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Abstract: Limitations related to depth of field (DOF) is one of the most challenging issue for visually-
servoed micro-operations. Research on extending DOF had limited success for direct application to visual 
servoing.. Recently, an all-optical system has also been proposed to extend DOF in imaging systems by 
spatial multiplexing of several Fresnel lenses. Before its application to visual servoing, high resolution of 
visual feedback must be warranted.  This is particularly necessary for fine vision-based positioning tasks. 
Thus, providing an adaptive scheme for DOF according to objects’ distribution will enable the system to 
obtain the best resolved image for a given distribution. The main contribution of this paper is a proposal 
for an adaptive DOF-extension scheme in micro-visual servoing while maintaining good resolution and 
SNR of the images related to target objects. Simulation results are provided to support the proposed 
method.  

 

1. INTRODUCTION 

Using a light microscope in micro robotics area has mainly 
two problems: a small filed-of-view (FOV) and a small 
depth-of-filed (DOF). Small FOV can be resolved to some 
extent by coarse servoing using global vision system, but the 
DOF problem cannot be resolved in this way because the 
viewing volume is almost flat. The simplest way of extending 
DOF is to reduce the aperture of the imaging system. But in 
this case, the image will suffer from low signl-to-noise ratio 
(SNR) due to decreased incident light power and the optical 
resolution. 

To overcome the small DOF problem in micro robotics area, 
Fatikow and Woern used multi-focusing technique (Fatikow 
et al., 2000; Woern, et al, 2000). By capturing several images 
at consecutive focus levels and combing the sharp areas of 
each image, a focused image can be generated. Using this 
technique one can obtain an approximate depth information 
and all-focused image, and this synthesized image can be 
used for object recognition. This method, however, cannot be 
utilised in real time because it requires several images at 
different height and the synthesizing step is also time-
consuming. Active zooming control was also proposed to 
resolve small FOV and small DOF problems simultaneously 
(Tao et al., 2005). Tao and Cho took advantage of the fact 
that both FOV and DOF are related to magnification of the 
imaging system: as one increases the magnification, FOV and 
DOF will decrease. However, this method has two problems. 
First, FOV and DOF are coupled by magnification,  
Sometimes it is desired to extend DOF yet keeping FOV as 
large as possible. Second, extending DOF by changing 
magnification is limited and this method may not work in a 
higher numerical aperture system which has smaller DOF. 

Extending DOF has interested many researchers for decades 
beyond micro robotics area. The early stage of this research 
was mainly about placing an optical power absorbing 
apodizer in the aperture (Ojeda-Castaneda et al., 1988; 
Ojeda-Castaneda et al., 1989). However, this kind of 
approach is basically similar to closing the aperture 
originating from blocking the incident optical power. 
Therefore, such approaches suffer from similar problems 
with decreasing the aperture: low SNR and low optical 
resolution. In 1995, Dowski and Cathey proposed a method 
of wave-front coding to extend DOF (Dowski and Cathey, 
1995). Further details were provided in (Cathey and Dowski, 
2002). The basic concept of the method is to use phase mask 
in the pupil plane to make the point spread function (PSF) 
constant even if the object moves back and forth from the 
focus, and to use deblurring technique to make the image 
clear. The advantage of the method comes from the fact that 
PSF remains almost constant along the entire image, and 
hence, a simple restoration algorithm such as Wiener filtering 
can be applied. 

The main problem in using the wave-front coding method in 
visually-servoed micro-robotics is its computational time 
required for the post-processing stage. Image restoration is 
difficult to achieve in real-time, especially, when the image is 
large. Ben-Eliezer et al. proposed an all-optical extended 
depth of field imaging system  (Ben-Eliezer et al., 2003; Ben-
Eliezer et al., 2005; Ben-Eliezer et al., 2006). In the first two 
papers, they proposed a composite phase mask consisting of 
16 Fresnel lenses (FL), and in the third paper, they proposed 
a radial mask to extend DOF. The merit of these methods is 
that they do not need post processing. Thus, one can obtain 
DOF-extended image in real-time. However, a trade-off 
exists between DOF and contrast.  Using the phase masks 
proposed in these papers, one should sacrifice the image 
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contrast to extend DOF. Besides, this method cannot be 
applied directly to a visual servoing system, because image 
quality is as important as large DOF. That is, the image 
should be good enough to localize features for final 
positioning. 

Therefore, providing an adaptive scheme for DOF according 
to objects’ distribution will enable obtaining the best resolved 
image for a given distribution. When the depth range of 
objects’ distribution is large, the images with large DOF are 
desirable. When the depth range is small, images with small 
DOF become preferable. The main contribution of this paper 
is a proposal for an adaptive DOF-extension scheme in 
micro-visual servoing while maintaining good resolution and 
SNR of the images related to target objects.  In this paper, 
basic concept of DOF adaptation is explained and some 
simulation results are presented to support the proposed 
method. 

