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Abstract: In this paper we present a closed-loop LPV identification algorithm that uses a
periodic scheduling sequence to identify the rotational dynamics of a wind turbine. In the
algorithm we assume that the system undergoes the same time variation several times, which
make it possible to use time-invariant identification methods since the input and output data are
chosen from the same point in the variation of the system. We use closed-loop time-invariant
techniques to identify a number of extended observability matrices and state sequences that
are, inherent to subspace identification, identified in a different state basis. We show that by
formulating an intersection problem all the states can be reconstructed in a general state basis
from which the system matrices can be estimated. The novel algorithm is applied on a wind
turbine model operating in closed loop.
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1. INTRODUCTION

The trend with offshore wind turbines is to increase the
rotor diameter as much as possible. The reason is that the
foundation costs of offshore wind turbines amount to a
large part of the total costs. Therefore, designers want to
increase the energy yield per wind turbine, which increases
with the square of the rotor diameter, as much as possible
to reduce the costs. The increasing dimensions have led
to the relative increase of the loads on the wind turbine
structure.

Because of the increasing rotor size it is necessary to
react on turbulence in a more detailed way: each blade
separately and at several separate radial distances. This
first item is dealt with in Individual Pitch Control (IPC),
motivated by the helicopter industry; Bossanyi [2005],
Engelen et al. [2007], which is the latest development in
the wind turbine industry to minimize the loads. With this
concept each blade is pitched individually to suppress the
harmonic loads. The controllers are designed using linear
controller synthesis and are gain scheduled afterwards to
compensate for the non-linear behavior of the variable-
speed wind turbines. However, this method does not guar-
antee any stability or performance; Shamma and Athans
[1991]. In recent work of Bianchi et al. [2005], Lescher et al.
[2006], the Linear Parameter Varying (LPV) framework is
proposed for the design of feedback controllers in the wind
energy. The main advantage of the LPV controller syn-
thesis problem is that it results in robust gain-scheduled
controllers which have the property to have a guaranteed
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performance and stability over the complete operation
envelop.

For LPV control it is important to have an accurate mathe-
matical model of the system under consideration. Common
practice in the wind industry is to model the dynamics
using first principles; Molenaar [2003]. This approach has
a number of disadvantages: time consuming, over/under
modeling, uncertainties, and complexity. However, efficient
methods exist to obtain mathematical models from mea-
surement data, these methods are referred to as system
identification. Using the available measurements only the
most important dynamics is modeled. This implies that
system identification gives a compact sized model which
is suitable for controller (re)design, load calculations and
model validation.

An overview of past literature in LPV identification set-
ting can be found in Verdult [2002]. It is possible to
distinguish between identification techniques for different
types of scheduling sequences. For the case where this
sequence can be randomly varying, the identification prob-
lem has proven to be challenging. The subspace identifi-
cation method proposed in Verdult and Verhaegen [2002],
and later improved in Verdult and Verhaegen [2005] has
the inherent drawback that it requires an approximation;
neglecting certain terms and possibly leading to biased
results. However, this method can be used as an initial
estimate for a parametric identification method such as
proposed in Verdult [2002]. Because of these difficulties, it
is interesting to investigate whether the use of dedicated
scheduling sequences facilitates the identification of LPV
systems. Specific cases of scheduling sequences have been
studied, such as the case of abrupt switching, which leads
to piecewise affine (hybrid) systems; Wingerden et al.
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[2007], Wingerden and Verhaegen [2007], white noise; San-
tos et al. [2006], and periodic scheduling; Felici et al. [2007].

In this paper we tackle a part of the LPV system iden-
tification problem for wind turbines. We will consider
the rotational dynamics of the wind turbine where the
scheduling sequence undergoes the same time variation
several times, which makes it possible to use a number
well-established steps from LTI system identification. The
main contribution of this paper is that we extend the
work in Felici et al. [2007] to the closed-loop setting, and
the application on a challenging wind turbine model. The
first property is essential for wind turbines because wind
turbines are unstable systems and consequently have to
operate with a stabilizing controller.

The remainder of this paper is setup as follows. In Sec-
tion 2, the theoretic framework is presented for the iden-
tification of closed-loop LPV systems using a dedicated
scheduling sequence, while in Section 3, the algorithm is
applied to an LPV model of a wind turbine. In the final
section we present the conclusions of this paper.

