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Abstract: An operational space controller that employs three-layer neural network (NN)
adaptive motion control is presented in this paper. It is shown that the trajectory tracking
errors and the NN weight errors are bounded and consequently the controller is shown to be
stable. Comparative study is made between the performance of the proposed NN adaptive
motion control strategy and the conventional inverse-dynamics control and PD plus gravity
compensation controller. The simulation results show that the NN adaptive motion control can
be as effective as the inverse-dynamics without the need for a priori knowledge of the system
dynamics. Real-time implementation of the strategy was also conducted on a real PUMA 560
robot.

1. INTRODUCTION

To this day, many industrial serial manipulators are still
limited to independent PID joint control. The usage of task
space motion control is limited in the industries and even
more so for simultaneous force-motion (compliant) control.
Compliant control allows a manipulator to interact with
its environment and it has many useful applications, such
as to apply a controlled force needed for a manufactur-
ing process (e.g. grinding, polishing), interacting with an
object with a controlled force, or dealing with geometric
uncertainty of the workpiece by establishing controlled
contact forces. The operational space formulation for mo-
tion and force control [Khatib, 1987] provides a unified
framework for this purpose, and its implementations are
shown in [Jamisola et al., 2005, Khatib and Burdick, 1986].
Control for operational space framework is also known as
inverse-dynamics control. It requires a priori knowledge
of the robot dynamics. However, it is well-established that
the system identification process for a robot is difficult to
perform accurately [Armstrong et al., 1986, Jamisola et al.,
1999].

The identification of Lagrangian dynamics for a particular
robot is a two-step process. The first is to derive the
symbolic expressions for the dynamic parameters, such as
the inertia matrix, Coriolis/centrifugal, and gravity vec-
tor through closed-form Lagrangian energy considerations.
Simplification follows to produce lumped parameters to
reduce computational complexity in implementation. The
second step is to measure the values of the dynamic param-
eters of the physical robot. Some experimental techniques
have been proposed in the past, such as in [Jamisola
et al., 1999], to measure the robot dynamics through its
responses to specific commands sent to the joint actuators.
However, it is difficult to obtain an accurate measurement
and there is much room for human errors. It should also
be noted that the errors in parameter identification accu-
mulate with subsequent links in the serial manipulator.

Joint friction of a real robot is also difficult to obtain.
There are three type of frictions: fluid/viscous friction,
kinetic/Coulomb friction, and static friction. Friction pa-
rameters depend on the current ambient condition, so
friction identification should ideally be performed imme-
diately prior to the operation of the robot [Jamisola et al.,
1999].

Early research efforts [Craig et al., 1986, Slotine and Li,
1987, Middleton and Goodwin, 1988, Ortega and Spong,
1988] turned to Linear-In-Parameter (LIP) adaptive con-
trol to seek answers for an easy-to-use high performance
robot control strategy. In practice, however, LIP adap-
tive strategy still requires the derivation of the regression
matrix out of the symbolic expressions of the dynamics
equations, prior to the parameters estimation. Further-
more the dynamics equations in Cartesian space becomes
more complicated than in joint space, making it difficult
for implementation.

A three-layer Neural Network (NN) joint space adaptive
motion control was proposed in [Lewis et al., 1996]. It was
shown that satisfactory performance was achieved in the
simulation. Several studies then followed in NN adaptive
control in Cartesian space: such as in [Hu et al., 2000],
[Kwan et al., 1994] where the task space force/motion NN
adaptive control was formulated based upon model-based
framework of [McClamroch and Wang, 1988]. However,
this framework required the contact surface geometry,
hence different surface would require different transforma-
tions making it difficult for real and robust implementa-
tion. Another work, [Ge et al., 1997] showed position only
NN adaptive control in Cartesian space, which lacked the
dexterity in accommodating the orientation control of the
end-effector. Also while it uses the same dual-layer weight
like [Lewis et al., 1996] but its first-layer weight is not
tuned. The NN theory clearly states the dual-layer weight
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NN can approximate any function, if only if both layers
are tuned.

