

A Dynamic Connection Scheme for User Interface of Process Control System
in Offshore Plant

Daekeun Moon*, Hagbae Kim**, Jinho Park* and Dongho Park*

* Electro-Mechanical Research Institute, Hyundai Heavy Industries Co., Ltd., Ulsan, KOREA
(Tel: +82-31-289-5240; e-mail: {dkmoon, jkan, dhpark}@hhi.co.kr).

** Electrical and Electronic Engineering Department, Yonsei University, Seoul, KOREA
(e-mail: hbkim@yonsei.ac.kr)

Abstract: In offshore plant, the process control system manages process variables and interfaces with all
plant utilities. It consists of workstations, controllers and various field interface devices. Plant operators
deal with a large variety of process variables using the Human-Machine Interface application (HMI) in
operator stations, which is a software program to interact with plant operators and to communicate with the
system server. In large-scale processes, the process control system has not only multiple system servers for
system availability but also many operator stations for plant operators to manage easily the process. The
main focus of our work is in a connection scheme of the HMI for linking to one of system servers without
additional configuration works. The proposed scheme is adopted the fundamental concepts of autonomic
computing and supports fault-tolerant and load-balanced features because it provides a dynamic
connection according to the status of system servers. We implement the module for the proposed scheme
as agent between the system server and the HMI, and then incorporate it into the process control system.
Finally, the case study shows that the proposed scheme can provide reliable connection with system
servers and efficient load status of system servers.

1. INTRODUCTION

Process control systems that monitor, diagnose and control
process variables such as pressure, flow and temperature have
been implemented for various processes. Especially, in
offshore plant, the process is a typical offshore application
with oil-gas-water separation, processing and treatment
(Gobrick and Legge 1994). Additionally, all plant utilities are
controlled from the process control system. The process
control system is based on distributed control system
hardware and has multiple interfaces to cooperate with other
control systems.

Fig. 1. Process Control System

In general, process control systems consist of workstations,
controllers and various field interface devices. They have
three network layers (Nixon et al. 2005) as shown in Figure 1.
Level one is between the field devices and the controllers and

runs the process. It is related to a direct control and
adaptation, and has tight real-time requirement of high
predictability and reliability. Level two is among the
controllers and the workstations. It supports user interaction
that includes configuration, control and monitoring according
to the control strategies and coordination. It has less timing
requirement than level one, but still requires good reliability.
Level three is from the workstations to the outside world. It is
the gateway of the control system to other corporate systems
such as accounting, inventory and management decision
systems. In the paper, we focus especially on level two and
three in the interface viewpoint among workstations.

Plant operators deal with a large variety of process variables
generated by the process control systems like the tasks of
monitoring a process and assessing its current state, detecting
and diagnosing any abnormal behavior, and taking
appropriate control actions. Therefore, to assist the plant
operators, process operational information must be presented
in a manner that reflects the important underlying trends or
events in the process through user-friendly interface
applications provided by workstations. The type of
workstations can be classified four categories: engineering
station, system server, operator station and application-
specific station. Engineering stations are for configuring
system structure, I/O points and control algorithms. System
servers are the key stations of workstation-level system in
run-time environments. They collect all information from
controllers, provide it to other stations and process various
system or user commands. Operator stations display the
information of the plant using a Human-Machine Interface
application (HMI), which is a software program to interact

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5285 10.3182/20080706-5-KR-1001.1310

with plant operators and to communicate with the system
server. The HMI receives different types of information from
the system server and presents process-critical information in
a timely manner for plant operators. Application-specific
stations are defined by their main functions such as history
management of process data, gateway for system extension,
interface with other systems, and so on.

In large-scale processes, the process control system has not
only multiple system servers for system availability but also
many operator stations for plant operators to manage easily
the process. In general, each operator station requires
additional configuration works to connect with the system
server. However, the additional configuration works
involving human intervention have limitations on the
accuracy and efficiency of the system configuration. With
regard to all system problems, about 40% are attributable to
errors made by human (Park et al. 2005). In addition, the
usage of wireless devices by the rapid growth of wireless
technology such as a handheld computer motivates us to
devise a new scheme that needs no additional configuration
work.

The main focus of our work is in a connection scheme of the
HMI for linking to one of system servers without additional
configuration works. The proposed scheme is adopted the
fundamental concepts of autonomic computing (Kephart and
Chess 2003) and supports fault-tolerant and load-balanced
features because it provides a dynamic connection according
to the status of system servers. It consists of system server
discovery and selection algorithm parts. The system server
discovery part is enabled to search system servers in the
process control system when the HMI is initialized, and the
selection algorithm part is used to determine the system
server that can be provide the optimal connectivity. We
implement the module for the proposed scheme as agent
between the system server and the HMI, which provides not
only process data but also alarm and event list in a timely
manner, and then incorporate it into the process control
system. Finally, the case study shows that the proposed
scheme can provide reliable connection with system servers
and efficient load status of system servers.

