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Abstract:
Efficacious therapeutic regimens to treat type 1 diabetes mellitus require devices capable of
continuous feedback control; recent advances in medical technology mean that such devices are
now available. Any closed-loop controller would require a predictive aspect to avoid sluggish
control related to delays in insulin action, or hypoglycemia from an overdose of insulin. Using
clinical data and an adaptive version of the simple Bergman minimal model (Bergman et al.,
1979), glycemic prediction was performed. Model parameters were estimated using clinical data.
An augmented state Kalman filter was then used to estimate parameters dynamically. Predictive
accuracy varied from subject to subject, with median R2 values for the best validation days
of 80% for 30 minute predictions. Such techniques would be useful in a closed-loop control
framework for adapting a glycemic controller to subject-based variations in insulin sensitivity.
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1. INTRODUCTION

Since the discovery of insulin in 1921, therapeutic methods
for treating those with type 1 diabetes mellitus (T1DM)
have undergone much refinement. Until recently, the only
method of administering insulin for those in an ambulatory
state was the hypodermic syringe; an insulin bolus would
be delivered subcutaneously with meals, or at any time
glucose levels were above the recommended range. With
the development of continuous insulin pumps, a continu-
ous infusion of insulin into the subcutaneous tissue may
be effected, which represents a step closer to mimicking
the normal physiologic plasma insulin profile.

The amount of insulin to be delivered throughout the day
is determined by the subject from discrete measurements
of plasma glucose. Intensive insulin therapy, which may re-
quire glucose determination as many as 12 times a day, can
result in better glycemic control. However, even with this
degree of frequency, this form of treatment is not without
dangers, since those using intensive insulin therapy are up
to three times more likely to have severe hypoglycemic
episodes (Diabetes Control & Complications Trials Re-
search Group, 1993). A chronically elevated blood glucose
also leads to long-term complications, e.g., macrovascular
disease, due to damage to blood vessels (Gerich, 2005).
Given the increase in life-threatening events for those
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adhering to this regimen, the open-loop feedback control
methodology is inadequate.

Recent advances in biomedical devices mean that the
available technology should be sufficient for a closed-
loop device (Hovorka et al., 2006). Reliable real-time
subcutaneous glucose sensors have become available, and
could be combined with a continuous subcutaneous insulin
pump and a control algorithm to produce an artificial β-
cell, capable of normalizing glucose concentrations.

Replicating normal physiologic control of glucose concen-
trations has several significant challenges. The β-cell has
the advantage of intravenous delivery and measurement;
the artificial equivalent will be implemented through sub-
cutaneous glucose measurements and insulin delivery. This
change in route of administration not only introduces large
lag times (Hovorka, 2005), but also can be unreliable due
to variable insulin kinetics at the injection site. Current
treatment does not include the delivery of glucagon, a
counter-regulatory hormone present in the normal state,
to counteract the effects of an insulin overdose. Accurate
prediction of glycemia could help overcome these prob-
lems.

The issue of predicting glucose concentrations can be ad-
dressed with deterministic models representing the effects
of meals and insulin on blood glucose concentration. Such
modeling of glucose-insulin interactions can be divided
into two broad categories: empirical and physiological.
Empirical models are developed from data, and do not
require and understanding of the processes that govern
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Fig. 1. Inputs, outputs, and interactions between the com-
partmental models representing glucose absorption,
insulin absorption, and glucose-insulin kinetics.

the system. Finan et al. (2007) have shown how a range of
empirical models can be developed from simulated data.
Physiological models require an understanding of the sys-
tem kinetics and dynamics. There is currently no consen-
sus on an accurate physiological model covering glycemic
variations in those with T1DM, as can be seen from the
range of published physiological models (Makroglou et al.,
2006). Recently published models such as those of Canon-
ico et al. (2006) and Dalla Man et. al (2007) are examples
of models varying in structure and dynamics for modeling
the same system. Some physiological models have been
developed using experimental data from normal subjects,
e.g. Hovorka et al. (2002); this casts uncertainty on the
validity of model parameters for subjects with T1DM, who
have a different physiology.