In this paper, a Neural Network motion controller in the
operational space is proposed by adapting the joint space
three-layer NN motion controller by [Lewis et al., 1996]
into the operational space framework [Khatib, 1987]. The
operational space formulation was selected due to its ca-
pability to accommodate position and orientation degrees-
of-freedom and unified force/motion control, as well as its
versatility in extension into redundant mechanisms and
branching mechanisms Russakow et al. [1995]. The NN
adaptive control flexibility is expected to remove the te-
dious effort of deriving and identifying the dynamic param-
eters required in the inverse-dynamics control inherent in
the original operational space formulation. Stability analy-
sis and proof is given in this paper as well as comparison to
the performance of the inverse-dynamics and the PD plus
gravity control strategies. Simulation and experimental
results of Puma 560 are provided and discussed.

2. EFFECTOR DYNAMICS AND ITS PROPERTIES
The dynamics of a non-redundant serial manipulator can
be expressed as:

Mx(q)ẍ + Bx(q, q̇)ẋ + gx(q) + fx(q, q̇) = F (1)

where x ∈ ℜn denotes the operational space coordinates
and q ∈ ℜn the joint space coordinates. The matrices
Mx(q) ∈ ℜn×n and Bx(q, q̇) ∈ ℜn×n denote the iner-
tia and the Coriolis/centrifugal terms, respectively, while
vectors gx(q) ∈ ℜn and fx(q, q̇) ∈ ℜn denote the gravity
and friction forces. Vector F ∈ ℜn denotes the operational
space forces as control input. The subscript ‘x’denotes
that the matrices and vectors are expressed in operational
space. The relationships between the components of the
joint space dynamic and the operational space dynamics
of a manipulator in non-singular configuration can be
expressed as:

Mx(q) =J−T(q)M(q)J−1(q) (2)

Bx(q, q̇) =[J−T (q)B(q, q̇) − Mx(q)J̇(q, q̇)]J−1(q) (3)

gx(q) =J−T(q)g(q) (4)

fx(q, q̇) =J−T(q)τ f (q̇) (5)

where J(q) is the basic Jacobian and M(q), B(q, q̇), g(q)
are as stated above, but expressed in joint space. The joint
friction τ f (q̇) can be obtained by Xia et al. [2004]:

τ f (q̇) = τ visq̇ +
[
τ cou + τ stiexp(−τdecq̇

2)
]
sgn(q̇) (6)

where sgn(q̇) = +1,−1, 0 if q̇ = positive, negative and
zero respectively and τ vis, τ cou, τ sti, and τ dec are the
viscous friction, Coulomb friction, stiction, and Stribeck
effect, respectively. In order to develop the NN adaptive
controller in the operational space framework, the follow-
ing properties of the effector dynamics (1) are utilized:

Property 1. The operational space kinetic energy matrix
Mx(q) is symmetric and positive definite due to (2)
and the joint space kinetic energy M(q) is symmetric
and positive definite by definition. Hence according to
Rayleigh-Ritz theorem Slotine and Li [1991]:

Mm‖z‖2 ≤ zTMx(q)z ≤ MM‖z‖2 (7)

where Mm and MM denote the minimum and maximum
eigenvalues of Mx(q) respectively. Moreover any positive
definite matrix A(y) satisfies:

Am ≤ ‖A(y)‖ ≤ AM (8)

where Am and AM denote the minimum and maximum
eigenvalues of A(y) respectively. Unless otherwise speci-
fied, all norms are defined as 2-norm (Frobenius norm).

Property 2. Ṁx(q) − 2Bx(q, q̇) is skew-symmetric Lewis
et al. [1993], hence

zT
(
Ṁx(q) − 2Bx(q, q̇)

)
z = 0, z ∈ ℜn (9)

Property 3. In joint space, each term in τ f (q̇) satis-
fies [Lewis et al., 1993]:

‖τ visq̇‖ ≤ τvis,M‖q̇‖ (10)

‖τ cousgn(q̇)‖ ≤ τcou,M (11)

‖τ stiexp(−τdecq̇
2)sgn(q̇)‖ ≤ τsti,M (12)

Property 4. The operational space gravity vector gx(q) is
upper-bounded, from (4):

‖gx(q)‖ ≤ gM < ∞ (13)

