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Abstract:
In this paper, a necessary and sufficient condition for a discrete-time nonlinear system to be
strictly passive is derived and OFSP (Output Feedback Strictly Passive) conditions will be
established. Based on the obtained OFSP conditions, an adaptive output feedback controller
design method which can solve causality problems will be proposed for a discrete-time nonlinear
system.

1. INTRODUCTION

Since many practical systems contain some kind of non-
linearities, a great deal of attention has been attracted to
the control of nonlinear systems. Especially, of particu-
lar interest are passivity based controller designs for the
control problem on nonlinear systems (Hill and Moylan,
1998; Byrnes et al., 1991; Krstic et al., 1994; Jiang and
Hill, 1998; Fradkov and Hill, 1998; Byrnes and Lin, 1994;
Lin and Byrnes, 1995). Although several important results
have been obtained concerning passivity based controls,
most of the results however were ones for continuous-time
systems (Hill and Moylan, 1998; Byrnes et al., 1991; Krstic
et al., 1994; Jiang and Hill, 1998; Fradkov and Hill, 1998).
Our interest here is a discrete-time passive (or strictly
passive) system. For discrete-time nonlinear systems, only
few passivity based controls have been investigated with
respect to lossless or passive systems (Byrnes and Lin,
1994; Lin and Byrnes, 1995; Chellaboina and Haddad,
2002).

In this paper, we consider a passivity-based adaptive
output feedback control for discrete-time nonlinear sys-
tems. The passivity-based control schemes can be con-
sidered one of the Lyapunov-based controls. As for the
Lyapunov-based adaptive controls, several significant re-
sults have been provided for discrete-time non-linear sys-
tems(Hayakawa et al., 2004). However, the developed
methods were only with state feedback forms. Unlike the
former works on the Lyapunov-based adaptive control, the
passivity-based adaptive control dealt with in this paper
is an output feedback-based adaptive control in which
only the output signal is utilized in the controller design.
It is well known that one can easily design an output
feedback based adaptive control for an output feedback
strictly (exponentially) passive (OFSP) system (Jiang and
Hill, 1998; Fradkov and Hill, 1998; Michino et al., 2003;
Mizumoto et al., 2005) and the obtained control system
� This work was supported by KAKENHI, the Grant-in-Aid for
Scientific Research (C) 18560439, from the JapanSociety for the
Promotion of Science (JSPS).

has a strong robustness with respect to disturbances and
uncertainties. The system is said to be OFSP if there
exists an output feedback such that the resulting closed
loop system is strictly passive. Here we investigate the
OFSP property of discrete-time nonlinear systems, and
consider an output feedback-based adaptive control design
problem for discrete-time nonlinear systems. To this end,
we first derive a discrete-time nonlinear version of Kalman-
Yakubovich-Popov (KYP) Lemma for a strictly passive
system. The strict passivity of the control system plays an
important role in adaptive controls. The KYP-Lemma for
continuous-time nonlinear systems has been interpreted
(Hill and Moylan, 1998; Jiang and Hill, 1998) and the
KYP-Lemma for discrete-time nonlinear systems has been
investigated for lossless and passive systems (Byrnes and
Lin, 1994; Lin and Byrnes, 1995). We will develop the
KYP-Lemma for strictly passive discrete-time nonlinear
systems in order to design an adaptive control system. Af-
ter that, OFSP conditions for discrete-time nonlinear sys-
tems will be clarified, and the design of output feedback-
based adaptive control will be shown. As it is well known,
a passive system must have a direct feedthrough term
of input, that is, a passive system must have a relative
degree of 0 (Byrnes and Lin, 1994). This means that the
OFSP system also has to have a direct feedthrough term
of the input (i.e. relative degree of 0), possibly resulting in
a causality problem in the controller design. Conditions
in which one can design the adaptive controller with-
out causality problems will be provided as strong output
feedback strict passivity, and according to the obtained
conditions, an adaptive output feedback controller design
scheme will be shown for a discrete-time nonlinear system
which does not have a relative degree of 0.

