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Abstract: Considering a class of two-dimensional (2-D) local state-space (LSS) Fornasini-
Marchesini (FM) second model with delays in the states, this paper studies delay-dependent
H∞ control problem. First, we propose delay-dependent bounded real lemma. Then a dynamic
output feedback controller is developed, which assures that the closed-loop system is asymptoti-
cally stable and has H∞ performance γ in terms of linear matrix inequalities’ (LMIs’) feasibility.
Furthermore, the minimum H∞ performance γ can be obtained by solving a linear convex
optimization problem. A numerical example demonstrates the effectiveness of our results.

1. INTRODUCTION

Along with the increasing development of modern industry
and civil economy, people need to deal with more and
more multivariable systems and multidimensional signals,
most of which are expressed as 2-D discrete-system models
(see, Roesser [1975]). In the real world, many systems and
process dynamics are affected by delays. The existence of
delays is frequently a source of instability and poor perfor-
mance. Much work has been reported on the problem of
the stability of standard, often termed 1-D in the m-D sys-
tems literature, linear systems with delays (see, Niculescu
[2001]). Current efforts to achieve robust stability for 1-D
time-delay systems are mainly delay-dependent approach
(see, Fridman [2002], Xu et al. [2002], Wu et al. [2004],
Xu and Lam [2005], He et al. [2004], and Jiang and Han
[2006]), which include information on the size of delay and
is less conservative than delay-independent one especially
when the size of a delay is small. Recently, Wu et al. [2004]
and He et al. [2004] devised a new method that used free
weighting matrices to express the relationships between
the terms in the Leibniz-Newton formula for robust sta-
bility of 1-D systems.

The need for 2-D stability and stabilization problems is
motivated by practical relevance of 2D discrete linear sys-
tems with delays (see, Rogers and Owens [1992], Galkowski
et al. [2003]). When controlling a real plant, it is also de-
sirable to design a control system which is not only stable,
but also guarantees an adequate level of performance, such
as H∞ control and guaranteed cost control. Most results
for the 2-D problems focus on systems without delays,
though for specific stability and H∞ control of 2-D state-
delayed systems were considered in Paszke et al. [2004]
and Paszke et al. [2003], respectively. To the best of our
knowledge, any other work has not been done using delay-
dependent approach except for reference Paszke et al.
[2006] considering the delay-dependent stability problem
of 2-D time-delay systems.
? The work was supported in part by the NSFC Grants 60174010,
60404022, NSFC for distinguished Yong Scholars under Grant
60525303, and the Key Scientific Research Project of the Education
Ministry under Grant 204014.

This paper studies the delay-dependent H∞ control prob-
lem for 2-D state-delayed systems. First, delay-dependent
bounded real lemma is proposed. Then, a 2-D output feed-
back controller is designed to guarantee H∞ disturbance
attenuation γ through the solvability of LMIs. Further-
more, a corresponding optimization problem is proposed
to minimize H∞ disturbance attenuation γ. Finally, a
numerical example is given to show that our results are
effective.

2. DELAY-DEPENDENT BOUNDED REAL LEMMA

Consider the well known 2-D FM LSS second model pro-
posed in Fornasini and Marchesini [1978] with state delays
in each of the two independent directions of information
propagation

x(i + 1, j + 1) = A1x(i + 1, j) + A2x(i, j + 1)
+ A1dx(i + 1, j − d1)
+ A2dx(i− d2, j + 1)
+ B1ω(i + 1, j) + B2ω(i, j + 1) (1)

z(i, j) = Cx(i, j) + Dω(i, j) (2)
where x(i, j) ∈ Rn is the state input, ω(i, j) ∈ Rm

is the noise disturbance and bounded which belongs to
l2, z(i, j) ∈ Rp is the control output and i, j ∈ Z+.
Ak, Akd, Bk(k = 1, 2), C and D are constant matrices
with appropriate dimensions. Here, d1 and d2 are constant
positive scalars representing delays along vertical direction
and horizontal direction, respectively.