The rest of the paper is organized as follows. Section 2
briefly reviews the concept of autonomic computing and the
related works. Section 3 gives an overview of the proposed
dynamic connection scheme. Section 4 explains how it is
implemented in the process control system. Section 5
presents the case study through an implemented prototype.
Finally, section 6 concludes the paper and outlines some
future research directions.

2. AUTONOMIC COMPUTING

Modern process control systems have the difficulties of their
further development because of the complexity, heterogeneity
and uncertainty. The autonomic computing means embedding
intelligent control into the system infrastructure itself in order
to automate everything in a self-managing manner. The goal
of self-management is not only to free system administrators
from the details of system operation and maintenance but
also to provide users with a machine that runs at peak

performance. It has features of self-configuration, self-
healing, self-optimizing and self-protecting (Kephart and
Chess 2003).

Self-configuration enables systems to set their own
configurations and to adapt to changing conditions by
adjusting them. It is important because installing and
configuring process control systems is time-consuming and
error-prone even for experts. Self-healing has the functions
that detect, diagnose and repair failures in software and
hardware. It makes systems more reliable through initiating
corrective actions for eliminating failures automatically. Self-
Optimizing is the ability to make systems more efficient in
performance. It is accomplished by monitoring the state of
systems and tuning their parameters. Self-protecting provides
the right information to users based on the user’s role and
pre-established policies. It makes systems less vulnerable to
unauthorized access and use, malicious attacks and cascading
failures. Table 1 describes features for autonomic computing
with the limitation of current computing.

Table 1. Features for autonomic computing

Limitation of current
computing Autonomic computing

Installation and configuration
work is time-consuming and
error-prone.

Self-configuration enables systems to
set their own configurations and to
adapt to changing conditions.

Problems in large, complex
system are not easy to
manage manually.

Self-healing makes systems more
reliable through initiating corrective
actions for eliminating failures
automatically.

Systems have many
configurations and tuning
parameters, and their number
increases with each release.

Self-Optimizing makes systems more
efficient in performance by
monitoring the state of systems and
tuning their parameters.

Detection of and recovery
from attacks and cascading
failures is manual.

Self-protecting provides the right
information to users and makes
systems less vulnerable to attacks and
cascading failures.

The concept of autonomic computing has been applied in
various fields. Trumler et al. (2003) proposed a Smart
Doorplate based on autonomic computing for a distributed
system, which satisfies the demands for self-configuration,
self-healing, context awareness and anticipatory. It
configures and heals itself during runtime by exchanging
messages over the peer-to-peer network. Whiteson and Stone
(2004) investigated an adaptive network routing and
scheduling toward autonomic computing. They proposed
learning-based methods for addressing the problems of
packet routing and CPU scheduling in computer networks.
The results show clearly that machine learning methods offer
a significant advantage in self-optimizing the performance of
complicated networks. Chang et al. (2004) provided a
reinforcement learning approach in the mobilized ad hoc
network by applying autonomic computing principles, which
is an adaptive algorithm for controlling movement and
routing for ad hoc networks through self-optimizing and
adaptive learning (self-configuration). Shen et al. (2005)
proposed a framework for self-management in hybrid

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5286

wireless network based on autonomic computing principles.
They outlined the autonomic computing background and its
requirements for self-configuration and self-optimization as a
first step toward autonomic communications.

3. DYNAMIC CONNECTION SCHEME

A dynamic connection scheme consists of two parts: system
server discovery and selection algorithm parts. The system
server discovery part is enabled to search system servers in
the process control system when the HMI is initialized, and
the selection algorithm part is used to determine the system
server that can be provide the optimal connectivity.

The system server discovery part uses a broadcast
mechanism; in other words, it starts to broadcast a system
server request message (SSREQ) to system servers. When
each system server receives the SSREQ, it returns a system
server reply message (SSREP). The system server discovery
part collects the SSREP and demands the optimal system
server to the selection algorithm part. Then, it is completed
by establishing the connection with the system server chosen
by the selection algorithm part.

Fig. 2. System Server Reply Message (SSREP)

The SSREP has the configuration fields and the information
fields as shown in Figure 2. The configuration fields include
name, primary IP address and secondary IP address of the
system server. The information fields include the number of
enabled controllers, the average load and the network line
status. The number of enabled controllers is related to the
area of the plant that the system server can monitor and
control. The more enabled controllers are connected to the
system server, the larger area of the plant can be managed.
The difference of the number of enabled controllers can be
caused by the instability or the partial failure of the network.
The average load of the system server is defined by the
interface rate of the clients per a minute and is proportional to
the clients connected to the system server. If the average load
is high, the system server can be considered as a relatively
overloaded status. The network line status is a factor that
affects to the probability of network failure in the future.