2. LPV IDENTIFICATION FOR DEDICATED
SCHEDULING SEQUENCES

For Periodic Linear Time Varying (PLTV) systems it is
well known that LTI system identification can be used to
obtain accurate models of the PLTV system; Verhaegen
and Yu [1995]. However, when the time variation is chang-
ing these models are not valid anymore. In this section an
algorithm is presented that uses PLTV identification to
construct an LPV model; valid for arbitrarily scheduling
after the identification experiment. First, we describe a
general problem formulation and explain the assumptions
made. Then a number of extended observability matrices
are estimated assuming that the same time-varying behav-
ior is present a number of times. These observability ma-
trices have the inherent drawback that they are identified
in a different state basis. This can be solved by solving an
intersection problem. When the similarity transformations
are known the states can be transformed to the same global
state basis and the system matrices can be reconstructed
by solving a set of linear equations.

2.1 Problem Formulation

Consider the following LPV system

xk+1 = Akxk +Bkuk +Kek, (1)

yk = Ckxk +Dkuk + ek, (2)

where xk ∈ R
n, uk ∈ R

r, yk ∈ R
ℓ, are the state, input, and

output vectors; the noise sequence ek ∈ R
ℓ is a zero-mean

white noise sequence. The proposed structure can be seen
as the innovation form for LPV systems; well known for
LTI system identification.

The time varying system matrices are given by

Ak =
m

∑

i=1

A(i)µ
(i)
k ,

where m represents the number of LPV system matrices.
In an identical manner the matrices Bk, Ck, and Dk are
defined. In these expressions A(i) ∈ R

n×n, B(i) ∈ R
n×r,

C(i) ∈ R
ℓ×n, D(i) ∈ R

ℓ×r, and K ∈ R
n×ℓ are referred to

as the system matrices. The model weights are µ
(i)
k ∈ R.

Note that the system matrices depend in a linear manner
on the time-varying scheduling vector

µk =
(

µ
(1)
k µ

(2)
k · · · µ(m)

k

)T

.

To include the case of affine dependence, one can set the

first entry of the scheduling vector to unity: µ
(1)
k = 1 ∀ k.

It is required that the terms of the scheduling sequence are
linearly independent, such that:

rank ([ µ0 µ1 · · · µt−1 ]) = m,

and t > m. The scheduling sequence µk is assumed to be
known and periodic with period t, defined over N̄ periods:

µk = µk+τt ∀ τ = {1, 2, . . . , N̄ − 1}, k = {0, 1, . . . , t− 1}
The total number of samples is thus equal to N = tN̄ .
Because of the periodicity of the scheduling, the time
variation of the system is periodic.

The state-space realization given in (1)-(2) can be written
in the predictor form as:

xk+1 = Ãkxk + B̃kuk +Kyk, (3)

yk = Ckxk +Dkuk + ek, (4)

where Ãk = Ak − KCk and B̃k = Bk − KDk. It is well-
known that an invertible linear transformation of the state
does not change the input-output behavior of a state-
space system. Therefore, we can only determine the system
matrices up to a similarity transformation T ∈ R

n×n:
T−1A(i)T , T−1B(i), T−1K, C(i)T , and D(i).

The identification problem can now be formulated as:
given the input sequence uk, the output sequence yk,
and the scheduling sequence µk; find all the LPV system
matrices A(i), B(i), C(i), D(i), and K up to a global
similarity transformation.

2.2 Definitions and assumptions

We define the stacked output vector ȳi
k as

ȳi
k =

(

yT
k yT

k+1 · · · yT
k+i−1

)T
,

and similarly the stacked input ūi
k, stacked noise ēi

k, and
stacked scheduling µ̄i

k are defined. In parallel to what is
done in LTI system identification, also for time-varying
systems an observability matrix can be derived

Õf
k =















Ck

Ck+1Ãk

Ck+2Ãk+1Ãk

...

Ck+f−1Ãk+f−2 . . . Ãk















∈ R
ℓf×n,

where Õf
k is the extended observability matrix and time

instance k, and f is referred to as the future window size.

In what follows, it is assumed that Õf
k has full column rank

for all k, which is equivalent to requiring that the system
is observable on all intervals of length f according to the
condition for observability of LPV systems in Rugh [1996].