The boundary conditions are assumed as{
x(i, j) = ϕij

}
,∀i ≥ 0; j = −d1,−d1 + 1, · · · , 0,{

x(i, j) = ψij

}
,∀j ≥ 0; i = −d2,−d2 + 1, · · · , 0,

ϕ00 = ψ00. (3)

The H∞ performance measure for 2-D system (1)-(2) with
zero boundary conditions (ϕi0 = ψoj = 0) is defined as
follows.
Definition 1. (Paszke et al. [2003]) 2-D state-delayed sys-
tem (1)-(2) with zero boundary conditions is said to have
H∞ disturbance attenuation γ if it is asymptotically stable
and has H∞ performance γ, i.e.
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‖z‖2 < γ ‖ω‖2 (4)
where

z =
[
zT (i + 1, j) zT (i, j + 1)

]T

ω =
[
ωT (i + 1, j) ωT (i, j + 1)

]T

with the l2-norms defined by

‖z‖22 =
∞∑

i=0

∞∑

j=0

(
‖z(i + 1, j)‖22 + ‖z(i, j + 1)‖22

)

‖ω‖22 =
∞∑

i=0

∞∑

j=0

(
‖ω(i + 1, j)‖22 + ‖ω(i, j + 1)‖22

)
.

For presentation convenience, we denote

A = [ A1 A2 ] , Ad = [ A1d A2d ]

B = [ B1 B2 ] , Cd = diag{C, C}, Dd = diag{D, D}.
The following theorem presents delay-dependent bounded
real lemma of 2-D system (1)-(2).
Theorem 1. 2-D state-delayed system (1)-(2) with the
boundary conditions (3) has delay-dependent H∞ distur-
bance attenuation γ for any delay dk satisfying 0 ≤ dk

≤ d∗k(k = 1, 2) and d∗ = max{d∗1, d∗2} if there exist ma-
trices P > 0, Q > 0, Rk > 0, Sk > 0, Ykl,Wkl,Mkl(k, l =
1, 2), Xl1l2 > 0, Xl12(l1 = 1, 4, 6; l2 = 1, 3) and Xl3l4(l3 =
2, 3, 5; l4 = 1, 2, 3, 4) such that the following LMIs hold:

Φ =




Φ11 Φ12 Φ13 Φ14 Φ15

ΦT
12 −γ2I Φ23 LT

1d Φ25

ΦT
13 ΦT

23 −P 0 0
ΦT

14 L1d 0 −I 0
ΦT

15 ΦT
25 0 0 −d∗S




< 0 (5)

Ψ =




X1 X2 X3 Y
XT

2 X4 X5 W
XT

3 XT
5 X6 M

Y T WT MT S


 ≥ 0 (6)

where

Φ11 =




Y 1 Y12 + Y T
21

Y21 + Y T
12 Y 2

−Y T
11 + W11 −Y T

21 + W12

−Y T
12 + W21 −Y T

22 + W22

−Y11 + WT
11

−Y21 + WT
12

W 1

−W21 −WT
12

−Y12 + WT
21

−Y22 + WT
22

−W12 −WT
21

W 2


 + d∗

[
X1 X2

XT
2 X4

]

Y 1 = Y11 + Y T
11 −Q + R1, Y 2 = Y22 + Y T

22 − P + Q + R2

W 1 =−W11 −WT
11 −R1,W 2 = −W22 −WT

22 −R2

Φ12 =




MT
11 MT

21

MT
12 MT

22

−MT
11 −MT

21

−MT
12 −MT

22


 + d∗

[
X3

X5

]

Φ13 =




AT
1 P

AT
2 P

AT
1dP

AT
2dP


 ,Φ15 =




S1 d∗AT
1 S2

d∗AT
2 S1 S2

d∗AT
1dS1 d∗AT

1dS2

d∗AT
2dS1 d∗AT

2dS2




Φ14 =
[

LT
d

02n×2p

]
,Φ23 =

[
BT

1 P
BT

2 P

]

Φ25 =
[

d∗BT
1 S1 d∗BT

1 S2

d∗BT
2 S1 d∗BT

2 S2

]
, Xl1 =

[
Xl11 Xl12

XT
l12 Xl13

]

Xl3 =
[

Xl31 Xl32

Xl33 Xl34

]
, Y =

[
Y11 Y12

Y21 Y22

]

W =
[

W11 W12

W21 W22

]
,M =

[
M11 M12

M21 M22

]

S1 = d∗(A1 − I)T S1, S2 = d∗(A2 − I)T S2

S = diag{S1, S2}.
Proof. First, it will be shown that LMIs (5)-(6) assure
the asymptotic stability of system (1) with ω(i, j) = 0.

