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Abstract: The optimal control problem with a functional given by an improper integral is
considered for models of economic growth. Properties of concavity of the maximized Hamiltonian
are examined and analysis of Hamiltonian systems in the Pontryagin maximum principle is
implemented including estimation of steady states and conjugation of domains with different
Hamiltonian dynamics. On the basis of this analysis an algorithm is proposed for construction
of optimal trajectories by sewing dynamics of Hamiltonian systems. The proposed algorithm is
illustrated by computer simulations of optimal trajectories in models of economic growth for
real macroeconomic data. Copyright c© 2008 IFAC
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1. INTRODUCTION

The paper deals with analysis of the optimal control prob-
lem on infinite horizon. Such statement of the problem
arises in models of economic growth (see Arrow [1968], In-
triligator [1971], Tarasyev and Watanabe [2001]). Produc-
tion factors play the role of phase variables in these models.
Control parameters are associated with investments into
production factors. The level of output is defined by a
production function. The discounted integral of logarith-
mic consumption index stands for the utility function.

The Pontryagin maximum principle (see Pontryagin et al.
[1962]) is applied for analysis of the optimal investment
problem. Specifically, the research is based on existence
results and necessary conditions of optimality in problems
with infinite horizon (see Aseev and Kryazhimskiy [2007]).

Analysis of properties of the maximized Hamiltonian is
fulfilled for the dynamic problem of investments opti-
mization. It is shown that under general conditions the
Hamiltonian is a smooth function of its variables. Under
the condition of strict concavity of a production function
it is proved on the basis of methods of convex analysis
(see Rockafellar [1970]) that the maximized Hamiltonian
conserves the property of strict concavity. Namely, it is
demonstrated that the maximized Hamiltonian is com-
posed by sewing several smooth strictly concave compo-
nents in such a way that the result of composition is
smooth and strictly concave in phase variables. Descrip-
tion of domains corresponding to different regimes of for-
mation of optimal control is provided and sewing curves
of these domains are indicated. Sufficient conditions of
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optimality are obtained for a class of control systems with
concave production functions.

Properties of Hamiltonian systems are examined for differ-
ent regimes of optimal control. The existence and unique-
ness result is proved for a steady state of the Hamil-
tonian system. Analysis of properties of eigenvalues and
eigenvectors is implemented for the linearized system in a
neighborhood of the steady state. Description of behavior
of the nonlinear Hamiltonian system is provided on the
basis of results of the qualitative theory of differential
equations (see Hartman [1964]). This analysis allows to
outline proportions of the main economic factors and
trends of optimal growth in the model.

A numerical algorithm for construction of optimal trajec-
tories of economic growth is elaborated on the basis of
constructions of backward procedures and conjugation of
an approximate linear dynamics with the nonlinear Hamil-
tonian dynamics (see Krasovskii and Krasovskii [1995]).
The algorithm is simulated basing on the real data for the
economy of Japan.

2. MODEL OF ECONOMIC GROWTH

A model is focused on the analysis of GDP of a country
which is defined as the market value of all final goods and
services produced within a country in a year. Two pro-
duction factors are considered in a model. If symbols K(t)
and L(t) denote stocks of capital and labor, respectively, at
time t, then the output Y (t) at time t is given by equation

Y (t) = F
[
K(t), L(t)

]
. (1)

Here the symbol F denotes production function. Using the
fact that the production function is commonly assumed to
be homogenous of degree one it is possible to fix relation
between quantity of output per worker and quantities
of capital per worker. Introducing per worker notations
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y = Y/L for GDP, and k = K/L for capital, one can
consider a per worker production function

y(t) = f(k(t)) = F
[K(t)
L(t)

, 1
]
. (2)

Let symbols C(t) ≥ 0 and I(t) ≥ 0 denote rates at time t of
consumption and investment, respectively, and the symbol
s(t), 0 ≤ s(t) ≤ 1, denotes the fraction of output which is
saved and invested. Then the national income is defined
by the formula

Y (t) = C(t) + I(t) =
(
1− s(t)

)
Y (t) + s(t)Y (t). (3)

It is assumed that the model characterizes growth in an
aggregative closed economy. The capital stock is accumu-
lated according to equation

K̇(t) = s(t)Y (t)− µK(t). (4)

Here parameter µ > 0 is the rate of capital depreciation.
It is assumed that the labor input grows exponentially
L̇(t)/L(t) = n, with a constant growth rate n > 0. Then
dynamics of capital per worker is described by equation

k̇(t) = s(t)y(t)− λk(t), (5)

where λ = µ+n is capital decay, and n is capital dilution.

Let us assume that function f(k) has the following prop-
erties

f ′(k) > 0 and f ′′(k) < 0 for k ∈ K0 ⊂ (0, +∞) . (6)

Here f ′(k) is the marginal productivity of capital per
worker. The symbol K0 stands for a nonempty set which is
called economic domain (Intriligator [1971]). It is assumed
that function f(k) satisfies the ”Inada’s limit conditions” lim

k↓ 0
f(k) = 0, lim

k↑+∞
f(k) = +∞,

lim
k↓0

f ′(k) = +∞, lim
k↑+∞

f ′(k) = 0. (7)

3. OPTIMAL CONTROL SYNTHESIS

3.1 Optimal Control Problem

Let us consider the optimal control problem for growth of
the capital stock. Let us introduce the utility functional
as the integral of the logarithmic consumption index
discounted on the infinite horizon

J =

+∞∫
0

[
ln f

(
k(t)

)
+ ln

(
1− s(t)

)]
e−δtdt. (8)

Here the symbol δ > 0 denotes the constant rate of
discount. A central planner starts his investment process
with the initial level k(0) = k0 and aims at maximization
of the utility functional.

