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Abstract: The paper deals with the moving horizon control of systems subject to input delays
and affected by input and state and/or output constraints. The robustness of the control law
with respect to the uncertainties introduced by the discretization is considered. The stability of
the closed-loop system is guaranteed by forcing the state trajectories to attain a robust positively
invariant terminal set on the prediction horizon. Illustrative examples complete the paper.
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1. INTRODUCTION

It is well-known that the reaction of real systems and
physical processes to exogenous signals takes never place
”instantaneously”, and one of the classical way to model
such situations and phenomena is by using time-delays.
Roughly speaking, the delays (constant or time-varying,
distributed or not) describe coupling or between the dy-
namics, propagation and transport phenomena, heredity
and competition in population dynamics. Various moti-
vating examples and related discussions ca be found in
Niculescu (2001), Gu et al. (2003), Michiels and Niculescu
(2007). Networking (congestion mechanisms, consensus al-
gorithms, teleoperation and networked control systems) is
one of the classical examples among numerous applications
including delays spanning biology, ecology, economy and
engineering, where the delay is a critical parameter in un-
derstanding dynamics behavior and/or improving (overall)
system’s performances.

Independently of the mathematical problems related to
the appropriate representation of such dynamics, the delay
systems are known to rise challenging control problems
due to the instabilities introduced in the closed loop by
the presence of delays. Discrete time control of continuous
systems affected by delays has to face even more difficulties
due to the sampling which introduces an uncertainty in the
discrete models.

It is known that predictors can be used to overcome the
effects of dead-time (with inherent problems linked to
the sensitivity of predictions for unstable models). MPC
- ”Model Predictive Control” solves at each sampling
time a finite-time optimal control problem over a receding
prediction horizon and is no surprise that its use in
connection with delay systems was proposed from the
early approaches (Clarke et al., 1987). At the time of the
redaction of the present paper a monograph is in print
with a review of the attempts on this direction ranging
from dead-time compensation to MPC (Normey-Rico and
Camacho, 2007).

Considering the latest advances in MPC design (Ma-
ciejowski, 2002; Goodwin et al., 2004) which offer con-
straints handling capabilities with stability guarantees
(Mayne et al., 2000) as well as the possibility of incor-
porating uncertainties in an explicit manner at the design
stage one has the picture of a versatile control strategy
with a proved succes among practitioners.

To the best of the authors knowledge, there exists several
results in the literature devoted to delay systems and input
and or state-constraints, see for instance Tarbouriech et al.
(2004), where appropriate (closed-loop) stability condi-
tions have been proposed by using LMIs. Next, various
robustness issues of some predictive-based control laws us-
ing the discrete dynamics and the uncertainty introduced
by small variations of the times between sampling instants
can be found in Lozano et al. (2004) (and the references
therein). The approach we are proposing here is based
on some ”minmax” optimization problem that takes into
account the ”worst-case” performance of the polytopic un-
certainty, and it opens interesting perspectives for defining
an appropriate methodology, computationally tractable,
for handling such class of problems. In other words, the
aim of this paper is to develop methods and numerical
algorithms for treating simultaneously delays and input
and state and/or output constraints in a predictive control
setting.

Concretely, the present paper emploies a predictive control
technique for delay systems by considering the uncertain-
ties introduced at the discretization stage. The obtention
of the prediction model is detailed as well as the synthesis
of a local state feedback stabilizer for the unconstrained
case using convex optimization type of arguments. The
invariant set associated to this stabilizing feedback law
is constructed in order to impose stability constraints in
the MPC synthesis. This can be achieved by adapting the
theory of maximal output admissible sets for the system
with polytopic uncertainty. Finally a receding horizon
optimization problem is solved do drive the state to the
origin by robustly satisfying the constraints. By obtaining
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the explicit formulation of the control law in terms of a
piecewise affine control law, the shape of the feasibility
domain being available.

The remaining paper is organized as follows: section 2
formulates the control problem and defines the models to
be further used in the MPC design. Section 3 deals with
the construction of the robust positively invariant sets and
section 4 presents the finite-time optimisation problem
to be solved at each sampling time in the MPC frame-
work. Finally section 5 presents two illustrative examples
whereas section 6 draws the conclusions. The notations are
standard.