Since LMIs (5)-(6) imply that

Φ1 =




Φ11 Φ13 Φ15

ΦT
13 −P 0

ΦT
15 0 −d∗S


 < 0 (7)

Ψ1 =




X1 X2 Y
XT

2 X4 W
Y T WT S


 ≥ 0 (8)

we only need to verify the system (1) (ω(i, j) = 0) is
asymptotically stable if LMIs (7)-(8) hold.

Denote
xξ,η = x(i + ξ, j + η)

V11(i, j) = xT
1,1Px1,1 +

−1∑

l=−d1

xT
1,l+1R1x1,l+1

+
−1∑

l=−d2

xT
l+1,1R2xl+1,1

+
0∑

θ=−d1+1

−1∑

l=−1+θ

yT
1,l+1S1y1,l+1

+
0∑

θ=−d2+1

−1∑

l=−1+θ

yT
l+1,1S2yl+1,1

Vd1(i, j) = xT
1,0Qx1,0 +

−1∑

l=−d1

xT
1,lR1x1,l

+
0∑

θ=−d1+1

−1∑

l=−1+θ

yT
1,lS1y1,l

Vd2(i, j) = xT
0,1(P −Q)x0,1 +

−1∑

l=−d2

xT
l,1R2xl,1

+
0∑

θ=−d2+1

−1∑

l=−1+θ

yT
l,1S2yl,1 (9)

with
y1,l = x1,l+1 − x1,l, yl,1 = xl+1,1 − xl,1

and P > 0, Q > 0, Rk > 0 and Sk > 0(k = 1, 2) are to be
determined.

Due to

x1,−d1 = x1,0 −
−1∑

l=−d1

y1,l, x−d2,1 = x0,1 −
−1∑

l=−d2

yl,1 (10)
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the following equation

α = 2
(
xT Y + xT

d W
)
(

x− xd −
−1∑

l=−d

∆x

)
= 0 (11)

is true for any matrices Y and W, where

x =
[
xT

1,0 xT
0,1

]T
, xd =

[
xT

1,−d1
xT
−d2,1

]T

∆x =
[
yT
1,l yT

l,1

]T
, d = min{d1, d2}.

On the other hand, for any semi-positive definite matrix

X =
[

X1 X2

XT
2 X4

]
≥ 0, the following equation holds:

β = dξT Xξ −
−1∑

l=−d

ξT Xξ = 0 (12)

where ξ =
[
xT , xT

d

]T
.

Now, for system (1) (ω(i, j) = 0), define ∆V (i, j) as

∆V (i, j) = V11(i, j)− Vd1(i, j)− Vd2(i, j)
= V11(i, j)− Vd1(i, j)− Vd2(i, j) + α + β

≤ ξT Θξ −
−1∑

l=−d

ζT Ψ1ζ (13)

where ζ =
[
xT xT

d 4xT
]T

and

Θ =
[

Θ1 Θ2

ΘT
2 Θ3

]
, S = diag{S1, S2}

Θ1 = AT PA + Y + Y T −Q + R + dX1 +
2∑

k=1

dkA
T

k SkAk

Θ2 = AT PAd − Y + WT + dX2 +
2∑

k=1

dkA
T

k SkAd

Θ3 = AT
d PAd −W −WT −R + dX4 +

2∑

k=1

dkAT
d SkAd

Q = diag{Q,P −Q}, R = diag{R1, R2}
A1 = [ A1 − I A2 ] , A2 = [ A1 A2 − I ]

Due to Ψ1 ≥ 0 is assured by LMI (8), and applying Schur
complement shows that LMIs (7) implies Θ < 0, then
∆V (i, j) < 0 for any ξ 6= 0. So, the system (1) with
ω(i, j) = 0 is asymptotically stable if LMIs (5)-(6) are
feasible.

Next, we shall prove ‖z‖2 < γ ‖ω‖2 under zero-initial
conditions for any nonzero ω(i, j) ∈ l2{[0,∞), [0,∞)}. To
this end, we introduce

J =
∞∑

i=0

∞∑

j=0

(
zT z − γ2ωT ω

)
(14)

In view of the stability of the system and the zero-
initial condition, we have that for any nonzero ω(i, j) ∈
l2{[0,∞), [0,∞)}

J ≤
∞∑

i=0

∞∑

j=0

[
zT z − γ2ωT ω + ∆V (i, j)

]
(15)

Similar to Equations (11) and (12), the following two
equations

α1 = 2
(
xT Y + xT

d W + ωT M
)
(

x− xd −
−1∑

l=−d

∆x

)
= 0

(16)
and

β1 = dξT
1 X1ξ1 −

−1∑

l=−d

ξT
1 X1ξ1 = 0 (17)

hold for any free weighting matrices Y, W,M and any semi-

positive definite matrix X1 =




X1 X2 X3

XT
2 X4 X5

XT
3 XT

5 X6


 ≥ 0, where

ξ1 =
[
xT , xT

d , ωT
]T

.