3. NN ADAPTIVE MOTION CONTROLLER
FORMULATION

3.1 NN Adaptive Motion Controller
In this section, the operational space NN-based adaptive
motion controller is proposed as:

F = Kvr + M̂x(q)ẍr + B̂x(q, q̇)ẋr + ĝx(q) + f̂x(q, q̇)
(14)

In this paper, the estimate of a dynamic parameter m is
represented as m̂ and the error dynamics are represented
by m̃ = m − m̂. The following terms are defined:

ẍr = ẍd + Λė + Λie

ẋr = ẋd + Λe + Λi

∫ τ=t

0

e dτ

r = ė + Λe + Λi

∫ τ=t

0

e dτ

(15)

Λ,Λi ∈ ℜn×n are positive diagonal matrices, e = xd − x
and ė = ẋd − ẋ are the trajectory tracking error and
velocity error, xd, ẋd and ẍd are the desired operational
space coordinates.

Combining the manipulator dynamics (1) and the pro-
posed controller (14):

Mx(q)ṙ = −Kvr − Bx(q, q̇)r + η; (16)

where the uncertainties of the system η

η = M̃x(q)ẍr + B̃x(q, q̇)ẋr + g̃x(q) + f̃x(q, q̇). (17)

3.2 Three-Layer Neural Networks
Given N1, N2 and N3 are the number of neurons in
layer 1, 2 and 3, respectively, an input vector z ∈ ℜN1

can be defined where vkl is the first-to-second layer node
weights, l = 1, . . . , N1, k = 1, . . . , N2, θk is the threshold
offset, and wik is second-to-third layer node weights where
i = 1, . . . , N3. For a three-layer NN with an output vector
y ∈ ℜN3 , we can write

yi =

N2∑

k=1

wik σk

(
N1∑

l=1

vklzl + θk

)
; i = 1, . . . , N3 (18)

and for an output matrix y ∈ ℜN3×N4 , we can write

yij =

N2∑

k=1

wijk σk

(
N1∑

l=1

vklzl + θk

)
;

i = 1, . . . , N3, j = 1, . . . , N4

(19)
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where function σ(·) is differentiable such as sigmoid and
hyperbolic functions. We can write (18) and (19) com-
pactly in vector form (y) and matrix form (Y):

y = {W}Tσ
(
{V}Tz

)
, Y = {W}Tσ

(
{V}Tz

)
(20)

3.3 Uncertainties η in NN terms

Since the estimate of a dynamic parameter m is repre-
sented as m̂ and the error dynamics are represented by
m̃ = m − m̂ then the uncertainties η (17) can be written
as

η = (Mx − M̂x)(q)ẍr + (Bx − B̂x)(q, q̇)ẋr

+ (gx − ĝx)(q) + (fx − f̂x)(q, q̇)
(21)

From NN theory, given unlimited number of hidden layer,
three layer NNs with ideal weights can approximate any
functions. But in practice we have limited number of hid-
den layer nodes, thus the dynamic terms Mx(q), Bx(q, q̇),
gx(q), and fx(q, q̇) can be approximated by three-layer
NNs with “optimum”weights {V}, {W} and approxima-
tion error ε:

Mx(q) = {WM}TσM({VM}TzM) + εM (22)

Bx(q, q̇) = {WB}
TσB({VB}

TzB) + εB (23)

gx(q) = {Wg}
Tσg({Vg}

Tzg) + εg (24)

fx(q, q̇) = {Wf}
Tσf ({Vf}

Tzf ) + εf (25)

Likewise the estimated dynamic terms M̂x(q), B̂x(q, q̇),

ĝx(q), and f̂x(q, q̇) are approximated by estimated weights

{V̂i}, {Ŵi} where subscript i = M,B, g, f represents the
individual dynamical terms.

The following generic NN expressions are then defined for
ease of representation such that:

Li = {Wi}
Tσi({Vi}

Tzi)

L̂i = {Ŵi}
Tσi({V̂i}

Tzi)

L̃i = Li − L̂i;

(26)

where Li, L̂i, and L̃i represent the actual, estimated, and
error, of the variables accordingly.