2. PREPARATION

2.1 Strictly passivity

Consider the following n-th order discrete-time SISO non-
linear system with a relative of 0.
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x(k + 1) = f(x(k)) + g(x(k))u(k) (1)

y(k) = h(x(k)) + J(x(k))u(k) (2)
where x(k) ∈ Rn is a state vector, u(k), y(k)∈ R are the
input and output of the system. f(x(k)) : Rn → Rn,
g(x(k)) : Rn → Rn, h(x(k)) : Rn → R and J(x(k)) :
Rn → R are smooth in x(k), and we assume that f(0) = 0,
h(0) = 0.

The passivity and the strict passivity of the system (1),(2)
are defined as follows (Byrnes and Lin, 1994):
Definition 1. (Passivity) A system (1), (2) is said to be
passive if there exists a non-negative function V (x(k)) :
Rn → R with V (0) = 0, called the storage function, such
that

V (x(k + 1)) − V (x(k)) ≤ y(k)u(k) (3)
for all u(k) ∈ R, ∀k ≥ 0.
Definition 2. (Strict Passivity) A system (1),(2) is said to
be strictly passive if there exists a non-negative function
V (x(k)) : Rn → R with V (0) = 0 and a positive definite
function S(x(k)) : Rn → R such that

V (x(k + 1)) − V (x(k)) ≤ y(k)u(k) − S(x(k)) (4)
for all u(k) ∈ R, ∀k ≥ 0.

The property of a passive or lossless system has been
studied in Byrnes and Lin (1994); Lin and Byrnes (1995).
Here we first investigate the strict passivity by means of
the discrete-time nonlinear version of the KYP-Lemma in
order to develop the adaptive controller for discrete-time
nonlinear systems.
Theorem 1. A system (1),(2) is strictly passive if and only
if, there exists a non-negative function V (x(k)) : Rn → R
with V (0) = 0 such that

A1-1) There exist functions l(x), W (x) and a positive
definite function S(x) such that

V (f(x)) − V (x) = −l(x)2 − S(x) (5)
∂V (α)

∂α

∣∣∣∣
α=f(x)

g(x) = h(x) − 2l(x)W (x) (6)

gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f(x)

g(x) = 2J(x) − 2W (x)2. (7)

A1-2) V (f(x) + g(x)u) is quadratic in u.

Proof: See Appendix A.

2.2 Output feedback strict passivity

Next, we define an output feedback strict passivity for a
system (1),(2).
Definition 3. (Output feedback strictly passive: OFSP)
A system (1),(2) is said to be output feedback strictly
passive (OFSP) if there exists an output feedback:

u(k) = α(y(k)) + β(y(k))v(k) (8)

such that the resulting closed loop system is strictly
passive.

Further we define a strong output feedback strict passivity
as follows:

Definition 4. (Strongly OFSP) A system (1),(2) is said to
be strongly OFSP if there exists a static output feedback:

u(k) = −θ∗y(k) + v(k), θ∗ > 0 (9)
such that the resulting closed loop system from y(k) to
v(k),

x(k + 1) = f̄(x(k)) + ḡ(x(k))v(k) (10)

y(k) = h̄(x(k)) + J̄(x(k))v(k) (11)
with

f̄(x(k))=f(x(k))− θ∗

1+θ∗J(x(k))
h(x(k))g(x(k)) (12)

ḡ(x(k))=
1

1+θ∗J(x(k))
g(x(k)) (13)

h̄(x(k))=
1

1+θ∗J(x(k))
h(x(k)) (14)

J̄(x(k))=
1

1+θ∗J(x(k))
J(x(k)) (15)

is strictly passive and, in addition, a transformed closed
loop system with

v̄(k) =
1

1 + θ∗J(x(k))
v(k) (16)

as input,

x(k + 1) = f̄(x(k)) + g(x(k))v̄(k) (17)

y(k) = h̄(x(k)) + J(x(k))v̄(k) (18)
is also strictly passive.

The sufficient conditions for a system (1),(2) to be OFSP
are provided by the following theorem.

Theorem 2. A system (1),(2) is OFSP with a static output
feedback (9) and a C2 positive definite storage function if

A2-1) The system has relative degree of 0 and J(x(k)) >
0, ∀x(k).

A2-2) The zero dynamics of the system:
x(k + 1) = f∗(x(k)) (19)

is stable with the following C2 positive definite func-
tion V satisfying

a) V (f∗(x)) − V (x) = −ζ(x) (20)

with a positive definite function ζ(x).

b) V (f∗(x) + g(x)u) is quadratic in u.

c) There exist positive definite matrices Γm, ΓM

such that

0 < Γm ≤ ∂2V (α)
∂α2

∣∣∣∣
α=f̄(x(k))

≤ ΓM

A2-3) g(x(k))
J(x(k)) is bounded.