The selection algorithm part uses the SSREP collected in the
system server discovery part. The selection algorithm is
based on the information fields of the SSREP as follows.
First, it compares the number of enabled controllers of the
SSREP, and then selects the system server with the largest
number. Second, if the number of system servers with the
largest number is more than one, it compares the average load
among them, and then selects the system server with the
lowest load. Third, if the number of system servers with the
lowest load is also more than one, it compares the network

line status among them, and then selects the system server
with the best status. Last, if there are system servers whose
all conditions are equal, it selects one randomly. The pseudo
code of the selection algorithm is shown in Figure 3.

Fig. 3. Selection Algorithm

The proposed scheme is adopted the concepts of autonomic
computing, which is computing systems that can manage
themselves given high-level objectives from administrators.
It searches system servers and chooses the optimal one based
on the status of them. This operation supports self-
configuration of operator stations and self-optimization of
system servers because it offers a dynamic connection in a
load-balanced manner. In addition, when the connection
failure occurs, the proposed scheme detects it, clears the
previous connection information, and makes a new
connection automatically. This is a fault-tolerant feature of
the scheme supporting self-healing. Finally, self-protection is
considered in implementation phase through the blocking
strategy that provides services if and only if a connection is
determined completely.

4. DEVELOPMENT OF USER-INTERFACE AGENT

A software component is considered an agent if at least the
characteristics autonomy, intelligence, capability of taking
action, communication and mobility are fulfilled, although
different levels of development are possible for each
(Meissner and Hensel 2005). An agent can execute pre-
processing and independent actions that must benefit the user
to finish the assigned goals.

Fig. 4. Architecture of User-Interface Agent

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5287

The user-interface agent proposed in the paper is a module
that connects the system server and the HMI, which provides
not only process data but also alarm and event list in a timely
manner. The roles of the user-interface agent are categorized
into two kinds of services: connection service and
information service. Figure 4 shows the architecture of the
user-interface agent.

The connection service consists of Connection Manager
(CM) object and Interface Manager (IM) object. The CM
object is responsible for communicating with the system
server practically. Also, it has the functions that can detect
faults according to changing the network conditions. The IM
object is the key object for our dynamic connection scheme.
It manages the system server list through the system server
discovery procedure and includes the selection algorithm.

The information service is supported by Process Data (PD)
object and Alarm/Event List (AEL) object. The PD object
provides the information of the process control system to the
HMI so that plant operators can monitor and control the plant.
The information is based on process data, system status data
and system option data. Process data has the parameters such
as type, description, value and function. System status data is
divided into workstation-level, controller-level and device-
level. System option data includes user setting values for
operating the process control system. In addition, the PD
object is the intermediate object for sending user commands
to the system server in order to control the process and/or
change the information manually. The AEL object provides
both the current and the historical alarm/event lists in the
process control system. Furthermore, it offers the SOE
(Sequence of Event) list. These lists can be sorted by the
selected field and classified by the predefined alarm/event
group.

Fig. 5. Message Sequence Diagram

When the HMI is initialized, the CM object is initiated by
requesting the system server discovery to the IM object. Then,
the IM object broadcasts the SSREQ and waits the SSREP
from system servers for a pre-defined time. At this time, the
PD object and the AEL object block the requests of the HMI

for getting information. After a waiting time, the IM object
transfers the received SSREP to the CM object. The CM
object chooses an optimal system server through the selection
algorithm and inform the result to the IM object, the PD
object and the AEL object. Finally, the PD object and the
AEL object release the blocking condition of the requests of
the HMI and provide information service. The recovery
procedure for repairing the connection failure is the same as
this procedure. Figure 5 shows the message sequence
diagram of the procedure explained above.

5. CASE STUDY

Our user-interface agent with a dynamic connection scheme
has been applied to HiMAX-2000PLUS®, which is the
process control system developed by Hyundai Heavy
Industries Co., Ltd, and its basic functions are tested. This
section describes the remarkable features of our agent
through the case study. This case study concentrates on fault-
tolerant and load-balanced features and is compared with OPC
(OLE for Process Control). OPC is a technical standard for
data exchanging not only between the hardware drives and its
application programs but also among different systems (OPC
Foundation n.d.).

We considered the process control system that has three
system servers connected with some operator workstations
individually. In addition, we assumed that the conditions of
each system server are same if they are not mentioned
explicitly. The notation used in this case study is denoted as
follows; iCN is the connected controller number of ith

system server, iAL is the average load of ith system server,

and jOL is the added load to the system server by jth
operator workstation. Therefore,

1

n

i j
j

AL OL
=

= ∑

where, n is the number of operator workstations connected
with ith system server.

