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Abstract: In this note, a practical issue related to the measurement delay is addressed for the
output tracking control of a class of nonlinear uncertain systems. Observer based sliding mode
control approach is proposed. The measurement delay is constant and bounded. The sliding
mode control can handle matched L∞ type system uncertainties with known bounding functions.
However, the controller usually requires fully measurable and instantaneous states information
without any delays. To deal with measurement time delay, a robust observer is constructed based
on delayed output information from the sensor. Through designing the observer gain according
to the Linear Matrix Inequality (LMI) techniques developed by Lyapunov Kravoskii method for
time delay systems, the convergence of the estimation error with an uniform bound is ensured.
Then the sliding mode control law is constructed based on estimated states. The convergence of
the switching surface is ensured in finite time and the overall tracking error tends to be bounded
due to the estimation error bound of the observer. Finally, a simulation example is presented to
show the effectiveness of the proposed method.

Keywords: Nonlinear Systems, Observer, Time Delays, Linear Matrix Inequality (LMI), Sensor
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1. INTRODUCTION

It is well known that sliding mode control has robustness to
matched bounded uncertainties. SMC can handle matched
L∞[0,∞) type system disturbance where the upper-bound
knowledge is available (Utkin, 1992). Many of the conven-
tional design approaches for sliding mode control systems
assume that the states of the system are directly available
for feedback control design (Chan, 1995) (Bartolini and
Pydynowski, 1996) (Chung and Lin, 1998). Direct output
feedback sliding mode control approaches are proposed
as well by properly designing a sliding manifold based
on the system output (Edwards et al., 2000) (Edwards
et al., 2001). Observer-based approaches to estimate the
states are desirable when the states are not measurable
but observable (Zak and Hui, 1993)-(Rundell et al., 1996).
However, in nonlinear systems, the issue related to de-
signing an appropriate nonlinear observer for the system
should be carefully addressed.

Time delays including measurement delays from the sensor
exist in many real systems (Dugard and Verriest, 1998)
(Ramos and Pearson, 2000) (Niculescu, 2001) (Pan et
al., 2006a). When there are time delays involved in the
states, (Niu et al., 2004) addressed the observer based
approach for the system with matched bounded uncer-
tainties and state time delays. Though there are delays
in the state, the controller design is based on the output
y(t) instead of y(t − τ) where τ is the time delay in the
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measurement channel. In (Gouaisbaut et al., 2004), a class
of nonlinear systems with time delays in the states is con-
sidered as well. The delay in the output causes significant
effect on the sliding mode control design which requires
instantaneous feedback from the measurable output. With
partial measurable states, it is not straightforward to ap-
ply conventional SMC methods. With partial measurable
states and delays in the output, it is even more difficult
to deal with. Hence the main motivation of this work is
to deal with such kind of problem when there are delays
in the output channel - sensor measurement, for nonlinear
uncertain systems.

The other consideration is that LMI techniques are now
widely applied in dealing with time delay systems (Boyd
et al., 1994) (Mahmoud, 2000) (Gu et al., 2003) (Pan
et al., 2006b). LMIs offer numerical methods to test the
feasibility of a problem or to solve for an optimal solution.
For linear systems with various types of time delays, LMIs
are well applied in the literature.

In the proposed approach, an observer based on the de-
layed measurement output is firstly constructed. Then the
robust controller is proposed to ensure the finite time
convergence of the closed-loop systems. In this paper,
the proper observer gain design is yielded through solv-
ing a delay-depended sufficient condition by LMI tech-
niques, which is derived according to Lyapunov Krasovskii
method. Instead of model transformation, zero equations
are used by introducing additional slack matrix variables,
which results in less conservative stability criteria (Pan
et al., 2006b). The estimation error of the observer re-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2785 10.3182/20080706-5-KR-1001.1298



sults in a bound. The main contributions of this work
are that: (i) in the presence of uncertainties, the robust
observer is designed by solving a Linear Matrix Inequality
through achieving the delay dependent stability condition;
(ii) bounded estimation error is achieved; (iii) the applied
SMC can accomplish the tracking task in the existence of
measurement time delays.