Hence, using the generic NN expressions, the uncertain-
ties (21) can be written as

η = (LM − L̂M )ẍr + (LB − L̂B)ẋr + (Lg − L̂g)

+ (Lf − L̂f ) + ε
(27)

where the total approximation error ε = εMẍr + εBẋr +
εg +εf . To compute η (27), it is necessary to compute the
generic form of

Li − L̂i = {Wi}
Tσ
(
{Vi}

Tzi

)
− {Ŵi}

Tσ
(
{V̂i}

Tzi

)
.

(28)
The error in the sigmoid function of the first to second
layer weights is calculated as:

σ̃ = σ
(
{V}Tz

)
− σ

(
{V̂}Tz

)
. (29)

From the Taylor series expansion

σ(k)
∣∣
k=k̂

= σ(k̂) +
dσ(k)

dk
(k − k̂) + O(k − k̂) (30)

where O(k − k̂) denotes higher order terms. Note that

σ′(k) = dσ(k)
dk

∣∣
k=k̂

, σ is differentiable, thus σ′ exist.

Hence σ({V}Tz)
∣∣
{V}Tz={V̂}Tz

in (29) can be written as

σ({V}Tz) = σ({V̂}Tz) + σ′({V̂}Tz){Ṽ}Tz

+ O({Ṽ}Tz)
(31)

For simplification of notation, it is defined that σi =
σi({Vi}

Tzi), σ̂i = σi({V̂i}
Tzi), and σi = σ̂i + σ̃i.

Using (31), we can rewrite (29) as:

σ̃ = σ̂
′{Ṽ}Tz + O

(
{Ṽ}Tz

)
, (32)

and substituting (32) into (28) yields:

Li − L̂i

= {Wi}
Tσi − {Ŵi}

Tσ̂i − {Wi}
Tσ̂i + {Wi}

Tσ̂i

= {W̃i}
Tσ̂i + {Wi}

Tσ̃i

= {W̃i}
Tσ̂i + {Wi}

T
[
σ̂′

i{Ṽi}
T
zi + O

(
{Ṽi}

T
zi

)]

= {W̃i}
Tσ̂i + ({Ŵi}

T + {W̃i}
T)
[
σ̂′

i{Ṽi}
T
zi + O

(
{Ṽi}

T
zi

)]

(33)

Using (33), the uncertainties η (27) can be divided into

η = ξ + w (34)

where

ξ =
(
{W̃M}Tσ̂M

)
ẍr +

(
{W̃B}Tσ̂B

)
ẋr + {W̃g}

Tσ̂g

+ {W̃f}
Tσ̂f +

(
{ŴM}Tσ′

M{ṼM}T
zM

)
ẍr

+
(
{ŴB}Tσ′

B{ṼB}T
zB

)
ẋr

+ {Ŵg}
Tσ′

g{Ṽg}
T
zg + {Ŵf}

Tσ′

f{Ṽf}
T
zf

(35)

and the “whole”errors w

w =
(
{W̃M}Tσ′

M{ṼM}T
zM

)
ẍr +

(
{W̃B}Tσ′

B{ṼB}T
zB

)
ẋr

+ {W̃g}
Tσ′

g{Ṽg}
T
zg + {W̃f}

Tσ′

f{Ṽf}
T
zf

+
(
{WM}TO({ṼM}T

zM

)
ẍr +

(
{WB}TO({ṼB}T

zB

)
ẋr

+ {Wg}
TO({Ṽg}

T
zg + {Wf}

TO({Ṽf}
T
zf + ε

(36)

This division is necessary because in the Lyapunov analysis
(Section 3.4), it becomes evident that only ξ term can be
canceled by the weight updates. A non-strict assumption
that w, ξ are bounded is defined, i.e.:

‖w‖ ≤ wM , ‖ξ‖ ≤ ξM . (37)

This is because:

• {W}, {V} and ε are bounded, since the actual dy-
namics are bounded.