2. PROBLEM DESCRIPTION

Consider a nominal linear continuous-time system affected
by input delay:

ẋ(t) = Acx(t) + Bcu(t − h) (1)

with Ac ∈ R
n×n, Bc ∈ R

n×m and h > 0, under appropriate
initial conditions.

A corresponding discrete-time model will be constructed
upon a chosen sampling period Te by considering the time
instants tk = kTe. In order to prove the robustness of
any discrete-time control scheme with respect to original
system, a certain degree of uncertainty being acceptable
when dealing with delays:

h = dTe − ǫ (2)

is considered.

In the general case, the variation ǫ can be time-varying
but it will be supposed in the following that the choice of
d is such that it assures the boundness:

0 < ǫ ≤ ǭ ≪ Te (3)

where ǭ is the maximal delay variation.

Noting the discrete time instants xk = x(tk) one can
describe the discrete time model by:

xk+1 = Axk + Buk−d − ∆(uk−d − uk−d+1) (4)

due to the fact that there is no exact correspondence
between the delay in continuous-time and the samples
available for the discrete model and this mismatch impose
the consideration of an uncertainty.

The matrices A,B,∆ are given by:

A = eAcTe (5)

B =

∫ Te

0

eAc(Te−θ)Bcdθ (6)

∆ =

∫ Te

Te−|ǫ|

eAc(Te−θ)Bcdθ (7)

=

∫ 0

−|ǫ|

e−AcτBcdτ (8)

obtained by assuming that the control action u is main-
tained constant between sampling instants, u(t) = uk,∀t ∈
[tk, tk+1).

Remark 1. Equations (2-3) consider a delay uncertainty
such that dTe ≥ h > dTe − ǭ. In order to diminish

the importance of the uncertainty matrix ∆ in (4), the
uncertainty can be centered around a delayed input

|h − dTe| ≤ ǭ ≪ Te/2

thus decreasing the integration limits for (7). The distinc-
tion between the case ǫ > 0 and ǫ < 0 can be found in
Lozano et al. (2004) as well as a detailed discussion about
uncertainties introduced by small variations of the time
between sampling instants. In the following we resume our
study to the simpler case (3) and observe that the other
cases can be treated similarly.

The extreme realizations of the discrete-time model are

For ǫ = 0:

xk+1 = Axk + Buk−d (9)

For ǫ = ǭ:

xk+1 = Axk + (B − ∆̄)uk−d + ∆̄uk−d+1 (10)

but all the intermediate realizations have to be considered.

The objective is to design a control law which regulates
the system state for any 0 ≤ ǫ ≤ ǭ < Te while robustly
satisfying a set of constraints:

Ccx(t) + Dcu(t) ≤ Wc, for t ∈ [kTe, (k + 1)Te) (11)

which can be rewritten in a linear form function of xk and
uk as:

Cxk + Duk ≤ W (12)

Note that on the given interval u(t) = uk but precautions
have to be taken for x(t) which has the form:

x(t) = eAc(t−kTe)xk +

∫ t

kTe

eA(t−θ)Bukdθ (13)

thus depending on xk and uk.

This linear type of constraints covers a large class of
limitations encountered in practice (input saturations or
output constraints for exemple). It is supposed however
that the origin is contained in the interior of the polyhedral
domain described by (12).

3. PREDICTION MODEL

By rewriting the dynamics (9-10) in a compact form one
can obtain the following linear model:

ξk+1 = A∆ξk + B∆uk (14)

with
ξT
k =

[

xT
k uT

k−d . . . uT
k−1 uT

k

]
(15)

A∆ =









A B − ∆ ∆ . . . 0
0 0 Im . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . Im

0 0 0 . . . 0









(16)

B∆ = [ 0 0 . . . 0 Im ]
T

(17)

It can be observed that the matrix ∆ is depending on
the value of the delay uncertainty ǫ which varies the
integration limits in (7). Rigorously speaking, one should
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use ǫk due to the fact that the uncertainty is time-varying
(the same for ∆). In the following this explicit dependence
on time is omitted for the simplicity of the notation.

