω) (see Boiko (2005)), which
is defined by the following complex function

J(ω) =
∞
∑

k=1

(−1)k+1
ReW (kω) + j

∞
∑

k=1

ImW ((2k − 1)ω)

2k − 1
(34)

Considering (31)-(33) it follows that the equivalent gain
knLPRS that we are aimed to find will satisfy the following
condition

1

knLPRS
= −2 Re [J(Ωp

LPRS)] +
d∆σ

du0
(35)

The last term in eq. (35) was derived in the previous
section and is reported again below

d∆σ

du0
= −

β

2

(

dap

du0
+
dan

du0
− 2

df0
du0

)

(36)

Let us compute the terms
dap

du0

, dan

du0

, df0

du0

appearing in (36).

ap and −an are the maximal and minimal values of
the plant output y. In order to express y(t) it must be
considered the full Fourier expansion of the asymmetric
periodic control u(t) (in the previous section only the first
harmonic term was considered), which must be propagated
through the transfer function W (jω). Skipping for brevity
the series expression of u(t), the output y(t) turns out to
be given as follows:

y(t) = y0 +
4U

π

∞
∑

k=l

1

k
sin(

k

2
Ωθ1)×

×

{

cos(
k

2
Ωθ1) cos[kΩt+ argW (jkΩ)]+

+ sin(
k

2
Ωθ1) sin[kΩt+ argW (jkΩ)]

}

‖W (jkω)‖

(37)

Now computing the derivative of y(t) with respect to θ1,
evaluating it at θ1=π/Ω, and making some manipulations,
obtains

∂y(t)

∂θ1

=
∂y0

∂θ1

+
2U

π

∞
∑

k=l

Ω (−1)k [cos(kΩt) cos arg W (jkΩ)

− sin(kΩt) sin arg W (jkΩ)]‖W (jkΩ)‖

(38)

Let t = tmax be the time at which y reaches its maximum
ap. Then the minimum an will be reached at t = tmin =
tmax + π/Ω. By definition

∂y(t)

∂t

∣

∣

∣

∣

t=tmax

=
∂y(t)

∂t

∣

∣

∣

∣

t=tmin

= 0 (39)

The derivatives of ap and an with respect to u0 can be
determined as follows by taking into account (19) and (39)

dap

du0
=

T

2U

∂y(t)

∂θ1

∣

∣

∣

∣

t=tmax

(40)

dan

du0
=

T

2U

∂y(t)

∂θ1

∣

∣

∣

∣

t=π/Ω+tmax

(41)

The above derivative terms can be directly obtained from
(38). After tedious but straightforward computations the

following final expressions for
dap

du0

and dan

du0

are derived:

dap

du0

=
dy0

du0

+ 2

∞
∑

k=l

(−1)k [cos(kΩtmax) cos arg W (jkΩ)−

− sin(kΩtmax) sin arg W (jkΩ)] · ‖W (jkΩ)‖

(42)

dan

du0

=
dy0

du0

+ 2

∞
∑

k=l

[cos(kΩtmax) cos arg W (jkΩ)−

− sin(kΩtmax) sin arg W (jkΩ)] · ‖W (jkΩ)‖

(43)

Now, by considering (42) and (43), and taking into account

that that dy0

du0

= W (j0), we can rewrite (36) in the final
form as follows

∂∆σ

∂u0
= −β

{

−
df0
du0

+W (j0) + 2R(Ω)

}

(44)

R(Ω) =

∞
∑

k=l

[cos(2kΩtmax + arg W (j2kΩ))] ‖W (j2kΩ)‖ (45)

Function R(Ω) accounts for the unequal response of the
negative and positive amplitudes to the change of u0.
It contains only even harmonics of the fundamental fre-
quency component.

The derivative term df0/du0 in (44) can be written as
follows by analogous steps as those made in the DF
analysis:

df0
du0

=
1

knLPRS
+W (j0) (46)

Therefore we obtain that
∂∆σ

∂u0
=

β

knLPRS
− 2βR(Ω) (47)

Now considering (47) into (35) and rearranging it yields
the final formula for the equivalent gain using the LPRS
method of analysis.

knLPRS =
1 + β

−2Re [J(Ωp
LPRS)] + 2βR(Ωp

LPRS)
(48)
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Like in the DF approach an increase of the equivalent gain
value, in comparison with the relay control, arises due to
the multiplier (1 + β).

5. SIMULATION EXAMPLES

Consider the simple system consisting of a spring-loaded
cart moving on the inclined plane subject to viscous
damping. The motion equations of the system are as
follows

ẋ1 = x2

ẋ2 = −
k

M
x1 −

b

M
x2 +

1

M
ua + gsin(ψ)

(49)

with x1 and x2 being the trolley position and velocity
variables, ua the control force exerted on the cart, M =
1kg the trolley mass, k = 1Nm−1 the spring coefficient,
b = 1Nsm−1 the viscous friction coefficient, ψ = 5deg the
angle of inclination, and g the gravity term.