In the same way, we can compute
∆V (i, j) = V11(i, j)− Vd1(i, j)− Vd2(i, j) + α1 + β1

then it follows that

J ≤
∞∑

i=0

∞∑

j=0

[
ξT
1 Θξ1 −

−1∑

l=−d

ζT
1 Ψζ1

]

where ζ1 =
[
xT , xT

d , ωT , 4xT
]T

and

Θ =




Θ1 + CT
d Cd Θ2 Θ4

ΘT
2 Θ3 Θ5

ΘT
4 ΘT

5 Θ6




Θ4 = AT PB + CT
d Dd + MT + dX3 +

2∑

k=1

dkA
T

k SkB

Θ5 = AT
d PB −MT + dX5 +

2∑

k=1

dkAT
d SkB

Θ6 = BT PB + DT
d Dd − γ2I + dX6 +

2∑

k=1

dkBT SkB

Due to Ψ ≥ 0 is assured by LMI (6), and LMI (5) implies
Θ < 0, so J < 0 is guaranteed by LMIs (5)-(6) for any
ξ1 6= 0.

Summarizing the above two points demonstrates that 2-D
system (1)-(2) has H∞ disturbance attenuation γ if LMIs
(5)-(6) are true. This completes the proof.

Remark 1. Due to V11(i, j), Vd1(i, j) and Vd2(i, j) involve
two new variables y1,l and yl,1 expressed by the changes of
system states x1,l and xl,1, so Equation (10) holds. Similar
to Leibniz-Newton formula for 1-D time-delay systems
in Jiang and Han [2006], the free weighting matrices
Y, W and M are used in (11) and (16) to express the
relationship among the terms x, xd, and

∑−1
l=−d ∆x and

they can easily be determined by solving LMIs (5)-(6).
This method avoids the conservatism that results from any
system transformation.

Remark 2. Theorem 1 provides a sufficient H∞ perfor-
mance criteria for 2-D state-delayed system (1)-(2). Now,
we will show that although this condition is dependent on
the size of delays, by a certain choice of matrices, it also
implies an extension of previous delay-independent one.
Choosing the following matrices

X =
εI(4n+2m)×(4n+2m)

d∗
, Y = W = 02n×2n
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M = 02m×2n, S =
εI2n×2n

d∗
for some sufficiently small positive scalar ε; LMIs (5)-(6)
imply the well-known delay-independent H∞ performance
condition (see, for instance, Theorem 5 in Paszke et al.
[2003]). This implies that Theorem 1 is powerful in the
sense that it provides sufficient conditions for both the
delay-dependent and the delay-independent cases.

3. DELAY-DEPENDENT H∞ CONTROL VIA
DYNAMIC OUTPUT FEEDBACK

In this section, we design a dynamic output feedback
controller such that the closed-loop system has H∞ dis-
turbance attenuation γ.

Now, we consider 2-D state-delayed system with control
input and state delays as

x(i + 1, j + 1) = A1x(i + 1, j) + A2x(i, j + 1)
+ A1dx(i + 1, j − d1)
+ A2dx(i− d2, j + 1)
+ B11u(i + 1, j) + B12u(i, j + 1)
+ B21ω(i + 1, j) + B22ω(i, j + 1) (18)

y(i, j) = C1x(i, j) + C2u(i, j) (19)
z(i, j) = D1x(i, j) + D2u(i, j) + D3ω(i, j) (20)

where u(i, j) ∈ Rp is the control input and y(i, j) ∈ Rq

is the measurable output, respectively. Bkl, Ck, Dk(k, l =
1, 2) and D3 are constant matrices with appropriate di-
mensions. The boundary conditions are also of the form
(3). Without less of generality, we assume C2 = 0.