Remark 2. For the compact linear model (14) one has

A∆ ∈ IR(n+d·m)×(n+d·m) and B∆ ∈ IR(n+d·m)×m. From
(2) it follows that d → ∞ when Te → 0 which means
that the system (14) becomes infinite dimensional when
the sampling time decrease to 0.

The idea followed in this paper is to confine ∆ in a
polytopic set which covers all the possible realizations
(thus independent of ǫ). In order to obtain the extreme
combinations of this polytopic embedding, the Jordan
canonical form can be used Ac = V ΛV −1. The matrix

Λ can be decomposed as Λ =
n∑

i=1

Λi with Λi originated by

the terms of the direct sum Λ = Λ̃1 ⊕ · · · ⊕ Λ̃n. For the
brevity of the paper is assumed that Ac is invertible and
not defective and Λ̃i correspond to the diagonal elements.
If this is not the case, the exponential of the Jordan blocks
eΛi ǭ have to be computed separately and each resulting
matrix further decomposed upon the upper diagonals in
(20) to provide the full set of vertices for the polytopic
model (22). Although not explicitly developed, one of the
examples in section 6 will fall in this case, proving the
generality of the results.

If the integral of the exponential (8) is written as:

∆ = A−1
c (eAcǫ − In)Bc (18)

then for the limit values of ǫ one can obtain the extreme
realizations:

∆0 = 0n×m (19)

∆i = A−1
c V (eΛi ǭ − I)V −1Bc, ∀i = 1, . . . , n (20)

In order to obtain the desired control objectives for the
system (14) one can use a polytopic embedding within the
linear models given by:

A∆0
=









A B 0 . . . 0
0 0 Im . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . Im

0 0 0 . . . 0









(21)

A∆i
=









A B − n∆i n∆i . . . 0
0 0 Im . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . Im

0 0 0 . . . 0









, i = 1, . . . , n(22)

The following result resumes the existence of a polytopic
model for the system (14).

Theorem 1. For any 0 ≤ ǫ ≤ ǭ the state matrix A∆

satisfies:
A∆ ∈ Co{A∆0

, A∆1
, . . . , A∆n

} (23)

where Co{.} denotes the convex hull 1 and vertices Ai are
given by (21-22).

1 For some nonnegative scalars α0, α1, α2, . . . , αn summing to one

A∆ =

n∑

i=0

αiA∆i

Proof: For any 0 ≤ ǫ ≤ ǭ and for all i = 1, . . . , n there
exists 0 ≤ βi ≤ 1 such that:

∆ = V
(
eΛǫ − I

)
V −1A−1

c Bc =

=

n∑

i=1

V
(
eΛiǫ − I

)
V −1A−1

c Bc

=
n∑

i=1

V
(
βi

(
eΛi ǭ − I

)
+ (1 − βi)

(
eΛi0 − I

))
V −1A−1

c Bc

=

n∑

i=1

βi∆i + (1 − βi)∆0

= (n −

n∑

i=1

βi)∆0 +

n∑

i=1

βi∆i

=

(n −
n∑

i=1

βi)

n
︸ ︷︷ ︸

α0

n∆0 +

n∑

i=1

βi

n
︸︷︷︸

αi

n∆i

(24)

The matrix ∆ appears in a linear manner in the structure
of A∆ as it can be seen in (16) and using the scalars
αi ≥ 0, i = 0, . . . , n found before, one can write:

A∆ =
n∑

i=0

αiAi (25)

By observing that
n∑

i=0

αi = 1 the proof is completed

The model (14-17) with the uncertainty (23) will be used
as prediction model in the MPC scheme. Before describing
the optimization problem to be solved at each sampling
time, the next section details the construction of a robust
positively invariant set to be further used as terminal
constraints for the prediction.

4. ROBUST POSITIVE INVARIANT SET

In the following it is supposed that each pair (Ai, B), i =
0, . . . , n is controllable. In the first stage a stabilizing
control law is found for the polytopic model in the un-
constrained case and secondly a positive invariant set is
constructed by considering also the constraints (12).