5.1 Scenario A: Different Connected Controller Number

First, we consider a scenario that system servers have
different connected controller number as shown in Figure 6;
where the number of controllers is N, the initial iAL of each

system server is 3K, and the OL by new connection is 1K.
This situation can occur due to instability of system network.
Though this is a situation to appear rarely, it may affect the
system seriously. In this scenario, if new OPC client is
configured to connect with system server #1, its HMI will not
display process data provided by controller #1 because
system server #1 can not communicate with controller #1.
However, our user-interface agent tries to connect with either
system server #2 or #3 through the selection algorithm.
Therefore, its HMI will display all process data of the plant.
This means that our agent can provide the reliable

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5288

information of the plant in presence of system servers with
different connected controller number.

Fig. 6. Scenario A

5.2 Scenario B: Different Average Load

Second, we consider a scenario that system servers have
different average load as shown in Figure 7; where the
number of controllers is N, the iCN of each system server is

N, the initial iAL of system servers are 4K, 2K and 1K

respectively, and the OL by new connection is 1K. This
situation can frequently occur according to the system
conditions. In this scenario, if new OPC client is configured
to connect with system server #1, system server #1 will be
overloaded against others. However, our user-interface agent
will connect with system server #3 because it had the lowest
average load. Then, system servers will maintain the
balanced state of system servers. This means that our agent
can present the load-balanced feature of system servers in the
situation that system servers have different average load.

Fig. 7. Scenario B

5.3 Scenario C: System Server Failure

Finally, we consider that system server #1 connected with
OPC client or our user-interface agent failed as shown in
Figure 8. In this scenario, if OPC client is configured to
connect with system server #1 only, its HMI will not display
any process data because it can not maintain the connection

with the system server any more. However, our user-interface
agent will try to connect with either system server #2 or #3
through re-initialization procedure for new connection. Then,
its HMI will continue to display all process data of the plant.
This means that our agent can present high availability
because it has a fault-tolerant feature that can continue to
monitor and control the plant in spite of the failure of any
system server without additional configuration works.

Fig. 8. Scenario C

In addition, we can consider that OPC client is predefined to
connect with system servers in the order. In this case, OPC
client can continue to provide process data to its HMI
through reconnection with other system server. Nevertheless,
our agent has the performance that is equal or superior to that
of OPC client because it covers the situation such as scenario
A and B.

6. CONCLUSIONS

This paper proposed a dynamic connection scheme of the
HMI for linking to one of system servers in the process
control system. Because it is based on autonomic computing
principles, it configures and heals itself during runtime by
exchanging simple messages without additional configuration
works. Next, we implemented the user-interface agent for our
scheme between the system server and the HMI, and
incorporated it into the process control system. Finally, we
proved that our scheme can improve both the availability of
the HMI and the stability of the system server through the
case study.

For future work, we will verify the usefulness of our scheme
in the practical plant. In addition, we need to take security
issues of the system into consideration. Finally, we will
expand our concern about autonomic computing to
controllers and devices in the process control system.

REFERENCES

Chang, Y., T. Ho, and L.P. Kaelbling (2004). Mobilized ad-
hoc networks: A reinforcement learning approach. Proc.
International Conference on Autonomic Computing
(ICAC), pp.240-247.

Gobrick, R. and N. Legge (1994). HlBERNlA - THE NEXT
GENERATION OF OFFSHORE PLATFORM
CONTROL SYSTEMS. Petroleum and Chemical
Industry Conference (PCIC), pp.197-204.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5289

Kephart, J.O. and D.M. Chess (2003). The Vision of
Autonomic Computing. Computer. Vol.36, No.1, pp.41-
50.

Meissner, K. and H. Hensel (2005). Agent Based Assistance-
and Support in Process Control Systems. 18th
International Conference on Systems Engineering
(ICSEng), pp.159-163.

Nixon, M., R. Shepard, A.K. Mok, B. Bennett, and D. Chen
(2005). Process control adopts wireless. InTech.

OPC Foundation, <www.opcfoundation.org>
Park, J., G. Yoo and E. Lee (2005). Proactive Self-Healing

System based on Multi-Agent Technologies. Proc. 3rd
ACIS International Conference on Software Engineering
Research, Management and Applications (SERA),
pp.256-263.

Shen, C., D. Pesch, and J. Irvine (2005). A Framework for
Self-Management of Hybrid Wireless Networks Using
Autonomic Computing Principles. Proc. the 3rd Annual
Communication Networks and Services Research
Conference (CNSR), pp.261-266.

Trumler, W., F. Bagci, J. Petzold, and T. Ungerer (2003).
Smart Doorplates - Toward an Autonomic Computing
System. Autonomic Computing Workshop, pp.42-47.

Whiteson, S. and P. Stone (2004). Towards Autonomic
Computing: Adaptive Network Routing and Scheduling.
Proc. International Conference on Autonomic
Computing (ICAC), pp.286-287.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5290