Introduce the following dynamic output feedback con-
troller

x̂(i + 1, j + 1) = Ac1x̂(i + 1, j) + Ac2x̂(i, j + 1)
+ Ac1dx̂(i + 1, j − d1)
+ Ac2dx̂(i− d2, j + 1)
+ Bc1y(i + 1, j) + Bc2y(i, j + 1) (21)

u(i, j) = Ccx̂(i, j) + Dcy(i, j) (22)
where x̂(i, j) ∈ Rnc . Then the closed-loop system by
substituting the controller (21)-(22) to 2-D system (18)-
(20) is represented as

x(i + 1, j + 1) = A1x(i + 1, j) + A2x(i, j + 1)
+ A1dx(i + 1, j − d1)
+ A2dx(i− d2, j + 1)
+ B1ω(i + 1, j) + B2ω(i, j + 1) (23)

z(i, j) = Dx(i, j) + D3ω(i, j) (24)

where x(i, j) =
[
xT (i, j) x̂T (i, j)

]T
and

Ak =
[

Ak + B1kDcC1 B1kCc

BckC1 Ack

]
Akd =

[
Akd 0
0 Ackd

]

Bk =
[
BT

2k 0
]T

(k = 1, 2), D = [ D1 + D2DcC1 D2Cc ]
(25)

Accordingly, the boundary conditions are assumed as:
x(i, j) = {ϕT

i,j , 0}T ,∀i ≥ 0, j = −d1,−d1 + 1, · · · , 0;

x(i, j) = {ψT
i,j , 0}T ,∀j ≥ 0, i = −d2,−d2 + 1, · · · , 0,

ϕ0,0 = ψ0,0. (26)

The following Theorem 2 realizes delay-dependent H∞
control for 2-D state-delayed system (18)-(20) through
controller (21)-(22), which make the closed-loop system
(23)-(24) asymptotically stable and ‖z‖2 < γ ‖ω‖2 .

Theorem 2. Given scalars t, t1 and t2. 2-D state-delayed
system (18)-(20) with the boundary conditions (3) has
a delay-dependent H∞ disturbance attenuation γ under
the action of the controller (21)-(22) for any delay dk

satisfying 0 ≤ dk ≤ d∗k(k = 1, 2) and d∗ = max{d∗1, d∗2}
if there exist matrices X > 0, Y > 0, Q̃ > 0, R̃k >

0, Dc, Z, Zk, Z̃k, Ẑk, Ỹkl, W̃kl, M̃kl(k, l = 1, 2), X̃l1,l2 >

0, X̃l1,2(l1 = 1, 4, 6; l2 = 1, 3) and X̃l3,l4(l3 = 2, 3, 5; l4 =
1, 2, 3, 4) such that the following LMIs hold:

Φ̃ =
[

Γ̃1 Γ̃2

Γ̃T
2 Γ̃3

]
< 0 (27)

Ψ̃ =




X̃1 X̃2 X̃3 Ỹ

X̃T
2 X̃4 X̃5 W̃

X̃T
3 X̃T

5 X̃6 M̃

Ỹ T W̃T M̃T S̃


 ≥ 0 (28)

where

Γ̃1 =
[

Γ̃11 Γ12

ΓT
12 Γ22

]

Γ̃11 =




−→
Y 11 Ỹ12 + Ỹ T

21

Ỹ21 + Ỹ T
12

−→
Y 22

−Ỹ T
11 + W̃11 −Ỹ T

21 + W̃12

−Ỹ T
12 + W̃21 −Ỹ T

22 + W̃22

−Ỹ11 + W̃T
11 −Ỹ12 + W̃T

21

−Ỹ21 + W̃T
12 −Ỹ22 + W̃T

22−→
W 11 −W̃12 − W̃T

21

−W̃21 − W̃T
12

−→
W 22


 + d∗

[
X̃1 X̃2

X̃T
2 X̃4

]

−→
Y 11 = Ỹ11 + Ỹ T

11 − Q̃ + R̃1
−→
Y 22 = Ỹ22 + Ỹ T

22 − tJP + Q̃ + R̃2
−→
W 11 =−W̃11 − W̃T

11 − R̃1,
−→
W 22 = −W̃22 − W̃T

22 − R̃2

Γ12 =




M̃T
11 M̃T

21

M̃T
12 M̃T

22

−M̃T
11 −M̃T

21

−M̃T
12 −M̃T

22


 + d∗

[
X̃3

X̃5

]