The paper is organized as follows. Section 2 presented the
problem formulation as well as the assumptions applied.
In Section 3, an observer based on delayed measurement
output and less conservative delay dependent condition
is designed. Section 4 proposes a nonlinear sliding mode
control scheme for the whole system. A numerical example
is demonstrated in Section 5 to show the effectiveness of
the proposed scheme. Section 6 draws the conclusions.
Notations: Rn denotes an n-dimension real vector space,
‖ · ‖ is the Euclidean norm and induced matrix norm,
L∞[0,∞) is the space of uniformly bounded functions on
[0,∞).

2. PROBLEM FORMULATION

Consider the following class of nonlinear system
{

ẋ = Ax + ψ(t,x) + B(t) [u + d(t,x)]
y(t) = Cyx(t − τ),

(1)

where x ∈ Rn is the state vector. u ∈ Rn represents
the control vector and y ∈ ℜn is the output vector. τ
is the delay due to the measurement of the sensor. d is
the external disturbance. The system is required to track
the desired trajectory y → yd ∈ Rn which is a smooth
function. A is a known matrix.

Assumption 1. The friction force d(t,x) is bounded as
‖d(t,x)‖ ≤ βd where βd is a constant.

Assumption 2. The time delay τ is assumed to be known.

Assumption 3. βB1 ≤ ‖B(t)‖ ≤ βB2, where βB1 and βB2

are positive constants.

Assumption 4. The function ψ(t,x) is Lipschitz with re-
spect to x. Thus there exists ρ > 0 such that

‖ψ(t,x) − ψ(t,xd)‖ ≤ Cψ‖x − xd‖, ∀x ∈ Rn.

Lemma 1. - Jensen Inequality (Gu et al., 2003) For any
constant matrix E ∈ Rn×n, E = ET > 0, vector function
ω : [0, τ ] → Rn such that the integrations concerned are
well defined, then,

τ

τ∫

0

ωT (s)Eω(s)ds ≥





τ∫

0

ω(s)ds





T

E





τ∫

0

ω(s)ds



 .(2)

In the following section, based on delay-dependent condi-
tion by using Lyapunov Krasovskii method, an observer is
designed to estimate the state which is used to facilitate
the robust controller design.

3. ROBUST OBSERVER DESIGN BASED ON
DELAY-DEPENDENT CONDITION

According to (1), the observer based on delayed measure-
ment is designed as

{
˙̂x = Ax̂ + ψ(t, x̂) + B(t)u − K2[y(t) − Cyx̂(t − τ)]
y(t) = Cyx(t − τ),

(3)

where Cy ∈ Rm, and K1 and K2 ∈ Rn×n are two designed

gains. Denote x̃(t − τ)
△
= x(t − τ) − x̂(t − τ) and x̂(t), (3)

can be rewritten as

˙̂x = Ax̂ + ψ(t, x̂) + B(t)u − KCyx̃(t − τ), (4)

Compare (1) with (4), then the estimation error dynamics
- x̃(t) becomes,

˙̃x(t) = Ax̃(t) + ψ̃(t,x, x̂) + KCyx̃(t − τ) + D(t)d(t,x),

(5)

where ψ̃(t,x, x̂) = ψ(t,x) − ψ(t, x̂) and D(t) = B(t).
Based on the delayed state signal available at the controller
side, e.g. x(t − τ), the observer (4) is designed to observe
the state signal x(t). In the following theorem, K is
designed according to the linear matrix inequality derived
based on the Lyapunov Kravoskii method.

Theorem 1. Consider the estimation error dynamics (5),
for a given time delay τ , if there exist symmetric positive

definite matrices P =

[
P11 P12

PT
12 P22

]

> 0, Q =

[
Q11 0
0 Q22

]

>

0, R =

[
R11 0
0 R22

]

> 0, matrices K,Mi, Ni, i = 1, ..., 5,

with appropriate dimensions and a scalar ε > 0 such that
the following inequality holds

[
Ξ M

MT − ε

2
I

]