Even if the physiological model accurately describes the in-
teractions of glucose and insulin, the dynamics are known
to vary both across a population, and within an individual.
The within-subject variations occur on timescales ranging
from minutes (during exercise), to years (as the aging
process elicits metabolic changes). Since these changes can
potentially change the insulin requirement of an individual
by over 100%, dynamic adaptation of model parameters
must occur. (Hann et al., 2005) have addressed the issue
of real-time parameter estimation using a nonlinear model,
with success at predicting up to one hour into the future
with T1DM subjects in an intensive care unit.

The goal of this study was to establish a benchmark for
glycemic prediction on subjects with T1DM in ambulatory
conditions using linear, time-series models derived from
the Bergman minimal model (MM) (Bergman et al., 1979).
The issue of dynamic parameter estimation is addressed
with an augmented state Kalman filter. Performance in-
dices specific to T1DM are applied to glycemic predictions.
Also, statistical methods are invoked to establish error
bounds for predictions.

2. PHYSIOLOGICAL MODELING

A compartmental approach to physiological modeling was
adopted. The interactions between the three major com-
partments representing glucose absorption (from meals),
insulin absorption (from SC infusion) and glucose-insulin
kinetics are shown in Fig. 1.

For this proof-of-concept study, the MM was used to
represent the effects of glucose-insulin kinetics; this model

requires inputs of plasma insulin concentration and IV
glucose absorption rate. The insulin absorption model
used was model 10 from Wilinska et al. (2005); the
model considers degradation of insulin at the injection
site, followed by absorption through both fast and slow
channels. The meal absorption model used was that of
Hovorka et al. (2004); the model consists of two identical
compartments in series, and considers bioavailability of
ingested carbohydrate.

The MM was originally designed for use in an IV glucose
tolerance test, not as the kinetic core of a full physiological
model. However, it has survived a significant number of
independent investigations into its accuracy (Bergman,
2007); since it encompasses the major aspects of glucose-
insulin kinetics, it therefore warrants further use. The
model is based around steady-state conditions, whereby
hepatic glucose production is balanced by uptake from
the brain and the periphery; this is achieved with a basal
plasma insulin concentration and results in a basal blood
glucose concentration. When glycemia deviates from this
basal condition, glucose can effect its own disposal via a
reduction in hepatic production. An increase in plasma
insulin concentration has a delayed response, through
the remote compartment. This represents plasma insulin
movement across the capillary endothelium.

The model has two state variables: deviation plasma glu-
cose concentration (G′), defined as the deviation of plasma
glucose from basal (G−Gb), and remote (interstitial) in-
sulin concentration (X). The two inputs are the deviation
plasma insulin concentration (I ′), defined as the deviation
of plasma insulin from basal (I−Ib), and the rate of glucose
absorption (U). The system is described in equation (1).
Parameter p1 represents glucose sensitivity, and the ratio
p3/p2 represents insulin sensitivity.

dG′

dt
= −p1G

′ + G′X + U

dX

dt
= −p2X + p3I

′.

(1)

From this bilinear model, three linear models are devel-
oped. The principal difference between the bilinear MM
and the linearized MM is that there is neither an increase
in insulin effectiveness nor a decrease in insulin effective-
ness at blood glucose concentrations above or below basal,
respectively. Each model uses a different approximation
for insulin dependence. Each model is then discretized;
this was appropriate since only discrete measurements are
available. Additionally, the characteristic sampling period
(typically 3-10 minutes) is significantly less than the domi-
nant timescale in the model (approximately 100 minutes).
It is therefore reasonable to discretize the linear models,
assuming piecewise constant inputs over the period of
discretization, ∆t, without considerable loss of accuracy.
These models are equivalent to first order autoregressive
models with two exogenous, first order inputs.

Model 1. A linearization about basal conditions eliminates
the bilinear term, since Xb = 0, and hence the resulting
linear model is independent of plasma insulin concentra-
tion. The model equation is given in equation 2. So that
p1 is uniquely identified, a glucose absorption correction
factor KG is added; the definitions of the parameters used
in equation 2 are given in equation 3.
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Fig. 2. Parameter values and standard errors for each
dataset and subject using model 2. The size of the
standard error for parameters β2 and β3 show that
the sign of the parameter can not be consistently
identified.