Γ22 =
[−γ2I 0

0 −γ2I

]
+ d∗X̃6

Γ̃2 =




tJT
A1

JT
C 0

tJT
A2

0 JT
C

tJT
A1d

0 0
tJT

A2d
0 0

tJT
B1

DT
3 0

tJT
B2

0 DT
3

J̃A1 d∗t2JT
A1

d∗t1JT
A2

J̃A2

d∗t1JT
A1d

d∗t2JT
A1d

d∗t1JT
A2d

d∗t2JT
A2d

d∗t1JT
B1

d∗t2JT
B1

d∗t1JT
B2

d∗t2JT
B2




J̃A1 = d∗t1(JT
A1
− JP ), J̃A2 = d∗t2(JT

A2
− JP )

JAkd
=

[
XAkd Z̃k

Akd AkdY

]
, JBk

=
[

XB2k

B2k

]

JAk
=

[
XAk + ZkC1 Ẑk

Ak + B1kDcC1 AkY + B1kZ

]
(k = 1, 2)
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JC = [ D1 + D2DcC1 D1Y + D2Z ]

Γ̃3 = diag{−tJP ,−I,−I,−d∗t1JP ,−d∗t2JP }
S̃ = diag{t1JP , t2JP }

JP =
[

X I
I Y

]
> 0, X̃l1 =

[
X̃l11 X̃l12

X̃T
l12 X̃l13

]

Xl3 =
[

X̃l31 X̃l32

X̃l33 X̃l34

]
, Ỹ =

[
Ỹ11 Ỹ12

Ỹ21 Ỹ22

]

W̃ =

[
W̃11 W̃12

W̃21 W̃22

]
, M̃ =

[
M̃11 M̃12

M̃21 M̃22

]

Furthermore, the delay-dependent control system matrices
Ack, Ackd, Bck(k = 1, 2), Cc and Dc can be derived as

Ack = (P̂12)−1(Ẑk −XAkY − ZkC1Y

−XB1kCcP
T
12)(P

T
12)

−1

Ackd = (P̂12)−1(Z̃k −XAkdY )(PT
12)

−1

Bck = (P̂12)−1(Zk −XB1kDc)

Cc = (Z −DcC1Y )(PT
12)

−1(k = 1, 2) (29)
i.e. the delay-dependent H∞ control problem for system
(18)-(20) is solved.

Proof. Applying Theorem 1 to the closed-loop sys-
tem (23)-(24), then combining with variable substituting
method, Schur complement and congruence transforma-
tion, completes the proof.

Remark 3. The results of Theorems 2 apply the tuning
parameters t, t1 and t2. The question arises how to find
the optimal combination of these parameters. The optimal
value of them can be found by the approach proposed
in Fridman [2002]. Moreover, in the proof of Theorem
3, if we don’t introduce the parameters t, t1 and t2, the
LMIs obtained are bilinear. We must add some limitations
on the matrices to solve the new LMIs. So, the choices
of parameters t, t1 and t2 have assured a smaller filter
performance and reduced the conservatism of the result.

Remark 4. Theorem 2 provides an approach to solve
the delay-dependent H∞ control problem for 2-D state-
delayed system (18)-(20). If we choose the following ma-
trices

t = 1, t1 = t2 = ε, Ỹ = W̃ = 02n×2n

M̃ = 02m×2n, X̃ =
εI(4n+2m)×(4n+2m)

d∗
for some sufficiently small positive scalar ε, LMIs (27)-
(28) imply a sufficient condition of delay-independent H∞
control problem for 2-D state-delayed system (18)-(20):



−JP + JQ +
2∑

k=1

JQk
0 JT

A1
0

0 −JQ JT
A2

0
JA1 JA2 −JP JA1d

0 0 JT
A1d

−JQ1

0 0 JT
A2d

0
JD 0 0 0
0 JD 0 0
0 0 JT

B1
0

0 0 JT
B2

0

0 JT
D 0 0 0

0 0 JT
D 0 0

JA2d
0 0 JB1 JB2

0 0 0 0 0
−JQ2 0 0 0 0

0 −I 0 D3 0
0 0 −I 0 D3

0 DT
3 0 −γ2I 0

0 0 DT
3 0 −γ2I




< 0 (30)

In Theorem 2, γ is regarded as given. However, (27) and
(28) are still LMIs when γ is also a variable. Thus, it is
possible to formulate the following convex optimization
problem to find a delay-dependent controller assuring a
smallest H∞ norm bound γ for 2-D system (18)-(20).