We also define the matrices Φ̃f
k , and Ψ̃f

k which are the time-
varying equivalent of the Toeplitz matrices related to the
future input and output respectively, as defined in Jansson
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[2005]. With the previous definitions it holds that for all
k = {0, . . . , N − 1}

ȳf
k = Õf

kxk + Φ̃f
k ū

f
k + Ψ̃f

k ȳ
f
k + ēf

k . (5)

This data equation is the starting point for many subspace

identification schemes. However, now the matrices Õf
k , Φ̃f

k ,

and Ψ̃f
k are time varying.

2.3 Step 1: Closed-loop PLTV identification

As we have seen in equation (5), due to the time varying
nature of the system, the matrices will be different for
each time step. However, due to the periodicity of the
scheduling sequence, we know that the same matrices will
appear periodically:

Õf
k = Õf

k+t ∀k ∈ [0, · · · , N − 1],

µp+f
k = µp+f

k+t ∀k ∈ [0, · · · , N − 1],

and in a similar way this can be done for Φ̃f
k , and Ψ̃f

k .

The state at time instance k+p is a function of the known
past inputs, up

k, and outputs, yp
k, and the the initial state.

This state xk+p, where p is referred to as the past window
length, is given by

xk+p =
(

Ãk+pÃk+p−1 . . . Ãk

)

xk +
(

C̃p
k K̃p

k

)

(

up
k

yp
k

)

,

(6)

where C̃p
k , and K̃p

k are matrices depending on Ãk, B̃k, and
K with their LTI variant given in Jansson [2005].

We assume that the LPV system given in (3)-(4) is
stable 1 . By choosing p large enough the contribution of
the initial state to the state xk+p can be made arbitrarily
small. In a number of LTI subspace methods it is well
known to disregard the effect of the initial state resulting
in a biased estimate, although this bias can be made
arbitrarily small by choosing p large, see Jansson [2005],
Chiuso [2007]. Now we define the future matrices:

Y f
k =

(

yf
p+k, y

f
p+k+t, y

f
p+k+2t, · · · , y

f

p+k+(N−1)t

)

,

and on a similar way for Uf
k , and Ef

k . In a similar way we
define matrices for the past:

Y p
k =

(

yp
k, y

p
k+t, y

p
k+2t, · · · , y

p

k+(N−1)t

)

,

and on a similar way for Up
k and we define:

Xk =
(

xp+k, xp+k+t, xp+k+2t, · · · , xp+k+(N−1)t

)

.

With these definitions, and disregarding the effect of the
initial state; (6) can be substituted in (5) to obtain

Y f
k ≈ Õf

k

(

Cp
k Kp

k

)

(

Up
k

Y p
k

)

+ Φ̃f
kU

f
k + Ψ̃f

kY
f
k + Ef

k (7)

∀k ∈ [0, · · · , N − 1].

The first step in the closed-loop system identification
scheme is to use this approximation to get an estimate

of Φ̃f
k , and Ψ̃f

k . An estimate of the matrices Φ̃f
j and Ψ̃f

j

can be found by performing a linear regression (Jansson
[2005], Chiuso and Picci [2005]) where we assume that

1 Observe that we assume that the matrix Ã is stable and not A

because the rotational dynamics of a wind turbine includes a pure

integrator.

the matrix Õf
k

(

Cp
k Kp

k

)

has full rank. Subtracting this
estimate from (7) we end up with:

Zk = Y f
k − Φ̂f

kU
f
k − Ψ̂f

kY
f
k ≈ Of

k

(

Cp
k Kp

k

)

(

Up
k

Y p
k

)

+ E
f

k ,

≈ Õf
kXk + Ef

k , (8)

Equation (8) can be used to determine the observability

matrix, Õf
k , and the state sequence, Xk, up to a similarity

transformation, using the SVD of the matrix Zk

Zk =
(

Uk
n Uk

n⊥

)

(

Σk
n 0

0 Σk
0

) (

Vk
n

Vk⊥
n

)

,

where Σk
n is the diagonal matrices containing the n dom-

inant singular values and Uk
n is the corresponding column

space. Note that we can find the dominant singular values
by detecting a gap between the singular values. An esti-
mate of the state and the extended observability can be
obtained:

ˆ̃Of
k = Uk

nTk, (9)

X̂k = T−1
k Σk

nVk
n, . (10)

This can be done for all k =
{

0, · · · , N − 1
}

, obtaining t
different observability matrices. The similarity transforma-
tions Tk will also be different at each time, so the models
are identified in a different basis. We have to stress that if
the identified states are in the same state basis the LPV
system identification problem is solved.