• σ̂, its derivative and O({Ṽ}Tz) are bounded for dif-
ferentiable functions like sigmoid, tanh, RBF func-
tions,

• the desired trajectories ‖xd, ẋd, ẍd‖ ≤ xd,M are
bounded by design,

• {W̃} and {Ṽ} are assumed bounded, implying that

{Ŵ} and {V̂} are also bounded. (This assumption

is validated when {W̃} and {Ṽ} are shown to be
bounded in Section 3.4.)

• ė and e are assumed bounded, implying ẋ,x and q̇,q
are also bounded. (This assumption is validated when
ė and e are shown to be bounded in Section 3.4.)

• ẍr and ẋr can be assumed bounded because ė, e are
assumed bounded (by the previous point) and the
desired trajectories are bounded.

3.4 Stability Analysis
For the stability analysis, Z = diag[W,V] is defined, such
that ‖Z‖ ≤ ZM , where W = diag[WM,WB,Wg, Wf ]
and V = diag[VM,VB,Vg,Vf ].
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Theorem 1. Let the NN weight updates be provided as:

˙̂
WMij = FMij(σ̂M ri ẍrj − κ‖r‖ŴMij) (38)

˙̂
VMk = GMk (zM σ̂′

Mk
(

n∑

i=1

n∑

j=1

ŴMijk ri ẍrj) − κ‖r‖V̂Mk)

(39)

˙̂
WBij = FBij(σ̂B ri ẋrj − κ‖r‖ŴBij) (40)

˙̂
VBk = GBk(zB σ̂′

Bk
(

n∑

i=1

n∑

j=1

ŴBijk ri ẋrj) − κ‖r‖V̂Bk) (41)

˙̂
Wgi = Fgi(σ̂g ri − κ‖r‖Ŵgi) (42)

˙̂
Vgk = Ggk(zg σ̂′

gk
(

n∑

i=1

Ŵgik ri) − κ‖r‖V̂gk) (43)

˙̂
Wf i = Ff i(σ̂f ri − κ‖r‖Ŵf i) (44)

˙̂
Vf k = Gf k(zf σ̂′

f k
(

n∑

i=1

Ŵf ik ri) − κ‖r‖V̂f k) (45)

where output nodes i, j = 1, . . . , n and hidden nodes
k = 1, . . . , ki (the subscript ‘i’≡ M,B, g, f). Then the
region of attraction of the error dynamics (16), is given
by:

S =
{
r : br < ‖r(t)‖ < ∞, Z̃ : bZ̃ < ‖Z̃(t)‖ < ∞

}
(46)

where br and bZ̃ are defined later in equations (56) and
(57), respectively.

Having defined the error dynamics in (16) and the uncer-
tainties η (34), the Lyapunov function can be defined as

V (r, Z̃) =
1

2
rTMx(q)r

+
1

2

n∑

i=1

n∑

j=1

W̃T
Mij

F−1
Mij

W̃Mij
+ . . . +

1

2

kf∑

k=1

ṼT
fk

G−1
fk

Ṽfk

(47)

where W̃Mij
∈ ℜkM , . . . ,W̃fi ∈ ℜkf and ṼMk

∈

ℜlM , . . . , Ṽfk ∈ ℜlf and F−1
Mij

∈ ℜkM×kM , . . . ,F−1
fi

∈

ℜkf×kf and G−1
Mk

∈ ℜlM×lM , . . . ,G−1
fk

∈ ℜlf×lf are posi-

tive diagonal matrices. With li is the input nodes size (the
subscript ‘i’≡ M,B, g, f).

Then the error dynamics (16), property 2 and the uncer-

tainties η (34) are substituted into V̇ (r, Z̃) to yield:

V̇ (r, Z̃) = −rTKvr + rTw + ν (48)

where

ν =

n∑

i=1

n∑

j=1

W̃
T

Mij

(
F

−1

Mij

˙̃
WMij + σ̂Mriẍrj

)

+

n∑

i=1

n∑

j=1

W̃
T

Bij

(
F

−1

Bij

˙̃
WBij + σ̂Briẋrj

)

+

n∑

i=1

W̃
T

gi

(
F

−1

gi

˙̃
Wgi + σ̂gri

)
+

n∑

i=1

W̃
T

fi

(
F

−1

fi

˙̃
Wf i + σ̂f ri

)

(49)