Problem 1.
minimize δ subject to

X > 0, Ỹ > 0, Q̃ > 0, R̃k > 0X̃l1,l2 > 0
(27)
(28)

applying mincx in Matlab Toolbox for given state delays d1

and d2, and matrices Ỹkl, W̃kl, M̃kl(k, l = 1, 2), X̃l1,2(l1 =
1, 4, 6) and X̃l3,l4(l3 = 2, 3, 5; l4 = 1, 2, 3, 4), where γ =√

δ, we can minimize H∞ norm bound γ and obtain the
corresponding H∞ optimal controller by (29).

4. NUMERICAL EXAMPLE

Now, we will prove the usefull and effectiveness of the
delay-dependent H∞ controller design for a stationary
random field in image processing proposed in Problem 1.

It is known that the stationary random field can be mod-
eled as the following 2-D system considered in Katayama
and Kosaka [1979]:

η(i + 1, j + 1) = a1η(i + 1, j) + a2η(i, j + 1)
− a1a2η(i, j) + ω(i, j) (31)

where η(i, j) is the state of the random field at spacial
coordinate (i, j), a2

1 < 1 and a2
1 < 1 as a1 and a2 are,

respectively, the horizontal and vertical correlations of the
random field.

Now, we consider the influence of time delays to system
(31) and introduce two terms η(i + 1, j − d1) and η(i −
d2, j + 1) in (31) following that

η(i + 1, j + 1) = a1η(i + 1, j) + a2η(i, j + 1)
+ a3η(i + 1, j − d1)
+ a4η(i− d2, j + 1)
− a1a2η(i, j) + ω(i, j) (32)

where a2
3 < 1 and a2

4 < 1 as a3 and a4 are also, respectively,
the horizontal and vertical correlations of the random field,
and ω(i, j) is the measurement noise.

Denote xT (i, j) =
[
ηT (i, j + 1)− a2η

T (i, j) ηT (i, j)
]
, and

assume that the measurement output is given by y(i, j) =
[ 3 1 ]x(i, j). The signal to be estimated is z(i, j) =
0.5η(i, j) + 0.4u(i, j) + 0.7ω(i, j).

It is easy to know that the 2-D system can be converted
to the 2-D FM LSS model (18)-(20) with
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A1 =
[

0 0
1 a1

]
, A2 =

[
a2 0
0 0

]
, A1d =

[
a3 a1a3

0 0

]

A2d =
[

a4 a1a4

0 0

]
, B11 =

[
0.1
1

]
, B12 =

[
0

0.3

]

B21 = 0, B22 = [ 1 0 ]T (33)
Let a1 = 0.2, a2 = 0.3, a3 = 0.15, a4 = 0.03, by solving
Problem 1 when assuming d1 = 1, d2 = 2 and t1 =
0.01, t2 = 0.101 and t3 = 0.11, we can obtain the
minimum H∞ norm bound γopt = 0.7000019 and the
system matrices of H∞ controller (21)-(22) as

Ac1 =
[
−0.5664 4.6682× 1012

0.0000 5799.2

]

Ac2 =
[
−0.0698 1.7436× 1012

0.0000 8823.4

]

Ac1d =
[−0.0000 13488

0.0000 0.1855

]
, Ac2d =

[
0.0000 5392.1
0.0000 0.0348

]

Bc1 = [ 618606 −0.003732 ]T

Bc2 = [−1121904 −0.005677 ]T

Cc = [−0.0000 364202.3068 ] , Dc = −0.2343 (34)
Moreover, Figure 1 gives the maximum singular values
plot of the transfer function of the closed-loop system
by substituting (34) to (33) over 0 ≤ ω1 ≤ 2π, 0 ≤
ω2 ≤ 2π. In the figure, the griddings denote the obtained
H∞ disturbance attenuations and its maximum value is
0.699988, which is below 0.7000019.

5. CONCLUSION

This paper studies the delay-dependent H∞ control prob-
lem of 2-D state-delayed systems described by FM LSS
model. First, the delay-dependent bounded real lemma has
been derived through introducing free weighting matrices.
By a certain choice of the free weighting matrices, it also
implies an extension of delay-independent result. Then,
we design a dynamic output feedback controller to solve
the H∞ control problem in terms of LMIs. Furthermore,
an optimization problem is proposed to solve a minimum
upper bound of H∞ disturbance attenuation γ. Finally, a
numerical example examine the effectiveness of our results.
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