4.1 Stabilizing control law. Unconstrained case.

Consider the linear systems (14) subject to a polytopic
uncertainty (23):

ξk+1 = A∆ξk + B∆uk

A∆ ∈ Ω
Ω = Co{A∆0

, A∆1
, . . . A∆n

}
(26)

It is supposed that a stabilizing control law

uk = Kξk (27)

exists and it can be obtained using an LMI (linear matrix
inequalities) construction.

Consider an infinite-horizon min-max control problem:

min
uk,uk+1,uk+2...

max
A∆∈Ω

J∞ (28)

with
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J∞ =

∞∑

i=0

ξT
k+iQξk+i + uT

k+iRuk+i (29)

uk = Kξk (30)

where Q > 0, R > 0 are suitable weighting matrices.

A quadratic function of the state

V (ξ) = ξT Pξ, P > 0 (31)

will represent an upper bound for J∞ if the following
inequality is satisfied ∀A∆ ∈ Ω:

V (ξk+i+1) − V (ξk+i) ≤ −[ξT
k+iQξk+i + uT

k+iRuk+i]
(32)

Rewriting this equation using (30) the following inequality
is obtained:

ξT
k+i[(A∆ + B∆K)T P (A∆ + B∆K)

−P + KT RK + Q]ξk+i ≤ 0
(33)

or equivalently:

(A∆ +B∆K)T P (A∆ +B∆K)−P +KT RK +Q ≤ 0 (34)

Using the ideas in (Boyd et al., 1994), by noting P = γS−1,
S ≥ I and Y = KS, the following LMI can be constructed:







S SAT
∆ + Y T BT

∆ SQ1/2 Y T R1/2

A∆S + B∆Y S 0 0

Q1/2S 0 γI 0

R1/2Y 0 0 γI






≻ 0,

(35)

Using now the fact that A∆ ∈ Ω, a stabilizing control
law is given by K = Y S−1 where Y , S and the scalar γ
solutions of the LMI (Kothare et al., 1996):

min
γ,S, Y

γ






S SAT
∆i

+ Y T BT
∆ SQ1/2 Y T R1/2

A∆i
S + B∆Y S 0 0

Q1/2S 0 γI 0

R1/2Y 0 0 γI






≻ 0,

for all i = 0, . . . , n
(36)

Remark 3. This LMI based procedure is used in (Kothare
et al., 1996) to design a MPC law. The LMI in (36) is not
depending on the measured state and thus the resulting
control law is represented by a fixed feedback control gain.
Its stabilizing properties will be used for the construction
of a robust positive invariant set.

4.2 Maximal output admissible set

In order to deal with the constraints, the first step is to
rewrite (12) in terms of the augmented state variable ξ:

Γξk + Duk ≤ W (37)

Using the stabilizing control law uk = Kξk = Y S−1ξk

found by solving (36) the following polyhedral domain can
be defined in the augmented state space:

P =
{

ξ ∈ IR(n+d·m) | (Γ + DK)ξ ≤ W
}

(38)

Definition 1. (Gilbert and Tan, 1991) The maximal output
admissible set, for a LTI system ξk+1 = Φξk and a
predefined set P as in (38), is described as:

O∞ =
{
ξ0 | Φkξ0 ∈ P,∀k ∈ N

}
(39)

In our case, the generalization of this concept for the poly-
topic systems is of most interest, the following definition
providing the necessary details.

Definition 2. For a system with polytopic uncertainty:

ξk+1 = Φiξk

Φ ∈ ΩK

ΩK = Co{(A∆0
+ B∆K); . . . ; (A∆n

+ B∆K)}
(40)

and a predefined set P , the maximal output admissible set
OΩ

∞ is defined as the collection of all the initial states ξ0

for which the state trajectory remains in the interior of P
for all future instants k ≥ 0.

In other words the maximal output admissible set is
described readily as:

OΩ
∞ =

{
ξ0 | Φkξ0 ∈ P,∀Φ ∈ ΩK ,∀k ∈ N

}
(41)

An important problem has to be clarified with respect to
this construction: under which conditions the set OΩ

∞ is
finitely determined. Taking into account that the control
law uk = Kξk was found such that all the extreme
realizations in (40) are asymptotically stable, the extension
of the Theorem 4.1 in Gilbert and Tan (1991) assures that
for bounded P , with 0 ∈ IntP , if the pairs (Γ + DK,Ai +
BiK), ∀i ∈ {1, . . . , n} are observable, then OΩ

∞ is finitely
determined.