G′
k = β1G

′
k−1 + β2Uk−1 (2)

β1 = exp(−p1∆t)

β2 =
KG

p1
(1− exp(−p1∆t)

(3)

Model 2. An additional term is added to include depen-
dence upon remote insulin concentration as in equation 4.
A remote insulin concentration correction factor, KX1, is
added in order to uniquely identify p1. Equations 3 and 5
define the parameters used in the model.

G′
k = β1G

′
k−1 + β2Uk−1 + β3Xk−1 (4)

β3 = −KX1

p1
(1− exp(−p1∆t)) (5)

Model 3. Since the time constant 1/p2 of the remote
insulin dynamics is significantly smaller than the time
constant 1/p1 of the glucose dynamics, the remote insulin
is assumed rapidly equilibrating; therefore the remote
insulin concentration is X = p3

p2
I ′. The model described by

equation 6, and the parameters are defined by equations
3 and 7.

G′
k = β1G

′
k−1 + β2Uk−1 + β3Ik−1 (6)

β3 = −KX2p3

p1p2
(1− exp(−p1∆t)) (7)

3. PARAMETER ESTIMATION

The linear models were fitted to clinical data using the
parameter estimation techniques described below. The
clinical data were obtained from subjects with T1DM
using an Institutional Review Board approved protocol.
Informed, witnessed consent was obtained from subjects.
Data were acquired using the Continuous Glucose Moni-
toring System (CGMS R©, Medtronic Minimed, Northridge
CA) and comprised CGMS readings, insulin pump records,
and subject-reported estimates of time and carbohydrate
content of meals. Twenty-seven datasets were analyzed;
each dataset was from midnight to midnight, and was
collected from three subjects.

For each of the linear models, a least squares estimate
of parameters was performed on each set of data. An
estimate of the confidence limits of the parameter was then
obtained to quantify the validity of the model fit to the
data. The confidence limits used were 95%, drawn from a
t-distribution.

Fig. 2 shows the estimated parameters and their asso-
ciated standard error for model 2. Parameter β2 should
be positive, and was correctly identified in 15 of the 27
datasets. Parameter β3 should be negative, and was cor-
rectly identified in 14 of the 27 datasets. Models 1 and
3 were marginally more successful in correctly identifying
parameter sign, but the size of the standard error in the
parameter estimates indicates that the 95% limits around
β2 and β3 make the sign of the parameter statistically
uncertain.

The dynamic estimation of parameters was performed
using an augmented state Kalman filter, an extension of
the ideas originally introduced by Kalman (1960). The es-
timator phase of the algorithm was achieved using either of
the linear models, and the solution of the discrete algebraic
Riccati equation provided the Kalman gain and correction
(Åström and Wittenmark, 1997). Using a linear time-
invariant (LTI) state-space model structure (equation 8),
parameters were included one at a time (equation 9); the
subscript i represents the single parameter that is being
used to augment the state vector.

xk = Axk−1 + Buk−1 + wk−1

yk = Cxk + vk
(8)

xk = [ Gk βi,k ]T (9)

Matrices A, B, and C are given in equation (10). Pro-
cess noise wk−1 and measurement noise vk are assumed
Gaussian, zero mean, with covariance matrices Q, and R,
respectively. Application of an observability test (Chen,
1999) for the system given in equation (10) shows that
the state variables, i.e., Gk and βi,k, are not observable.
Therefore, it is impossible to determine which state is
the source of the noise. Logically, if some uncertainty is
assumed to be on the measured state variable, the balance
can be applied to the augmented state variable.

A =
[

β1 0
0 βi,k

]
B =

[
β2 β3

0 0

]
C = [ 1 0 ] (10)

In practice, for any change in the augmented state to be
observed, there must be correlation between the noise on
the state G and the augmented state βi; hence the matrix
Q has off-diagonal elements. In tuning the Kalman filter, Q
must still be symmetric and positive semi-definite for the
solution of the algebraic Riccati equation. The conditions
on the elements of Q are given in equation (11).