2.4 Step 2: Relating the t extended observability matrices

For this step we need to relate the different observability
matrices to the same basis. This can be done by writing the
observability matrices of the different repeating scheduling
sequences as a product between a matrix containing only
the scheduling terms and a constant matrix which depends
only on the system matrices Ã(i), C(i). This factorization
was introduced in Felici et al. [2007]. First define the m-

tuple A = {Ã(1), . . . , Ã(m)} containing all matrices A(i)

and similarly the m-tuple C = {C(1), . . . , C(m)} consisting
of all matrices C(i). Then define the operator Pj on these
two tuples which returns the block-matrix of all ordered
products between one element from C and j − 1 elements
from A (mj possible combinations). Formally, the ξth

block row Pξ
j (C,A) ∈ R

ℓ×n of Pj(C,A) ∈ R
ℓmj

×n is given
by:

Pξ
j (C,A) = C(iξ

1
)A(iξ

2
)A(iξ

3
) · · ·A(iξ

j
),

with iξ1, . . . i
ξ
j ∈ {1, . . . ,m} ∀ ξ ∈ {1, . . . ,mj} and ordered

by ρξ+1 > ρξ where

ρξ =
(

iξ1 i
ξ
2 · · · iξj

)











mj−1

mj−2

...
m0











.

To illustrate this definition, notice that for m = 2 one
obtains:

P1 =

(

C(1)

C(2)

)

, P2 =









C(1)Ã(1)

C(1)Ã(2)

C(2)Ã(1)

C(2)Ã(2)









.
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The amount of block-rows grows exponentially as mj . The
operator Pj is used to define

S =









P1(C,A)
P2(C,A)

...
Pf (C,A)









∈ R
q×n. (11)

Now define

Mf
k =











µT
k 0 · · · 0
0 µT

k ⊗ µT
k+1 · · · 0

...
...

. . .
...

0 0 · · · µT
k ⊗ · · · ⊗ µT

k+f−1











⊗ Iℓ,

(12)

with Mf
k ∈ R

fℓ×q. Then it can be shown by simple
substitution and using (5) that

Õf
k = Mf

k+pS

where Õf
k is known up to an unknown similarity trans-

formation (9), Mf
k+p depends on the known scheduling

sequence (12), and S is an unknown matrix defined in (11).

Note that the number of rows of S (columns of Mf
k+p),

denoted by q, increases exponentially with f according to

the relation q =
∑f

j=1 ℓm
j . We now give a result that

relates the different observability matrices. We present the
following result for the noiseless case and for the case that
an unbiased estimate has been obtained. Now we define

Ũ = diag
(

U0
n , · · · ,U t−1

n

)

∈ R
dt×nt,

Γ̃ = diag
(

O10
f , · · · ,Of

t−1

)

∈ R
ft×nt,

T̂ =
(

(T0)
T
, · · · , (Tt−1)

T
)T

∈ R
nt×n,

M̃ =

(

(

Mf
p

)T
, · · · ,

(

Mf
t+p−1

)T
)T

∈ R
nt×q,

where Mf
k is defined in (12). Also, define T̃ ∈ R

n×n equal

to T up to an unknown square invertible matrix T̂ now
the following relations hold

T̃ = T̂ T, and S̃ = ST.

Now we can define

null
([

Ũ M̃
])

=

(

φ
ψ

)

, (13)

which can also be formulated as an intersection problem.
With the condition φ ∈ R

nv×σ, ψ ∈ R
q×σ, and σ = q +

nv − rank
([

Õ M̃
])

and σ = n. Then

ψ = ST = S̃ φ = T̂ T = T̃ (14)

This implies that when the rank conditions hold the
matrices S and T̂ can be found up to an unknown
similarity transformation.

In the case of noise (13) will lead to a smaller (or even an
empty) null space. This can be overcome by using an SVD
to compute φ and ψ. The dimensions of the intersection
problem formulated in (13) grows exponential with the
window size f . However, this can be solved on a similar
way as in Felici et al. [2007].