Proof: The zero dynamics of the system(1),(2) is obtained
by (Byrnes and Lin, 1994)

x(k + 1) = f∗(x(k)) = f(x(k)) − h(x(k))
J(x(k))

g(x(k)) (21)
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Since f̄(x) in the closed loop system (10) can be repre-
sented from (12) and (21) by

f̄(x) = f(x) − θ∗

1 + θ∗J(x)
h(x)g(x)

= f∗(x) + J̃(x)h(x)g(x) (22)
with

J̃(x) =
1

J(x) (1 + θ∗J(x))
, (23)

from assumption A2-2), b), V (f̄(x)) can be expressed as

V (f̄(x)) = V (f∗(x)) + J̃(x)h(x)
∂V (α)

∂α

∣∣∣∣
α=f∗(x)

g(x)

+
1
2
J̃(x)2h(x)2gT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f∗(x)

g(x).

(24)
Thus we have from (20),(24) that

V (f̄(x)) − V (x)

=−ζ(x) + J̃(x)h(x)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

−1
2
J̃(x)2h(x)2gT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f̄(x)

g(x). (25)

Now, consider a function W̄ (x) that satisfies the following
relation:

W̄ (x)2 = J̄(x) − 1
2
ḡT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f̄(x)

ḡ(x). (26)

Such function W̄ (x) is certain to exist for a sufficiently
large θ∗ from assumptions A2-2),c) and A2-3). Further,
consider a function l̄(x(k)) that satisfies

∂V (α)
∂α

∣∣∣∣
α=f̄(x)

ḡ(x) = h̄(x) − 2l̄(x)W̄ (x). (27)

Since (27) yields that

l̄(x)2W̄ (x)2 =
1
4

{
h̄(x)2 − 2h̄(x)

∂V (α)
∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

)2

 , (28)

we have from (26) and (28) that

l̄(x)2
(

J̄(x) − 1
2
ḡT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f̄(x)

ḡ(x)

)

=
1
4

{
h̄(x)2 − 2h̄(x)

∂V (α)
∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

)2

 . (29)

Thus, we obtain from (29) that

h̄(x)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

=−2l̄(x)2
{
J̄(x)− 1

2
ḡT(x)

∂2V(α)
∂α2

∣∣∣∣
α=f̄(x)

ḡ(x)

}

+
1
2


h̄(x)2 +

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x)

)2

 . (30)

Furthermore, taking the definitions of ḡ(x) and h̄(x) in
(13) and (14) in to account, we have from (30) that

h(x)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

=−2l̄(x)2
{
(1+θ∗J(x))J(x)− 1

2
gT(x)

∂2V(α)
∂α2

∣∣∣∣
α=f̄(x)

g(x)

}

+
1
2


h(x)2 +

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

)2

 . (31)

Therefore, we obtain from (25) and (31) that

V (f̄(x)) − V (x)

=−ζ(x) − 2l̄(x)2

+
1

J(x) (1 + θ∗J(x))

[
1
2
{
h(x)2

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

)2



+
{

l̄(x)2 − 1
2

1
J(x) (1 + θ∗J(x))

h(x)2
}

×gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

g(x)

]
. (32)

Finally, we have
V (f̄(x)) − V (x) = −l̄(x)2 − S̄(x) (33)

where

S̄(x) = ζ(x) + l̄(x)2

− 1
J(x) (1 + θ∗J(x))

[
1
2
{
h(x)2

+

(
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

g(x)

)2



+
{

l̄(x)2 − 1
2

1
J(x) (1 + θ∗J(x))

h(x)2
}

×gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

g(x)

]
. (34)

S̄(x(k)) is certain to be a positive definite function with
a sufficiently large θ∗. Thus we can conclude that, for a
sufficiently large θ∗, there exists a positive definite C2

function V (x) with a property that V (f(x) + g(x)u) is
quadratic in u, functions W̄ (x(k)), l̄(x) and a positive
definite function S̄(x(k)) such that
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V (f̄(x)) − V (x) = −l̄(x)2−S̄(x) (35)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x) = h̄(x)−2l̄(x)W̄ (x) (36)

ḡT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

ḡ(x) = 2J̄(x)−2W̄ (x)2, (37)

that is there exists a feedback gain θ∗ such that the
resulting closed loop system is strictly passive. Then the
system is output feedback strictly passive with a C2

positive definite function as the storage function.