Q =
[

a b
b c

]
ac− b2 ≥ 0 (11)

4. PERFORMANCE METRICS

Two common examples of performance metrics used for
quantifying correlation between a model and data are the
coefficient of determination (R2), and the Median Relative
Absolute Deviation (MRAD). R2 values range from 100%,
indicating a perfect fit, to -∞; a value of 0% is equivalent
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Fig. 3. Strong correlation was observed between R2 and
MRAD performance metrics, with this correlation
deteriorating as the prediction horizon increased.

Fig. 4. No correlation was observed between R2 and the
percentage of points in zone A of the rEGA.

to predicting the mean of the data across the set. MRAD
ranges from 0%, representing a perfect fit, to 100%.

Although these metrics are mathematically sound, they do
not necessarily quantify performance in a manner relevant
to diabetes. To address this issue, Clarke et al. (1987)
developed point error grid analysis (pEGA). With this
metric, the error between prediction and measurement is
assigned a zone, depending upon its clinical significance.
This analysis is useful since a qualitative index is assigned
to model predictive performance, in terms that are useful
to a clinician.

Kovatchev et al. (2004) developed rate error grid analysis,
which analyzed how well the rate-of-change of glucose
concentrations is being predicted. The principle is identical
to pEGA, but the analysis yields additional information
since correlation of predicted and measured glycemic rate-
of-change is being quantified.

The large number of simulations produced in validating
and calibrating parameter sets and tuning the variance
matrices provided opportunity to compare these metrics.
This is necessary since there is little consensus among pub-
lished models on a standard performance metric when fit-

Fig. 5. The R2 score for the 60 minute prediction hori-
zon for subject 2 using model 2. Columns represent
validation of all the obtained parameter sets for that
subject.

ting models to clinical data. Over 12,000 simulations were
run, and the performance metrics were plotted against
each other. Examples of these plots are shown in Figs.
3 and 4. Correlation was observed between all point
metrics, with the correlation strongest when the metric
performance was best. This implies that caution must be
exercised when rating mediocre fits based on only one
metric. The rEGA was uncorrelated with all point met-
rics, indicating that this analysis characterizes a desirable
aspect of model fit not otherwise quantified.

5. GLYCEMIC PREDICTION

After the calibration procedure of obtaining optimal model
parameters for each data set, each set of parameters was
then validated against all other data sets for that subject.
Model predictions of up to 180 minutes were made. A bias
term, d̂k, was also added to the predictions, to correct for
persistent error. The bias for prediction horizon P was
defined as the error between the measurement at time k
and the prediction at time k made at time k − P . This
bias was then added to the prediction made at time k for
time k + P , as shown in equation 12.

d̂k = Gk − Ĝk|k−P

Ĝk+P |k,bias = Ĝk+P |k + d̂k

(12)

Using the results of the predictions with constant pa-
rameter values as a benchmark, the Kalman filter was
then tuned in an attempt to improve upon the model
predictions. The parameters β2 and β3 were subject to
most investigation since they represent an inaccurate glu-
cose absorption profile (indicative of inaccurate subject-
reported carbohydrate intake) and a change in insulin
sensitivity, respectively.

An example of the R2 values obtained for a 60 minute
prediction horizon for each calibration set of parameters
validated against each data set is shown in Fig. 5. Hori-
zontal trends show that some data will be better predicted
regardless of which parameter set is used. A vertical trend
would imply that a universal set of parameters was found
by that calibration day; vertical trends are very weak,
indicating that the data, rather than the parameters de-
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Fig. 6. The prediction error is plotted for subject 3, day 7,
using model 2, and parameters from calibration day 4.
Performance degrades significantly as the prediction
horizon increases in the presence of input stimuli.