+

lM∑

k=1

Ṽ
T

Mk

(
G

−1

Mk

˙̃
VMk + zMσ̂′

Mk
(

n∑

i=1

n∑

j=1

ŴMijkriẍrj)

)

+

lB∑

k=1

Ṽ
T

Bk

(
G

−1

Bk

˙̃
VBk + zBσ̂′

Bk
(

n∑

i=1

n∑

j=1

ŴBijkriẋrj)

)

+

lg∑

k=1

Ṽ
T

gk

(
G

−1

gk

˙̃
Vgk + zgσ̂′

gk
(

n∑

i=1

Ŵgikri)

)

+

lf∑

k=1

Ṽ
T

fk

(
G

−1

fk

˙̃
Vf k + zf σ̂

′

f k
(

n∑

i=1

Ŵf ikri)

)

It can be seen that ν is made up of the derivatives of
˙̃

W and ˙̃
V as well as ξ. The idea is to cancel ξ with ˙̃

W.
Hence, it is shown that only ξ can be accommodated by

the updates of the weights. Furthermore, − ˙̃
W =

˙̂
W, since

W̃ = W−Ŵ and W is constant. With the weight updates
(38)– (45), ν becomes

ν = κ‖r‖

n∑

i=1

n∑

j=1

W̃
T

Mij
ŴMij + . . . + κ‖r‖

n∑

i=1

W̃
T

fi
Ŵf i

+ κ‖r‖

kM∑

k=1

Ṽ
T

Mk
V̂Mk + . . . + κ‖r‖

kf∑

k=1

Ṽ
T

fk
V̂f k

≤− κ‖r‖‖Z̃‖2 + κ‖r‖‖Z̃‖ZM

(50)

Equation (50) is obtained by making use of

〈W̃,Ŵ〉 =

n∑

i=1

n∑

j=1

W̃
T

Mij
ŴMij + . . . +

n∑

i=1

W̃
T

fi
Ŵf i (51)

〈Ṽ, V̂〉 =

kM∑

k=1

Ṽ
T

Mk
V̂Mk + . . . +

kf∑

k=1

Ṽ
T

fk
V̂f k (52)

〈Z̃, Ẑ〉 = 〈Ṽ, V̂〉 + 〈W̃,Ŵ〉. (53)

where Ẑ = Z − Z̃, and therefore

〈Z̃, Ẑ〉 = 〈Z̃,Z〉 − ‖Z̃‖
2
≤ ‖Z̃‖‖Z‖ − ‖Z̃‖

2
≤ ‖Z̃‖ZM − ‖Z̃‖

2
. (54)

Due to (8) and the assumption w ≤ wM , it is possible to
show that:

V̇ (r, Z̃) ≤

− ‖r‖

[
Kv,m‖r‖ − wM + κ(‖Z̃‖ −

ZM

2
)2 −

κZ2
M

4

]
(55)

Hence, if
‖r‖ >

wM + κZ2
M/4

Kv,m

≡ br, or (56)

‖Z̃‖ >

√
wM

κ
+

Z2
M

4
+

ZM

2
≡ bZ̃ (57)

then the terms in the square bracket of the right hand
side of (55) evaluate to a positive number, and V̇ (r, Z̃) ≤
−β‖r‖ < 0. According to Lyapunov’s extension theorem
LaSalle [1960] this demonstrates:

lim
t→∞

‖r(t)‖ = br, lim
t→∞

‖Z̃(t)‖ = bZ̃. (58)

This shows that r and W̃, Ṽ are bounded. It can be shown
through classical control that a bounded reference signal

r (15) yields error signals lim
t→∞

e = 0 and ė,
∫ τ=t

0
e dτ that

are also bounded.
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Fig. 1. End-effector tracking error with respect to the reference trajectory for (a) inverse dynamics control (b) PD
control with gravity compensation and (c) NN adaptive control strategies - obtained through simulation.