2. METHODOLOGY 

2.1 Basic Concept 

The objective is to visually servo two objects (at different 
depths) to the desired positions. Focus measure calculated in 
windows defined around the objects is used as a feedback for 
DOF adaptation. The overall block diagram is drawn in Fig. 1.  

Defocus of an object can be expressed by a dimensionless 
misfocus parameter  as follows (Goodman, 1996); 
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where l , D  and f  represent the wavelength of light, the 

diameter of the aperture, and the focal length of the system, 

respectively.  Also objd  and imaged  are the distances of the 

object and the image planes from the principal planes. If the 
object is well focused, from the lens equation (Goodman, 
1996) the value inside the parenthesis in (1) becomes zero. 
But when it is deviated from the focus, absolute value of d  
increases. 

In (Ben-Eliezer et al., 2003), a composition of sparsely 
distributed FL’s, i.e., a composite phase mask (CPM), was 
used for DOF extension. The CPM is placed at the pupil 
plane of the imaging system, and hence, the resulting pupil 
function is as follows: 

 

( , ) ( , )k kP u v P u v= å  (2) 

 

where ( , )u v  are normalized coordinates with respect to the 

full pupil size, ( , )kP u v  is the pupil function associated with 

the k th FL, and ( , )P u v  is the overall pupil function which is 

composition of ( , )kP u v ’s. ( , )kP u v  is defined as follows 
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where ky  is the dimensionless misfocus parameter defined 

by Goodman (1996), and ( , )kM u v  is defined as 
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Where ( , )kM u v  represents the points belonging to the k th 

FL. Each point belongs to only one FL. Each FL occupies 
same area through different k ’s, and ( , )kM u v  is randomly 

generated. 

 

Controller Stage

Imaging 
System

Feature 
Extraction

Kalman
Filtering

Focus 
Measure

z-1

desired 
position

estimated 
position

+
-

error command
actual 

position

mask 
adaptation

Controller Stage

Imaging 
System

Feature 
Extraction

Kalman
Filtering

Focus 
Measure

z-1

desired 
position

estimated 
position

+
-

error command
actual 

position

mask 
adaptation

 

Fig. 1 Overall block diagram 

Each FL changes focal length of the original imaging system. 
Therefore, composition of FL’s into CPM can be interpreted 
as making the imaging system have multiple focal lengths, 
contributing to DOF increase. Change of the focal length by 
introducing the k th FL is as follows 

 

2

1 1 4
k

kf f D

l
y

p
= +  (5) 

 

where kf  is the changed focal length. 

Sixteen different ky ’s were used with fixed interval of two 

in (Ben-Eliezer et al., 2003). In fact, there is a risk of 
degrading the obtained image before achieving desired DOF. , 
On the other hand, if DOF is not extended enough, objects 
out of DOF might not be well-observed. Complication arises 
since an object’s position is unknown in advance. Therefore 
in this project, a proposal is made to change the interval of 

ky ’s to enable adaptation of the phase mask, while fixing the 

number of different ky ’s as follows 
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( 8.5 ), 0, ,15k ms k ky = - + = L  (6) 

 

where ms  is the strength of the mask. Adaptive ms  scheme 

will enable higher quality images and hence improved 
tracking scheme.   

2.2 Focus Measure 

Using the fast wavelet transform algorithm (Gonzalez and 
Woods, 2002), an image is decomposed into the 

approximation ( 1aC ), the horizontal detail ( 1hC ), the vertical 

detail ( 1vC ), and the diagonal detail ( 1dC ) (Gonzalez and 

Woods, 2002). The approximation, 1aC , is again decomposed 

into another approximation ( 2aC ) and details of lower 

resolution ( 2hC , 2vC , 2dC ). This is illustrated in Fig. 2. 
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Fig. 2 Illustratioin of wavelet transform 

The first details ( 1hC , 1vC , 1dC ) and the second details 

( 2hC , 2vC , 2dC ) represent the highest and second highest 

frequency components of the image in each direction. Due to 
noise filtering, the first details are rejected from focus 
measure calculation. Instead, the second details are used. The 
focus measure is calculated by taking Laplacian of 2hC  and 

2vC  and integrating the squared values as follows: 
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where 2H  and 2W  denote the height and width of the second 

highest detail images and L  is the Laplacian operator defined 
by 
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Computational time required to calculate focus measure using 
this method was in average 27 ms for a 128 ´ 128 image, 

when it was implemented in Matlab code (within a Pantium 
IV of 2.8 GHz, 256 MB RAM). 

2.3 Mask Adaptation 

Mask adaptation means adjusting the strength of the mask 
automatically so that the best resolved image can be obtained 
for a given defocus of the object. Mask adaptation, in other 
word, is optimizing the strength of the mask to maximize the 
focus measure. Assuming that d  is constant, this can be 
formulated as an optimization problem as follows: 
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Constant d  assumption is valid when adaptation is faster 
enough than d  changes. 