Fig. 7. A: 30 minute prediction horizon, R2=85%. B: 90
minute prediction horizon, R2=8%. Error bars are
also shown. Data was from subject 3, day 7, using
model 2, and parameters from calibration day 4.

termine the quality of model fit. This trend was observed
for all subjects and models.

Fig. 6 shows how the error develops in time. This plot
shows that it is the large deviations from basal conditions
that are particularly challenging to predict.

The validation day corresponding to the median R2 for
the best calibration day is shown in Fig. 7, along with
prediction horizons of 30 and 90 minutes. The error
bars, developed from the 95% confidence limits for the
parameter estimates indicate that although the fit seems
reasonable to the eye, the true level of uncertainty is large.

Fig. 8 shows the inclusion of output additive disturbance
in order to bias the prediction for a two hour prediction
horizon. In prolonged mismatch, the prediction with bias
captures the magnitude of the peaks and nadirs. However,
the R2 decreases since there is a delay effect in capturing
the extreme blood glucose concentrations.

Fig. 8. Prediction horizons of 120 minutes with a bias term
(R2 = 62%), and without a bias term (R2 = 71%).
Data was from from subject 3, day 7, using model 2,
and parameters from calibration day 4.

Fig. 9. Parameter β3 was adapted using a Kalman filter.
Predictions of 30, 90, and 180 minutes were made,
with R2 values of 86%, 18%, and -300%, respectively.
Data was from subject 3, day 7, using model 2, and
initialization used day 4 calibration parameters. The
plot shows that in response to stimuli, a dynamic
parameter estimate is obtained.

Fig. 9 shows dynamic variation of parameter β3 after
tuning of the Kalman filter. The persistent increase in the
parameter at a time of great excitation provides strong ev-
idence that the a priori parameter estimate is not correct
at that time of day. The same trend would be observed
with β2: the filter is simply correcting the estimate based
on the mismatch. In this case, the model does not expect
blood glucose to rise so high. The rise could be explained
by either a decrease in insulin sensitivity, or an underesti-
mate of meal carbohydrate content. The underestimate in
carbohydrate content could also be explained by a higher
carbohydrate bioavailability than that described by the
meal model. Since parameter variation occurs at the time
of the meal, before any change in insulin concentration
occurs, it is more likely that the meal size has been un-
derestimated. Comparing the R2 values from Figs. 7 and
9 for 30 minute and 90 minute prediction horizons, there
is a nominal improvement when Kalman filtering is used.
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6. CONCLUSIONS

Although simple, the linear versions of the MM provide
reasonable glycemic prediction for horizons of 30–60 min-
utes. This observation is not surprising; since the dynamics
of the system are relatively slow, a passive model is not
too erroneous over such a timespan. Predictions of the
order 90 minutes, which is the lag time between insulin
infusion and its effect on glycemia, are inaccurate with
these models.

The differences between the linear models developed are
not statistically significant: no single model is consistently
more accurate in predicting glycemia. Similarly, some data
sets exhibit simpler dynamics, which can more easily
be captured. Some subjects are harder to model than
others, which could be explained by inadequacies in sensor
accuracy and/or carbohydrate estimates.

Parameter variation can be inferred, and a well-tuned
Kalman filter can show reasonable changes in parameters,
albeit a posteriori. In order to deconvolute the effects
of different parameters, controlled experiments would be
required, where meals and insulin boluses were staggered
by the system lag time. Nevertheless, learning that a
mismatch between measurements and predictions has oc-
curred could be useful in a run-to-run scenario; insulin
infusion protocols could be modified to avoid hypo- and
hyperglycemic events if the mismatch were systematic.

The calculated error bars give a statistically significant
means of quantifying model fit beyond a qualitative
judgment. Although some predictions appear statistically
sound up to 60 minutes ahead, the error bars show an
unacceptably large error, particularly at low blood glucose,
at horizons as short as 15 minutes.

Future work would extend the presented parameter es-
timation techniques to more complex physiological mod-
els. Adaptive parameters would be useful in a run-to-run
control scenario. Ultimately, a validated, adaptive model
would form the basis of a closed-loop controller forming
part of the communication algorithm in a closed-loop
artificial β-cell.
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