< 0, (6)

where M = [MT
1 ,MT

2 ,MT
3 ,MT

4 ,MT
5 ]T , and

Ξ =








Ξ11 ∗ ∗ ∗ ∗
Ξ21 Ξ22 ∗ ∗ ∗
Ξ31 Ξ32 Ξ33 ∗ ∗
Ξ41 Ξ42 Ξ43 Ξ44 ∗
Ξ51 Ξ52 Ξ53 Ξ54 Ξ55








, (7)

with

Ξ11 = Q11 + P12 + PT
12 + τR11 + N1 + NT

1 − M1A

−AT MT
1 + εC2

ψI + I

Ξ21 =−PT
12 + N2 − M2A − NT

1 − CT
y KT MT

1 ,

Ξ22 =−M2KCy − (M2KCy)T − N2 − NT
2 − Q11,

Ξ31 = P11 + N3 − M3A + MT
1 ,

Ξ32 =−N3 + MT
2 − M3KCy,

Ξ33 = Q22 + M3 + MT
3 + τR22,

Ξ41 = P22 + N4 − M4A,

Ξ42 =−P22 − N4 − M4KCy, Ξ43 = M4 + PT
12,

Ξ44 =−R11

τ
, Ξ51 = N5 − NT

1 − M5A,

Ξ52 =−M5KCy − N5 − NT
2 , Ξ53 = M5 − NT

3 ,

Ξ54 =−NT
4 , Ξ55 = −R22

τ
− N5 − NT

5 ,

then the system (5) is stable, e.g. x̃(t) is globally uniformly
bounded.
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Proof: See Appendix A.

The LMI condition in (7) is non-convex and hence the fol-
lowing theorem is proposed to be the equivalent sufficient
condition as in Theorem 1.

Theorem 2. For given scalars θi, i = 1, · · · , 5, and a given
time delay constant τ , if there exist symmetric positive

definite matrices P̄ =

[
P̄11 P̄12

P̄T
12 P̄22

]

> 0, Q̄ =

[
Q̄11 0
0 Q̄22

]

>

0, R̄ =

[
R̄11 0
0 R̄22

]

> 0, matrices Y , N̄i, i = 1, · · · , 5,

nonsingular matrix X with appropriate dimensions and
constant ε > 0 such that the following inequality holds,











Ξ̄11 ∗ ∗ ∗ ∗ ∗ ∗

Ξ̄21 Ξ̄22 ∗ ∗ ∗ ∗ ∗

Ξ̄31 Ξ̄32 Ξ̄33 ∗ ∗ ∗ ∗

Ξ̄41 Ξ̄42 Ξ̄43 Ξ̄44 ∗ ∗ ∗

Ξ̄51 Ξ̄52 Ξ̄53 Ξ̄54 Ξ̄55 ∗ ∗

θ1I θ2I θ3I θ4I θ5I −
εI

2
0

(εC
2

ψ + 1)X
T

0 0 0 0 0 −
εI

2











< 0, (8)

where

Ξ̄11 = Q̄11 + P̄12 + P̄T
12 + τR̄11 + N̄1 + N̄T

1

−θ1AXT − θ1XAT

Ξ̄21 =−P̄T
12 + N̄2 − θ2AXT − N̄T

1 − θ1Y
T ,

Ξ̄22 =−θ2Y − θ2Y
T − N̄2 − N̄T

2 − Q̄11,

Ξ̄31 = P̄11 + N̄3 − θ3AXT + θ1X,

Ξ̄32 =−N̄3 + θ2X − θ3Y,

Ξ̄33 = Q̄22 + θ3X + θ3X
T + 2τR̄22,

Ξ̄41 = P̄22 + N̄4 − θ4AXT ,

Ξ̄42 =−P̄22 − N̄4 − θ4Y,

Ξ̄43 = θ4X
T + P̄T

12, Ξ̄44 = − R̄11

2τ
,

Ξ̄51 = N̄5 − N̄T
1 − θ5AXT ,

Ξ̄52 =−θ5Y − N̄5 − N̄T
2 ,

Ξ̄53 = θ5X
T − N̄T

3 ,

Ξ̄54 =−N̄T
4 , Ξ̄55 = − R̄22

2τ
− N̄5 − N̄T

5 ,

then matrices K in Theorem 1 is obtained as

K = Y X−T CT
y

(
CyCT

y

)−1
. (9)

As a result, the error dynamics (5) is stable, e.g. x̃(t) is
globally uniformly bounded by

√
εβB2βd.