Similar to the linear case, the construction algorithm can
exploit the fact that OΩ

∞ is finitely determined if and only
if ON = ON+1 where:

OΩ
N =

{
ξ0 | Φkξ0 ∈ P,∀Φ ∈ ΩK ,∀k ∈ {1, . . . , N}

}
(42)

Observing that the same set can be rewritten as:

OΩ
N+1 = {ξ ∈ ON | Φξ ∈ P,∀Φ ∈ ΩK} (43)

and further by noting Φi = A∆i
+ B∆K, i = 0, . . . , n one

can obtain a direct computable expression:

OΩ
N+1 = {ξ ∈ ON | Φiξ ∈ P,∀Φi ∈ {Φ0, . . . , Φn}} (44)

which can be used in a recursive manner to obtain the
maximal output admissible set for the class of systems we
are interested in.

The set OΩ
∞ enjoys by definition (41) robust positively

invariance properties (Blanchini, 1999) and thus it will be
further used in the predictive control design.

5. PREDICTIVE CONTROL

A standard MPC strategy for the delay system considered
here applies at each sampling instant the first component
of the optimal control sequence ku = {uk, . . . , uk+N−d}
as control action to the system while the tail is discarded.
Using the new measurements the optimisation procedure
is restarted, thus obtaining a closed-loop control scheme.

As a basic remark, the prediction horizon has to be larger
than the delay in order to have an effective measure of its
effect at the system output.

k
∗
u = arg min

ku

{

max
i

ξ
{i}
k+N

T
Pξ

{i}
k+N

+
N−1∑

j=0

[

ξ
{i}
k+j

T
Qξ

{i}
k+j + uT

k+jRuk+j

]






(45)
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subject to:






ξ
{i}
k+j+1 = A∆i

ξ
{i}
k+j + B∆uk+j

Γξ
{i}
k+j + Duk+j ≤ W,

i = 1, . . . , n; j = 1, . . . , N − 1

ξ
{i}
k+N ∈ OΩ

∞; i = 1, . . . , n

The construction of the predictive control law will be
influenced by the choice of the prediction horizon N , and
weighting factors Q,R which are respecting the choice
made for the stabilizing control law in the previous section
(29). In this case the terminal state will be weighted by
P = S−1.

Remark 4. The formulation (45) is based on a min-
max optimization problem which takes into considera-
tion worst-case performance for the polytopic uncertainty
A∆ ∈ Co{A∆0

, A∆1
, . . . A∆n

}. Unfortunately this frame-
work turns to be computationally expensive (Kerrigan and
Maciejowski (2004),Olaru and Dumur (2007)), not to men-
tion the version where the optimization is performed using
closed-loop predictions which implies a nested min-max
optimization to be solved upon dynamic programming
principle.

The computational complexity is related only with the cost
function, while the constraints are not affected by the way
the worst-case is treated. Using this fact, a suboptimal
feasible solution can be used for the MPC control scheme,
drastically reducing the computational effort:

k
∗
u = arg min

ku

ξ
{0}
k+N

T
Pξ

{0}
k+N

+

N−1∑

j=0

[

ξ
{0}
k+j

T
Qξ

{0}
k+j + uT

k+jRuk+j

] (46)

subject to:






ξ
{i}
k+j+1 = A∆i

ξ
{i}
k+j + B∆uk+j

Γξ
{i}
k+j + Duk+j ≤ W,

i = 1, . . . , n; j = 1, . . . , N − 1

ξ
{i}
k+N ∈ OΩ

∞; i = 1, . . . , n

It can be observed that the cost function in (46) is based
on a nominal model while the constraints take into account
all the possible uncertainty realization in order to obtain
a robust control scheme. The robust stability is assured
by the use of the terminal the terminal constraints and a
pseudo-infinite horizon objective function (Mayne et al.,
2000).