Moreover, we have the following lemma concerning the
strongly OFSP conditions.
Lemma 1. Assumptions A2-1), A2-2) and A2-3) in Theo-
rem 2 are satisfied with J(x(k)) = d > 0 then the system
(1), (2) is strongly OFSP.

Proof: See appendix B.

3. ADAPTIVE CONTROL SYSTEM DESIGN

3.1 Problem statement

Consider the following system with J(x) = 0 in (1), (2):

x(k + 1) = f(x(k)) + g(x(k))u(k) (38)

y(k) = h(x(k)). (39)
This system is not OFSP but we impose the following
assumptions.
Assumption 3. (1) g(x(k)) is bounded for all x(k).
(2) There exists a known static parallel feedforward com-

pensator (PFC): d such that the resulting augmented
system:

x(k + 1) = f(x(k)) + g(x(k))u(k) (40)

ya(k) = y(k) + du(k) = h(x(k)) + du(k) (41)
is rendered OFSP with a static output feedback, that
is the augmented system (40), (41) satisfies the OFSP
conditions in the Theorem 2.

The objective here is to design an adaptive output feed-
back control system under Assumption 3.

3.2 Controller design

Under Assumption 3, (2), from Theorem 2 and Lemma 1,
there exists a static output feedback:

u∗(k) = −θ∗ya(k) + v(k) (42)
for the augmented system (40), (41), such that the re-
sulting closed loop system with the transformed signal
v̄(k) = (1 + θ∗d)−1v(k) as the input:

x(k + 1) = f̄(x(k)) + g(x(k))v̄(k) (43)

ya(k) = h̄(x(k)) + dv̄(k) (44)

f̄(x(k)) = f(x(k)) − θ∗

1 + θ∗d
h(x(k))g(x(k)) (45)

h̄(x(k)) =
1

1 + θ∗d
y(k), (46)

is strictly passive with a C2 positive definite storage
function.

Thus, if one can design a control input by
u∗(k) = −θ∗ya(k), (47)

then a stable control system is obtained. However for a
system with uncertainties, of course, θ∗ is unknown, and
because of the existence a direct feedthrough term of the
input, the input (47) can not be implemented due to
causality problems.

To overcome these problems, we first consider the following
equivalent input obtained from (41):

u∗(k) =− θ∗

1+θ∗d
y(k) = −θ̃∗y(k), θ̃∗ =

θ∗

1+θ∗d
. (48)

Then for this ideal control input, we design the control
input adaptively as follows:

u(k) =−θ̃(k)y(k) (49)

where the feedback gain θ̃(k) is adaptively adjusted by the
following parameter adjusting law:

θ̃(k) = θ̃(k − 1) + γya(k)y(k), γ > 0. (50)
In this case, the augmented output ya(k) can be obtained
from (41) by

ya(k) =

(
1 − dθ̃(k − 1)

)
y(k)

1 + dγy(k)2
(51)

without causality problems. It should be noted that if
the controller is designed based on the input (47), then
causality problems will appear.

3.3 Stability analysis

The obtained closed loop system with the input (49) is
expressed by

x(k + 1) = f̃(x(k)) + g(x(k))∆u(k) (52)

ya(k) = ỹ(k) + d∆u(k), (53)
where

f̃(x(k)) = f(x(k)) − θ̃∗y(k)g(x(k)) (54)

ỹ(k) =
(
1 − dθ̃∗

)
y(k) (55)

∆u(k) =−∆θ̃(k)y(k), ∆θ̃(k) = θ̃(k) − θ̃∗. (56)

From the definition of θ̃∗, we have

f̃(x(k)) = f(x(k)) − θ∗

1 + θ∗d
y(k)g(x(k))

= f̄(x(k)) (57)

ỹ(k) =
(

1 − θ∗d
1 + θ∗d

)
y(k) =

1
1 + θ∗d

y(k)

= h̄(x(k)). (58)
This means that the system (52), (53) is strictly passive
with C2 positive definite storage function.