Proof: In order to transform the nonconvex LMI in (7)
into a solvable LMI, (7) could be represented as the
following form by schur complement,










Ξ11 − (εC
2

ψ + 1)I ∗ ∗ ∗ ∗ ∗ ∗

Ξ21 Ξ22 ∗ ∗ ∗ ∗ ∗

Ξ31 Ξ32 Ξ33 ∗ ∗ ∗ ∗

Ξ41 Ξ42 Ξ43 Ξ44 ∗ ∗ ∗

Ξ51 Ξ52 Ξ53 Ξ54 Ξ55 ∗ ∗

M1 M2 M3 M4 M5 −
εI

2
0

(εC
2

ψ + 1)X
T

0 0 0 0 0 −(εC
2

ψ + 1)I










< 0,

(10)

we assume that we have some relations in Mi’s, i =
1, · · · , 5. One possibility is that Mi = θiM0 where M0 is
nonsingular and θi is known and given. Define X = M−1

0 ,
W = diag(X,X,X,X,X, I, I) and Y = KCyXT . Then
by pre-multiplying the inequality in (10) by W and post-
multiplying by WT , we can obtain the inequality (8). Note
that the inequality in (8) is only a sufficient condition for
the solvability of (7) based on the derivation.

4. ROBUST NONLINEAR CONTROLLER DESIGN

4.1 Robust Controller Design

Define the tracking error as e = ŷ − yd. The switching
surface here is usually chosen as

σ = Ge = G(Cyx̂ − yd), (11)

where G > 0 is a diagonal nonsingular matrix. The robust
nonlinear controller is constructed as below

u = uc + Γ(t)us (12)

where

uc = −Φ [CyAx̂ + Cyψ(t, x̂) − CyKCyx̃(t − τ) − ẏd] ,

(13)

is the designed nominal control,

Φ =
[
(CyB(t))T CyB(t)

]−1
(CyB(t))T

and us = [us1, us2, · · ·, usn]T is an n-vector switching
quantity with

usi =−sign(σi), i = 1, 2, · · · , n. (14)

Furthermore, Γ(t) = diag(γ1(t), · · · , γn(t)) > 0 is a diago-
nal gain matrix.

4.2 Convergence Analysis

First construct a Lyapunov function V (t) =
1

2
σT G−1σ >

0. The derivative of V becomes

V̇ (t) = σT G−1σ̇ = σT
(

Cy
˙̂x − ẏd

)

= σT {Cy [Ax̂ + ψ(t, x̂) + B(t)uc + B(t)Γ(t)us]}
−σT [CyKCyx̃(t − τ)] − σT ẏd

≤−
n∑

i=1

βB1γi(t)σ
2
i < 0. (15)

Hence the system converges and it can reach the switching
surface in finite time. As a result, the overall tracking error
is bounded as well - see Remark 1.

Remark 1. Note that at the steady state, the estimation

error x̃ is bounded by βx̃

△
=

√
εβB2

βd and σ = 0 ⇒ Cyx̂−
yd = 0. The overall tracking error is

y − yd = Cyx − yd = Cyx̂ − yd
︸ ︷︷ ︸

0

+Cy(x − x̂).

As a result, ‖y − yd‖ = ‖Cy‖βx̃, which shows that the
overall tracking error is uniformly bounded.
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5. ILLUSTRATIVE EXAMPLES

Consider the nonlinear system in (1) with

ψ(t,x) = [0.1sin(x1), 0.5cos(x2)]
T ,

B(t) = [1 + 0.5cos(t), 0.3sin(t)]T ,

d(t,x) = sin(x1(t)) + cos(x2(t)),

where x = [x1, x2]
T ∈ R4 and τ = 1 sec. The initial condi-

tion is x(0) = [0.5, 0.9]
T
. y(t) = x1(t− τ). A =

[
−1 1
−2 −3

]

,

and Cy = [ 1 0 ]. It is obvious that ψ(t,x) satisfies the Lip-
schitz condition in Assumption 4. Furthermore, CyB(t) is
nonsingular. The target trajectory is yd = x1d = sin(πt).
The initial condition for observer is x̂(0) = [1, 1]T .

By solving the LMI in Theorem 2, when τ = 1sec,

K =

[
1.796

−0.1828

]

; when τ = 0.1sec, K =

[
1.1302
0.3849

]

. The

switching surface is designed according to (11) with G = 1.
The control law is designed according to (12) with Γ = 1.

As shown in Fig.1.(a), the system tracking error converge
to a bound asymptotically. As well, the observation error
in Fig.1.(b) tends to a steady state within a certain bound
due to the existence of the matched disturbance. The
profile of the switching surface is as shown in Fig.2. We
can observe that it reaches zero in finite time. It shows the
evolution of the switching surface with smoothing scheme
(usi = − σi

|σi|+0.008 ).
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Fig. 1. (a) The profile of the tracking error e1 when
τ = 0.1 sec; (b) The profile of the observation error
x̃.