Remark 5. The optimisation problem in (45) can be refor-
mulated as a multiparametric quadratic problem (Good-
win et al. (2004),Dua et al. (2007))

k
∗
u = arg min

ku

0.5kT
u Hku + k

T
u Fξ

subject to : Ainku ≤ bin + Binξ
(47)

and further explicit solutions for the MPC law can be
obtained by retaining the first component of k

∗
u(ξ), thus

expressing the predictive control in terms of a piecewise
affine control law (Dua et al., 2007):

uk = KMPC
i ξ + κMPC

i , with i s.t. x ∈ Di , (48)

and the regions Di convex polyhedra in IRn+dm.

6. EXAMPLES

6.1 Unstable system

Consider the unstable system with delay:

ẋ(t) =

[
1.1 −0.1
1 0

]

x(t) +

[
1
0

]

u(t − h), h ∈ (0.2, 0.3)

(49)

Sampling at Te = 0.1 a discrete model is obtained with
a delay d = 3 and the uncertainty 0 < ǫ ≤ 0.1 which
affect the structure of the prediction model (4). Follow-
ing the procedure described in section 2, a polytopic
model can be constructed with three extreme realisations
{A∆0

, A∆1
, A∆2

}.

Using the stabilizing feedback control law

uk = [−1.6952 −1.5002 −1.4597 −1.2375 −0.8513 ] ξk

(50)
obtained by solving the corresponding LMI (36), one can
obtain a robust positive invariant set (figure 1).

Fig. 1. The robust maximal output admissible set OΩ
∞

(red) compared from left to right with the maximal
output admissible sets of each extreme realization
A∆0

, A∆1
, A∆2

The region of the state space where the MPC control law
will accomplish the regulation objective is directly related
with the length of the prediction horizon (figure 2 presents
the case N = 3). The MPC synthesis was based on Q = I,
R = 1 and the set of constraints:

−1 ≤ uk ≤ 1
[
−10
−10

]

≤ xk ≤

[
10
10

]

(51)

It can be observed from the shape of the feasible domain
that main restriction come from the input constraints
activation (not a surprise for a open loop unstable system).

Fig. 2. Feasible domain for the MPC law (wireframe) vs.
the the robust maximal output admissible set (solid
color).

The time-domain simulation starting from an initial state
ξT = [[4 − 4 − 100]] (figure 3) proves the effectiveness of
the control scheme with constraints satisfaction.
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Fig. 3. Time-evolution of the states and inputs.

6.2 Double integrator with time-delay

Consider the double integrator with delay:

ẋ(t) =

[
0 0
1 0

]

x(t) +

[
1
0

]

u(t − h), h ∈ (0.2, 0.3) (52)

A discrete time model has to be constructed for Te = 0.1,
the delay being represented by d = 3 samples with an
uncertainty 0 < ǫ ≤ 0.1. The model uncertainty has to
be expressed in terms of a polytopic model (26). The
approach (18) cannot be employed but a simple Taylor
decomposition leads to the following extreme realizations:

A∆0
=





1 0 1 0 0

0.1 1 0.05 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0



 , A∆1
=





1 0 0.9 0.1 0

0.1 1 0.05 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0



 (53)

A∆2
=





1 0 1 0 0

0.1 1 0.045 0.005 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0



 (54)

Solving the LMI (36) with Q = 50I and R = 0.1 the
stabilizing following control law is obtained:

uk =
[

−0.0341 −0.0333 −0.0073 −0.0030 −0.0815
]

ξk (55)

Figure ?? presents the robust positive invariant set and the
feasible domain for the MPC law synthesized according to
(46) with a prediction horizon N = 7 and the constraints:

−1 ≤ uk ≤ 1
[
−10
−10

]

≤ xk ≤

[
10
10

]

(56)

The feasible domain is represented in fact by the union of
76 regions in the state space for which a fixed affine control
law is associated (48).

Finally in figure 4 the simulation in time is presented with
the state evolution and the corresponding control action
as well as the state space trajectory.

7. CONCLUSION

A control scheme was presented for the systems with time
delay and constraints. The predictive control concepts are
used for constraints handling, the stability being assured
by the construction of a positive invariant set for the
system which is embedded in a linear prediction model
with polytopic uncertainty.
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