Thus, there exists a C2 positive definite function V1, func-
tions l1(x(k)),W1(x(k)), and a positive definite function
S1(x(k)) such that
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C1) V1(f̄(x)) − V1(x) = −l1(x)2 − S1(x)
∂V1(α)

∂α

∣∣∣∣
α=f̄(x)

g(x) = h̄(x) − 2l1(x)W1(x)

gT (x)
∂2V1(α)

∂α2

∣∣∣∣
α=f̄(x)

g(x) = 2d − 2W1(x)2

C2) V1(f̄(x) + g(x)∆u) is quadratic in ∆u.

Therefore, considering the difference of V1(x(k)), it is easy
to show that we have

V1(x(k + 1)) − V1(x(k))

= ya(k)∆u(k) − S1(x(k))

− (l1(x(k)) + W1(x(k))∆u(k))2 . (59)

Now, consider the following positive definite function V :

V (k) = V1(x(k)) + V2(k) (60)

V2(k) =
1
2γ

∆θ̃(k − 1)2. (61)

Define a difference ∆V (k) as

∆V (k) = V (k + 1) − V (k)

= ∆V1(x(k)) + ∆V2(k) (62)

∆V1(x(k)) = V1(x(k + 1)) − V1(x(k)) (63)

∆V2(k) = V2(k + 1) − V2(k). (64)

The difference ∆V2(k) is represented by

∆V2(k) =
1
2γ

(
∆θ̃(k)2 − ∆θ̃(k − 1)2

)
. (65)

Since we have from (50) that

∆θ̃(k − 1) = ∆θ̃(k) − γya(k)y(k), (66)

we obtain

∆V2(k) =−∆u(k)ya(k) − 1
2
γya(k)2y(k)2. (67)

Consequently, the difference ∆V can be evaluated from
(59) and (67) by

∆V (k) =−S1(x(k)) − (l1(x(k)) + W1(x(k))∆u(k))2

−1
2
γya(k)2y(k)2

≤−S1(x(k)) ≤ 0. (68)

From this result, we can conclude that all the signals
in the control system are uniformly bounded. Further,
from (68), we have limk→∞ x(k) = 0. Thus we obtain
limk→∞ y(k) = 0.

Finally, we have the following theorem.
Theorem 4. Under the Assumption 3, all the signals in the
resulting closed loop control system with control input in
(49) are uniformly bounded, and lim

k→∞
y(k) = 0 is achieved.

4. CONCLUSIONS

In this paper, we considered a passivity based adaptive
output feedback control design for discrete-time nonlinear
systems. We first clarified a discrete-time nonlinear ver-
sion of Kalman-Yakubovich-Popov (KYP) Lemma for a
strictly passive system, and then investigated the OFSP
property of discrete-time nonlinear systems. Furthermore,
conditions in which one can design an adaptive controller
without causality problems were provided as strong output
feedback strict passivity, and according to the obtained
conditions, an adaptive output feedback controller design
scheme was shown for a discrete-time nonlinear system.
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Appendix A. PROOF OF THEOREM 1

(Necessity): If the system (1),(2) is strictly passive, then
there exist a non-negative function V (x(k)) and a positive
definite function S(x(k)) such that

V (x(k + 1)) − V (x(k)) ≤ y(k)u(k) − S(x(k)) (A.1)
Considering functions l(x(k)) and W (x(k)) to satisfy

V (x(k + 1)) − V (x(k))

= y(k)u(k) − S(x(k)) − (l(x(k)) + W (x(k))u(k))2 ,

(A.2)
we have
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V (f(x)+g(x)u)=V (x)+h(x)u+J(x)u2−S(x)−l(x)2

−2l(x)W (x)u−W (x)2u2. (A.3)
Setting u(k) = 0, (5) is obviously satisfied. Further, from
(A.3) we have

∂V (f(x) + g(x)u)
∂u

=
∂V (α)

∂α

∣∣∣∣
α=f(x)+g(x)u

g(x)

= h(x) + 2J(x)u − 2l(x)W (x)

−2W (x)2u, (A.4)
∂2V (f(x)+g(x)u)

∂u2
= gT(x)

∂2V (α)
∂α2

∣∣∣∣
α=f(x)+g(x)u

g(x)

= 2J(x) − 2W (x)2. (A.5)
Setting u = 0 yields (6) and (7). A1-2) is obvious.