4. PERFORMANCE EVALUATION

The proposed strategy is studied through simulation and
real-time implementation on a PUMA 560 robot. In addi-
tion to the proposed NN adaptive motion control proposed
in this paper, two other types of control strategies are
performed for comparison: (i) the model-based inverse
dynamics motion controller in Operational Space Formu-
lation [Khatib, 1987] – without friction compensation and
(ii) Proportional-plus-Derivative (PD) control with gravity
model compensation. A periodic circular trajectory for
end-effector position with a constant orientation was set
as the desired path for all cases (simulation and real-time
implementation) of the experimentations.

4.1 Robot Simulation

A simulation study was carried out for the proposed con-
troller. A dynamic model of a 6 DOF manipulator of
PUMA 560 was utilized. To give a more realistic situa-
tion, the robot simulator includes joint friction dynamics
in addition to the inertia, Coriolis and centrifugal and
gravity terms. The performance of the inverse dynamics
(Operational Space Formulation) and the PD with grav-
ity compensation controllers are shown in Fig. 1(a) and
Fig. 1(b), respectively. Note again that gravity is com-
pensated through dynamic modelling in the PD controller
(Fig.1(b)).

The performance of the proposed NN based adaptive con-
trol is shown in Fig. 1(c). Without any prior knowledge of
the robot dynamics, the controller was initialized with zero
weights. The proposed NN adaptive control was shown to
effectively learn and reduce the tracking errors. Table 1
shows that the proposed NN control strategy yields com-
parable performance to inverse dynamics strategy, without
prior knowledge of the robot dynamics. It should be noted
that the inverse dynamic controller does not include the
friction model as generally it is difficult to obtain the coef-
ficients of friction in implementation as friction varies with
many factors, such as temperature, presence of dust and

Inverse-
dynamics

PD +
gravity

NN
controller

Xerror 1.3 12.5 0.7

Yerror 1.7 25 2.2

Zerror 1.5 6 1.3

Table 1. Comparison of maximum position
error - simulation
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Fig. 2. Time history of the NN weights - simulation.

dirt, humidity, etc. However, the friction model is included
in the proposed NN adaptive controller, as described in
the derivation. In the implementation, the coefficients of
friction are determined online with NN adaptive method,
hence identification is not an issue. Figure 2 also shows the
boundedness and stability of the norms of NN weights.

4.2 Real-time Robot Implementation

The strategy was implemented real-time on a PUMA 560
which does not provide joint velocity feedback. The joint
velocities ˙̂q are obtained by employing backward difference
algorithm of joint positions q in conjunction with low
pass filter. Hence, only the estimated operational space
velocities ˙̂x are available, using ˙̂x = J ˙̂q. Figure 3 shows
that the performance of NN controller fails to produce
similar performance as in the simulation, although the NN
weights still converge to a stable set of values. Figure 4
shows the boundedness and stability of the norms of NN
weights. It is found that in real-time, the values of velocity
error gain Kv in the control law that can be selected is
lower than that in simulation, due to the quality of the
velocity feedback signal that can be obtained.

Inverse-
dynamics

PD +
gravity

NN
controller

Xerror 2.5 12.5 10

Yerror 2.5 20.0 17

Zerror 2.5 7.0 7.5

Table 2. Comparison of maximum position
error - real-time

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12779



0 2 4 6 8 10 12 14
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

m
e

te
r

Time (second)

Position Errors vs. Time

X error

Y error

Z error

0 5 10 15
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

m
e

te
r

Time (second)

Position Errors vs. Time

X error

Y error

Z error

0 10 20 30 40 50 60
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

m
e

te
r

Time (second)

Position Errors vs. Time

X error

Y error

Z error

(a) (b) (c)

Fig. 3. End-effector tracking error with respect to the reference trajectory for (a) inverse dynamics control (b) PD control
with gravity compensation and (c) NN adaptive control strategies - obtained through real-time implementation.

5. CONCLUSIONS AND FUTURE WORKS
At this point, it is possible to conclude that it is feasible
to construct an NN adaptive controller with a potential
performance comparable to that of inverse-dynamics strat-
egy, without any prior knowledge of the system dynamics.
However it does highlight the problem in real robot imple-
mentation where joint velocity feedback is not provided.
The quality of the velocity signal feedback affects the
performance of the adaptive NN controller, which can
be further improved, through several strategies such as
observer controller.
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