It is assumed that the control force ua is generated through
a dynamic actuator with the second order dynamics

T 2
a üa + 2ξTau̇a + ua = u, Ta = 0.01s, ξ = 0.8 (50)

The goal is to stabilize the cart in the point corresponding
to zero displacement. To this end we can design the
switching surface (line) σ = x1 + x2 = 0. Consider two
different controllers, namely the simple relay

u = −4sign(σ) (51)

and the generalized suboptimal controller with the same
magnitude U = 4 and the anticipation factor β = 0.3:

u = −4sign (σ − 0.3σMi) (52)

Write an expression for the transfer function of the linear
plant-actuator part of the control system

Wu−σ(s) = (s+ 1)Wa(s)Wp(s) (53)

where Wa(s) and W (s) are the actuator and plant transfer
functions, respectively

Wa(s) =
1

0.0001s2 + 0.016s+ 1
, Wp(s) =

1

s2 + s+ 1
(54)

The block scheme of the system under study, with the Sub-
optimal controller in the feedback loop, can be represented
as in Fig. 8.

 

( )sWa

u

σ −
( )sWp 1+sau

( )ψsinMg=∆

+
1x σ

+
Sub-optimal

2-SMC

Fig. 8. Block scheme of the simulated system

The simultaneous presence of the actuator dynamics and
of the constant disturbance Mgsin(ψ) will cause a steady
state motion of σ and x1 characterized by a steady-
steady constant error component plus a fast periodic
oscillation. The tools developed in this paper allow a
complete understanding and quantitative characterization
of this phenomenon.

The first step of the analysis entails the study of the oscilla-
tions occurring in the autonomous (i.e., disturbance-free)
closed loop system. The parameters of the autonomous
oscillations of σ (obtained by means of the DF and LPRS
methods according to the procedures described in Sect.
2) were computed for both the relay and suboptimal con-
troller (see Fig. 9).

 Relay control Suboptimal Control 

 Frequency 

[rad sec-1] 
Amplitude 

Frequency 

[rad sec-1] 
Amplitude 

DF 100 0.032 128 0.018 

LPRS 98.8 0.033 126.4 0.019 

Simulation 98.4 0.033 125.9 0.019 

 

Fig. 9. Analysis of the autonomous periodic motion with
relay and suboptimal control.

Let us study the propagation of the gravity disturbance.
Figures 10 show the steady state behaviour of x1 for both
controllers. Denote as x10 the steady state average value
of the signal.

The trolley position x1 with the relay controller
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The trolley position x1 with the Suboptimal controller
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Fig. 10. Trolley position in the considered example. Left:
relay control. Right: Suboptimal control

The expected value of x10 is obtained by linear system
analysis after that the controller is replaced by its equiva-
lent gain.

x10 =
gsin(ψ)

1 + kn
=

0.85

1 + kn
(55)

Now let us compute the equivalent gains of the relay
and suboptimal controllers. Notice that the analysis of
the relay controller, firstly presented in Boiko (2005), is
contained as a particular case (β = 0) of the general
procedure presented in this work.

The equivalent gain formula derived using the DF ap-
proach was given in (30). For the relay, it must be set β = 0
and σp

M,DF = 0.032. It yields knDF = 79.5. For the sub-

optimal algorithm, the values β = 0.3 and σp
M,DF = 0.018

must be considered, which yield knDF = 187.5.

The equivalent gain formula using the LPRS approach was
given in (48). For the relay, it must be set β = 0 and
we have that Ωp

LPRS = 98.8 and ReJ(98.8) = −0.0057,
which implies that knLPRS = 76.9. For the suboptimal
algorithm, the value β = 0.3 must be considered. We have
that Ωp

LPRS = 126.4. Since ReJ(126.4) = −0.0033 that
R(126.4) = 4.78e− 4, it yields knLPRS = 188.7.

Both approaches give near the same value for the equiv-
alent gains of the relay and suboptimal controllers. The
table reported in the next figure 11 compares the expected
values of x10 (by DF and LPRS methods) with the values
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observed in the computer simulations. The difference be-
tween the theoretical results and the simulations is due to
the relatively large disturbance, which shifts the operating
point on the bias function off zero to the point where the
slope of the bias function is smaller.

 Relay control Suboptimal Control 

X10DF 0.010  0.0045 

X10LPRS 0.011 0.0045 

X10SIM 0.011 0.0075 

  

Fig. 11. Analysis of average values propagation in the
system (53)-(54) with relay and suboptimal control.

Figure 12 makes a different investigation comparing the
steady state evolution of x1 for three different values of the
anticipation coefficient β. It shows that by selecting larger
and larger values of β it can be achieved a remarkable im-
provement of performance in terms of higher disturbance
suppression due to the increase of the equivalent gain.

Trolley position with the suboptimal controller 

20 20.2 20.4 20.6 20.8 21
0

2

4

6

8x 10
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Time [sec]

 β β β β=0.3

 β β β β=0.6

 β β β β=0.9

Fig. 12. Trolley position with different values of β
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