(Sufficiency): From A1-2), V (f(x) + g(x)u) can be ex-
pressed as

V (f(x) + g(x)u) = A(x) + B(x)u + C(x)u2 (A.6)
Applying the Taylor expansion formula at u(k) = 0, we
have from A1-1) that

A(x) = V (f(x) + g(x)u)|u=0 = V (f(x))

= V (x) − l(x)2 − S(x), (A.7)

B(x) =
∂V (f(x) + g(x)u)

∂u

∣∣∣∣
u=0

=
∂V (α)

∂α

∣∣∣∣
α=f(x)

g(x)

= h(x) − 2l(x)W (x), (A.8)

C(x) =
1
2

∂2V (f(x) + g(x)u)
∂u2

∣∣∣∣
u=0

=
1
2
gT (x)

∂2V (α)
∂α2

∣∣∣∣
α=f(x)

g(x)

= J(x) − W (x)2. (A.9)
Thus we obtain

V (f(x)+g(x)u) = V (x)+h(x)u+J(x)u2−S(x).

−l(x)2−2l(x)W (x)u−W (x)2u2

= V (x)+yu−S(x)−(l(x)+W (x)u))2 .

(A.10)
This yields that

V (x(k+1))−V (x(k)) ≤ y(k)u(k)−S(x(k)). (A.11)

Finally we can conclude that the system (1),(2) with
assumptions A1-1) and A1-2) is strictly passive.

Appendix B. PROOF OF LEMMA 1

Consider a system (1),(2) with J(x(k)) = d satisfying
assumptions A2-1) to A2-3) in Theorem 2:

x(k + 1) = f(x(k)) + g(x(k))u(k) (B.1)

y(k) = h(x(k)) + du(k). (B.2)
From Theorem 2, there exists a static output feedback (9)
such that the resulting closed loop system:

x(k + 1) = f̄(x(k)) + ḡ(x(k))v(k) (B.3)

y(k) = h̄(x(k)) + d̄v(k) (B.4)
with

f̄(x(k)) = f(x(k)) − θ∗

1 + θ∗d
h(x(k))g(x(k))

ḡ(x(k)) =
1

1 + θ∗d
g(x(k))

h̄(x(k)) =
1

1 + θ∗d
h(x(k)), d̄ =

1
1 + θ∗d

d

is strictly passive with a C2 positive definite storage
function. Thus from Theorem 1, there exist a C2 positive
definite function V (x(k)), functions l̄(x(k)), W̄ (x(k)) and
a positive definite function S̄(x(k)) such that

V (f̄(x)) − V (x) = −l̄(x)2 − S̄(x) (B.5)
∂V (α)

∂α

∣∣∣∣
α=f̄(x)

ḡ(x) = h̄(x) − 2l̄(x)W̄ (x) (B.6)

ḡT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f̄(x)

ḡ(x) = 2d̄ − 2W̄ (x)2 (B.7)

and
V (f̄(x) + ḡ(x)v) is quadratic in v. In other words, the
following equality is satisfied.

V (x(k+1))−V (x(k))

=y(k)v(k)−S̄(x(k))−(l̄(x(k))+W̄ (x(k))v(k)
)2

. (B.8)
Considering the transformed input:

v̄(k) =
1

1 + θ∗d
v(k), (B.9)

(B.8) can be represented by

V (x(k+1))−V (x(k))

= y(k) (1+θ∗d) v̄(k)−S̄(x(k))

− (l̄(x(k))+W̄ (x(k)) (1+θ∗d) v̄(k)
)2

. (B.10)
Thus we have

V̄ (x(k+1))−V̄ (x(k))=y(k)v̄(k)−S̃(x(k))

−
(
l̃(x(k))+W̃ (x(k))v̄(k)

)2

(B.11)
where

V̄ (x(k)) =
1

1 + θ∗d
V (x(k)) (B.12)

S̃(x(k)) =
1

1 + θ∗d
S̄(x(k)) (B.13)

l̃(x(k)) =
1√

1 + θ∗d
l̄(x(k)) (B.14)

W̃ (x(k)) =
√

1 + θ∗dW̄ (x(k)). (B.15)
This means that the system with the transformed input v̄:

x(k + 1) = f̄(x(k)) + g(x(k))v̄(k) (B.16)

y(k) = h̄(x(k)) + dv̄(k) (B.17)
is strictly passive with a C2 positive definite storage
function V̄ .
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