When we elongate the time delay to be 1 second, the
corresponding results are as shown in the figures Fig.3
and Fig.4. Comparing the error magnitude with the one
in Fig.1.(a), the bound is larger due to the longer time
delay.

6. CONCLUSIONS

In this paper, a robust observer-based control approach is
proposed with rigorous proof of the convergence. The ap-
proach utilize the LMI techniques to facilitate the observer
gain design for the error dynamics in the form of time delay
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Fig. 2. The profile of the switching surface σ.
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Fig. 3. (a) The profile of the tracking error e1 when
τ = 1 sec; (b) The profile of the observation error
x̃.
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Fig. 4. The profile of the switching surface σ when using
the smoothing scheme.

systems. Delayed feedback is well applied due to the lack of
instantaneous measurable output. For the uncertain non-
linear systems with partial linearity property, the proposed
scheme ensures the boundedness of the closed loop system.
The approach dealt with the case with known constant
time delays. It would be interesting to further investigate
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the general case with time varying delays and unmatched
uncertainties.
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APPENDIX A: PROOF OF THEOREM 1

Consider the following Lyapunov Krasovskii functional
candidate:

V = x̃T (t)P11x̃(t) + 2x̃T (t)P12[

t∫

t−τ

x̃(s)ds]

+[

t∫

t−τ

x̃(s)ds]T P22[

t∫

t−τ

x̃(s)ds]

+

t∫

t−τ

[x̃T (s) + ˙̃x
T
(s)]T Q

[
x̃(s)
˙̃x(s)

]

ds

+

0∫

−τ

t∫

t+θ

[x̃T (s) ˙̃x
T
(s)]T R

[
x̃(s)
˙̃x(s)

]

dsdθ, (16)

where

P =

[
P11 P12

PT
12 P22

]

> 0, Q =

[
Q11 0
0 Q22

]

> 0,

R =

[
R11 0
0 R22

]

> 0.

With appropriate dimensions, the following two zero equa-
tions hold:

Φ1 = 2{x̃T (t)N1 + x̃T (t − τ)N2 + ˙̃x
T
(t)N3

+[

t∫

t−τ

x̃(s)ds]T N4 + [

t∫

t−τ

˙̃x(s)ds]T N5}

[x̃(t) −
t∫

t−τ

˙̃x(s)ds − x̃(t − τ)] = 0,

Φ2 = 2{x̃T (t)M1 + x̃T (t − τ)M2 + ˙̃x
T
(t)M3

+[

t∫

t−τ

x̃(s)ds]T M4 + [

t∫

t−τ

˙̃x(s)ds]T M5}{ ˙̃x(t)

−Ax̃(t) − ψ̃(t,x, x̂) − KCyx̃(t − τ) − D(x1)d(t)}
= 0.

Then the derivative of the Lyapunov function candidate is
as follows,

V̇ = V̇ + Φ1 + Φ2 = x̃T (t)P11
˙̃x(t) + ˙̃x

T
(t)P11x̃(t)

+2 ˙̃x
T
(t)P12[

t∫

t−τ

x̃(s)ds] + 2x̃T (t)P12[x̃(t) − x̃(t − τ)]

+[x̃(t) − x̃(t − τ)]T P22

t∫

t−τ

x̃(s)ds

+[

t∫

t−τ

x̃(s)ds]T P22[x̃(t) − x̃(t − τ)]
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+ [x̃T (t) ˙̃x
T
(t)]T Q

[
x̃(t)
˙̃x(t)

]

−[ x̃T (t − τ) ˙̃x
T
(t − τ) ]T Q

[
x̃(t − τ)
˙̃x(t − τ)

]

+τ [ x̃T (t) ˙̃x
T
(t) ]T R

[
x̃(t)
˙̃x(t)

]

−
t∫

t−τ

[ x̃T (s) ˙̃x
T
(s) ]T R

[
x̃(s)
˙̃x(s)

]

ds

+2zT N [x̃(t) −
t∫

t−τ

˙̃x(s)ds − x̃(t − τ)]

+2zT M [ ˙̃x(t) − Ax̃(t) − ψ̃(t,x, x̂)