2.5 Step 3: Recovering of the LPV system matrices

In the previous step all the states sequences are trans-
formed to the same global state basis, using (14) and (10).

It is well known that when the state, input, output, and
scheduling sequence are known the system matrices can be
estimated. First we use (2) which is now a linear relation in
C(i), andD(i), and where ek represents a white noise. From
this equation an estimate can be found of the C(i), andD(i)

matrices, while also the noise sequence can be estimated.
The estimated noise sequence is used to transform (1) into
a linear expression depending on A(i), B(i), and K.

3. SIMULATION STUDY

In this paper we presented an identification approach
to identify LPV systems assuming that the scheduling
sequence is periodic. In this section we use a nonlinear
model of the rotational dynamics to demonstrate how the
algorithm works.

dto

kto
mto

dto

kto

Jge
TgeJro

kro

droTro

Ffa

Mtilt

xfa xsw

vi

θi

Ωro

Tge

Fsw

Fig. 1. Schematic representation of the wind turbine model

3.1 First principle model of a Horizontal Axis Wind
Turbine (HAWT)

In this paper we consider a seven degrees of freedom
model, as described in Engelen et al. [2007]. The model
describes the rotational dynamics of a wind turbine around
a particular operating point. The model contains degrees
of freedom for the main rotation, first torsion mode of the
drive train, the first fore-aft, and sideward bending mode
of the tower. In this model, the blades are considered to be
rigid. In Figure 1, a schematic representation of the model
is given.

The system’s, input, disturbance and output vectors are
given by:

u = ( δθ1 δθ2 δθ3 δTge )
T
,

v = ( δv1 δv2 δv3 )
T
,

y = ( δΩge ẋfa ẋsw δM1 δM2 δM3 )
T
,

respectively. This model contains thus the control inputs
for the variation in generator torque δTge and the pitch
angle δθi of each rotor blade. Furthermore, the model
contains the inputs for the wind speed disturbance δvi

on each of the three rotor blades. The outputs are the
variations in generator speed δΩge, the fore-aft velocity

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8869



ẋfa and sideward velocity ẋsw of the tower and the blade
root bending moment δMi of each rotor blade.

The model under consideration has a constant A matrix
while the input and output matrices strongly depend on
the azimuth angle, ϕ. In Engelen et al. [2007], the Coleman
transformation is used to transform this model to an LTI
model. However, this transformation can not cope with a
failing sensor/actuator, gravity, and/or yaw misalignment.
If the Coleman transformation is applied to these models
still periodic components will be present in the dynamics.
However, all the mentioned phenomena will again lead
to an LPV model where the system undergoes the same
time-variation a number of times. Still, in this paper we
selected the model given in Engelen et al. [2007] based
on its simplicity, available documentation, and that the
mentioned phenomena will not change the proposed LPV
system identification algorithm.

3.2 Simulation of the closed-loop wind turbine model

The LPV model of the HAWT is used to obtain the input,
output, and the scheduling sequence for the identification
algorithm. For this purpose, the equations are converted to
discrete time using a naive zero-order hold discretization
method with a sample time of 0.1 s. The naive approach
omits the switching behaviors of the sampled scheduling
signals. For our case, where the scheduling sequence is a
function of the azimuth angles the scheduling sequences
are given by the smooth signals

ϕk =

(

sin

(

2πk

v

)

sin

(

2πk

v
+

2π

3

)

sin

(

2πk

v
+

4π

3

) )T

,

When an appropriate sample time is chosen this method
gives a good approximation of the continuous time LPV
system.

The wind turbine system is not asymptotically stable, it
has an integrator, a collective pitch controller in a feedback
loop is added to the system to stabilize the system. The
controller used, can be found in Engelen et al. [2007]
where the collective pitch controller is parameterized. For
the pitch-angle inputs we take an additional zero-mean
white noise with var (θk,i) = 1 deg, which is added to
the control signal of the collective pitch controller. As
input for the generator torque we take also a zero-mean
white noise signal with var (Tge,k) = 1 · 106 Nm. The
wind disturbance signal is also zero-mean white noise
with var (vk,i) = 1 m/s, but this signal is assumed to be
unknown.