To solve the problem, adopting a proper optimization method 
is important. Because adaptation should be fast enough to be 
implemented as a subroutine of tracking, the optimization 
method should be simple and fast. Interesting enough, our 
investigation revealed that that almost always the plot of F  
versus ms  is unimodal. Therefore, a simple gradient-based 

optimization algorithm can be used for mask adaptation. The 
iterative adaptation rule is as applied until ms  converges.  

That is 
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where a  is the learning rate. To provide escape from local 
maxima, it is helpful to start adaptation with large steps.  

2.4 Tracking Using Kalman Filter 

It is strongly expected that mask adaptation will enhance 
tracking performance in the case of objects moving out of 
DOF. To investigate how mask adaptation can improve 
tracking performance, window based tracking was 
implemented and tracking results with and without mask 
adaptation were compared. For tracking, a Kalman filtering 
approach was adopted. The general state and measurement 
equation is as follows: 

 

1n n+ = +x Ax η , n n= +y Hx ξ  (11) 

 

where x  and y  are the state and measurement vectors, 

respectively. Also A  and H  are state transition and 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5407



 
 

     

 

measurement matrices, respectively. Furthermore, η  and ξ  

represent process and measurement noises, respectively. 
These noises are assumed to be independent and white, with 
normal probability distribution of 

 

( ) ~ ( , )p Nη 0 Q , ( ) ~ ( , )p Nξ 0 R  (12) 

 

where Q  and R  are process and measurement noise 

covariance matrices, respectively. Because no information 
about the motion of the object is provided, constant velocity 
model was used for the state equation. In this case, x  and y  

become 
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and the state transition and measurement matrices become 
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Tracking is performed in two steps: ‘predict’ and ‘correct’. 
Fig. 3 shows how Kalman filter operates. 
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(2) Project the error covariance ahead
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Fig. 3 Operation of Kalman filter . 

3. SIMULATION RESULTS 

3.1  Mask Adaptation 

The gradient based mask adaptation algorithm shown in Eq. 
(10) was implemented. The learning rate a  was set to 0.1 
and the stopping condition was 0.02mF s¶ ¶ < . A MEMS 

image was used in the simulations. Fig. 4 to 6 show an 
example of mask adaptation. In this simulation, it was 

observed that adaptation is completed within 5 iterations in 
many cases and mostly within 10 iterations. Since twice 
measurement of focus is needed for one iteration of 
adaptation to obtain the gradient, and about 27 ms is required 
for calculating focus measure of 128 ´ 128 image, one can 
say that adaptation can be performed faster than 2Hz. 

3.2  Tracking 

Tracking was performed by Kalman filtering. Process and 
measurement noise covariance matrices were set to 4 4´=Q I  

and 2 2´=R I , respectively. Initial position of the feature was 

approximately given by the user and initial velocity was set 
to zero. The initial error covariance matrix was set to 

1 4 43 ´=P I . Sum of Squared Differences (SSD) based 

template matching method was used for feature extraction. 
The location of the searching window was determined by 
prediction of x , and its size changed according to norm of 

kP .  

Fig. 7 shows the moving trajectory of a MEMS object, and 
template for feature extraction. The tracking result without 
mask adaptation is shown in Fig. 8 and its error histories are 
shown in Fig. 9. From the result, it can be seen that large 
feature extraction error due to insufficient visual information 
also leads to large tracking error.  

The tracking result with mask adaptation is shown in Fig. 10 
and its error histories are shown in Fig. 11. Interestingly both 
feature extraction and tracking errors are reduced. 

initial final  

Fig. 4 Mask adaptation result. 
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Fig. 5 Change of ms . 
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Fig. 6 Error plot of mask adaptation. 
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Fig. 7 Object trajectory and template. 
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Fig. 8 Tracking result without mask adaptation. 
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Fig. 9 Feature extraction and tracking error without mask 
adaptation. 
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t = 10 

Fig. 10 Tracking result with mask adaptation. 

4. CONCLUSION 

To solve small DOF problem in MEMS visual servoing, DOF 
adaptation method was proposed.. DOF adaptation was done 
by adjusting the strength of the phase mask which was placed 
at the pupil plane. For the adaptation, a focus measure based 
on wavelet transform was proposed in this work. Based on 
the developed focus measure, gradient-based mask adaptation 
was simulated and an adaptation speed of  2Hz was achieved. 
The speed can be increased further by reducing the size of the 
area where focus should be measured and also by using more 
powerful processor. Because focus measure vs. mask strength 
curve is almost unimodal, local maxima problem was not 
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encountered in the simulations. Simulation results of tracking 
supported the reduction in the feature extraction errors 
enhanced tracking performance. For the future works, this 
concept should be examined by experiments. Work will be 
conducted to further improve the computational complexity 
of the focus measure. 
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Fig. 11 Feature extraction and tracking error with mask 
adaptation. 
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