−KCyx̃(t − τ) − D(x1)d(t)], (17)

where

z =



x̃T (t), x̃T (t − τ), ˙̃x
T
(t), [

t∫

t−τ

x̃(s)ds]T , [

t∫

t−τ

˙̃x(s)ds]T





T

N = [NT
1 NT

2 NT
3 NT

4 NT
5 ]T ,

M = [MT
1 MT

2 MT
3 MT

4 MT
5 ]T .

Furthermore, we have

−2zT Mψ̃ ≤ ε−1(zT MMT z) + εψ̃
T
ψ̃

≤ ε−1(zT MMT z) + εC2
ψx̃T (t)x̃(t), (18)

−2zT MDd≤ ε−1(zT MMT z) + ε(Dd)T Dd

≤ ε−1(zT MMT z) + εβ2
B2β

2
d . (19)

where ε and γ are positive constants. Using (17), (19) and
the Jensen inequality in (2),

V̇ ≤ x̃T (t)P11
˙̃x(t) + ˙̃x

T
(t)P11x̃(t)

+2 ˙̃x
T
(t)P12[

t∫

t−τ

x̃(s)ds] + 2x̃T (t)P12[x̃(t) − x̃(t − τ)]

+[x̃(t) − x̃(t − τ)]T P22

t∫

t−τ

x̃(s)ds

+[

t∫

t−τ

x̃(s)ds]T P22[x̃(t) − x̃(t − τ)]

+ [x̃T (t) ˙̃x
T
(t)]T Q

[
x̃(t)
˙̃x(t)

]

−[ x̃T (t − τ) ˙̃x
T
(t − τ) ]T Q

[
x̃(t − τ)
˙̃x(t − τ)

]

+τ [ x̃T (t) ˙̃x
T
(t) ]T R

[
x̃(t)
˙̃x(t)

]

−
t∫

t−τ

[ x̃T (s) ˙̃x
T
(s) ]T R

[
x̃(s)
˙̃x(s)

]

ds

+2ZT N [x̃(t) −
t∫

t−τ

˙̃x(s)ds − x̃(t − τ)]

+2zT M [ ˙̃x(t) − Ax̃(t) − KCyx̃(t − τ)]

+2ε−1(zT MMT z) + εC2
ψx̃T (t)x̃(t) + εβ2

B2β
2
d

≤ x̃T (t)P11
˙̃x(t) + ˙̃x

T
(t)P11x̃(t)

+2 ˙̃x
T
(t)P12[

t∫

t−τ

x̃(s)ds]

+2x̃T (t)P12[x̃(t) − x̃(t − τ)]

+[x̃(t) − x̃(t − τ)]T P22

t∫

t−τ

x̃(s)ds

+[

t∫

t−τ

x̃(s)ds]T P22[x̃(t) − x̃(t − τ)]

+ [x̃T (t) ˙̃x
T
(t)]T Q

[
x̃(t)
˙̃x(t)

]

−x̃T (t − τ)Q11x̃(t − τ)

+τ [ x̃T (t) ˙̃x
T
(t) ]T R

[
x̃(t)
˙̃x(t)

]

−1

τ







t∫

t−τ

[ x̃T (s) ˙̃x
T
(s) ]T ds






R







t∫

t−τ

[
x̃(s)
˙̃x(s)

]





ds

+2ZT N [x̃(t) −
t∫

t−τ

˙̃x(s)ds − x̃(t − τ)]

+2zT M [ ˙̃x(t) − Ax̃(t) − KCyx̃(t − τ)]

+2ε−1(zT MMT z) + εC2
ψx̃T (t)x̃(t) + εβ2

B2β
2
d

≤−x̃T (t)x̃(t) + zT Ξz + 2ε−1(zT MMT z) + εβ2
B2β

2
d ,

(20)

where Ξ is as shown in (7). The inequality (20) is equiva-
lent to

V̇ ≤ −x̃T (t)x̃(t) + εβ2
B2β

2
d + zT

[
Ξ M

MT − ε

2
I

]

z. (21)

If there exist symmetric positive definite matrices P >
0, Q > 0, R > 0, matrices K,Mi, Ni, i = 1, ...5, with
appropriate dimensions and a scalar ε > 0 such that the
inequality (6) holds, then from (21) we have

V̇ ≤ −‖x̃(t)‖2 + εβ2
B2β

2
d . (22)

From the Lyapunov stability theory, the system (5) is
stable and x̃(t) is globally uniformly bounded, i.e., ‖x̃‖ ≤√

εβB2βd.
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