3.3 Closed-loop LPV subspace identification results

The collected data of uk, yk, and µk from the simulations
are used in the identification experiments. The scheduling

sequence can be rewritten as µk = ( 1 ϕk,1 ϕk,2 )
T

to fulfill
the assumption that this scheduling matrix must be of full
rank. The third azimuth angle can be written as a linear
combination of the other two angles. For the identification
experiments we used N = 1000, v = 35, f = 16 and
p = 10.

The performance of the identified system is evaluated by
looking at the eigenvalues of the A matrix and the value of
the Variance-Accounted-For (VAF) on a data set different
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ag

in
ar

y
A

x
is

Real Axis

Im
ag

in
ar

y
A

x
is

Real Axis
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ag

in
ar

y
A

x
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-0.01

0

0.01

0.02

0.27

0.28

-1

-0.5

0

0.5

1

Fig. 2. Eigenvalues of the estimated A matrix in the
complex plane, for 100 experiments. The big crosses
correspond to the real values of the eigenvalues of the
matrix. The boxes to the right show a magnification
of three pole locations.
Histogram of ẋfa

VAF (%)

Histogram of ẋsw

VAF (%)

Histogram of M1,2,3

VAF (%)
80 90 10070 80 90 10070 80 90 100

0
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0
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Fig. 3. Histogram of VAF values (%) of the outputs ẋfa,
ẋsw and M1,2,3. The range of VAF values from 0 to
100% is divided into bins of 2%. For each bin, it
is shown how many data sets out of the total 100
resulted in VAF values that fall into that bin.

from the one used for identification. The VAF is defined as

VAF = max
{

1−var(yk−ŷk)
var(yk) , 0

}

×100, where ŷk denotes the

output signal obtained by simulating the identified LPV
system, yk is the output signal of the true LPV system,
and var is an operator that computes the variance. A
small mismatch of the estimation of a pure integrator can
cause drift in the time domain and consequently give large
variations in the VAF values. For meaningful VAF values
the system under consideration must be asymptotically
stable, otherwise a small mismatch will give low VAF
values due to the increasing or decreasing characteristic
of the outputs.

This problem occurs for the output of the generator speed,
therefore bode diagrams at a fixed scheduling vector are
used to evaluate the performance at those specific channels

To investigate the sensitivity of the identification algo-
rithm with respect the wind disturbances, a Monte-Carlo
simulation with 100 runs was carried out. For each of
the 100 simulations a different realization of the input
uk and wind disturbance vk is used. In Figure 2 the
eigenvalues of the estimated models are compared with
the true values. It shows that the identified eigenvalues
are very close to the true eigenvalues and that the variance
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Fig. 4. Bode diagrams of the original transfer functions
(dashed) and the identified transfer functions of the
experiment with the highest mean VAF value (bold).
The transfer functions of the other 99 experiments are
within the gray region. The azimuth angles are fixed
at the values ϕ =

(

0,
√

3/2,−
√

3/2
)

.

and bias is very small. Figure 3 shows the corresponding
histograms of the VAF values on a fresh validation set with
the same scheduling vector, however, without the wind
disturbances. The outputs of the blade root moments M1,
M2, and M3 score very high VAF values, all within 98%
and 100%. The outputs ẋfa and ẋsw are more affected by
the wind disturbance and this results in a lower VAF value.
The bode diagrams with the generator speed Ωge as output
are given in Figure 4. For the transfer function between
the generator torque and the generator speed, the low
frequent behavior shows a large variance due to the high
disturbance which has a significant effect on the estimation
of pole belonging to the integrator. However, this is a well-
known phenomena in LTI system identification.

4. CONCLUSION

Wind turbines are non-linear systems, although their non-
linearity is linearly dependent on measurable schedul-
ing signals and therefore they can be modeled in the
LPV framework. With LPV controller synthesis, which is
strongly related to robust controller design, gain-scheduled
controllers can be calculated with guaranteed stability and
performance margins. In this paper we discussed LPV
system identification and we proposed a subspace algo-
rithm to identify the rotational dynamics of a HAWT. We
exploited the fact that the system experienced the same
time-variation a number of times. We used LTI system
identification techniques to identify a number of observ-
ability matrices and state sequences which are, inherent to
subspace identification, identified in a different state basis.
We showed that by formulating an intersection problem
all the states can be reconstructed in a general state
basis from which the system matrices could be estimated.
We showed the working of the proposed algorithm on a
nonlinear model of a wind turbine which was operating in
closed loop.
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