Control Problem. Stated specifically, the problem is to
maximize the functional

J =

+∞∫
0

[
ln f

(
k(t)

)
+ ln

(
1− s(t)

)]
e−δtdt −→

(k(·),s(·))
max(9)

under the following dynamic constraints

k̇(t) = s(t)f(k(t))− λk(t), k(0) = k0, s ∈ [0, a] , a < 1,(10)

where parameters δ, λ = n + µ, k0 are given positive
numbers and s(t) is control variable measurable in time t.
Parameter 0 < a < 1 is a positive number which separates
the right bound of control parameter from unit. Let us
note that condition of compactness of control restrictions
s ∈ [0, a] is important for accurate application of the
Pontryagin maximum principle (Pontryagin et al. [1962]).

The problem is to find the optimal investment level s0(·)
and the corresponding trajectory k0(·) of the capital per
worker stock k subject to dynamics (5) for maximizing the
consumption per worker functional (8).

3.2 Hamiltonians in the Pontryagin Maximum Principle

Let us apply the Pontryagin maximum principle to the
problem (9)-(10). Introducing the adjoint variable ψ̃ =
ψ̃(t), interpreted in economy as a shadow price of capital,
one can compile the Hamiltonian of the problem

H̃(s, k, t, ψ̃) =
[
ln(1− s)f(k)

]
e−δt + ψ̃

(
sf(k)− λk

)
. (11)

To exclude the exponential term depending on time from
the Hamiltonian let us introduce new variables

ψ = ψ̃eδt, H(s, k, ψ) = eδtH̃(s, k, t, ψ), (12)

and consider the stationary form of the Hamiltonian
H(s, k, ψ) = ln f(k) + ln(1− s) + ψ

(
sf(k)− λk

)
. (13)

3.3 Existence of the Optimal Solution and Necessary
Optimality Conditions

Let us mention that for control problem (9)-(10) all condi-
tions of the existence theorem (see Aseev and Kryazhim-
skiy [2007]) are fulfilled. Moreover, one can formulate
the necessary conditions of optimality for problems with
infinite horizon in the form of the Pontryagin maximum
principle.
Theorem 1. Necessary Optimality Conditions. Let (s0, k0)
be an optimal process. Then there exists an adjoint vari-
able ψ̃ corresponding to process (s0, k0) and satisfying the
adjoint equation

˙̃
ψ(t) = −∂H

∂k
(s0(t), k0(t), t, ψ̃(t)), (14)

such that

(i) process (s0, k0) satisfies the conditions of the Pontrya-
gin maximum principle together with adjoint variable ψ̃

H(s0, k0, t, ψ̃) = max
s∈[0,a]

H(s, k0, t, ψ̃); (15)

(ii) process (s0, k0) and adjoint variable ψ̃ satisfy the
stationarity condition

H(s0, k0, t, ψ̃) = δ

∞∫
t

e−δτ
[
ln f

(
k0(τ)

)
+ ln

(
1− s0(τ)

)]
dτ

(iii) ψ̃(t) > 0 for all t ≥ 0;

(iv) adjoint variable ψ̃(t) satisfies the transversality con-
dition

lim
t→∞

k0(t)ψ̃(t) = 0. (16)
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4. CONCAVITY PROPERTIES OF HAMILTONIANS

Let us analyze properties of the Hamiltonian (13).
Lemma 2. The Hamiltonian H(s, k, ψ) (13) is a strictly
concave function in variable s.

The proof follows immediately from strict negativity of the
second derivative of the Hamiltonian (13) in s.

Let us introduce the necessary maximum condition for the
Hamiltonian H(s, k, ψ) (13) in the absence of restrictions

∂H

∂s
= − 1

1− s
+ ψf(k) = 0. (17)

This equation implies the following expression for the
optimal investment level

s0 = 1− 1
ψf(k)

. (18)

Let us introduce the construction of the maximized Hamil-
tonian in presence of restrictions on control variable s

Ĥ(k, ψ) = max
s∈[0,a]

H(s, k, ψ). (19)

Lemma 3. The maximized Hamiltonian Ĥ(k, ψ) is con-
structed basing on location of the maximum point s0

according to the following algorithm:

1. If s0 ∈ [0, a] then Ĥ(k, ψ) = H(s0, k, ψ).

2. If s0 < 0 then Ĥ(k, ψ) = H(0, k, ψ).

3. If s0 > a then Ĥ(k, ψ) = H(a, k, ψ).

Proof. Since function s 7→ H(s, k, ψ) is strictly concave
according to Lemma 1 then point s0 (18) is the global
maximum point. Therefore, if s0 ∈ [0, a] then it is clear
that point s0 is the global maximum point on the interval
[0, a].

If s0 < 0 then for s > s0 function s 7→ H(s, k, ψ) strictly
monotonically decreases. Therefore, point s = 0 is the
global maximum point on the interval [0, a].

If s0 > a then for s < s0 function s 7→ H(s, k, ψ) strictly
monotonically grows. Therefore, point s = a is the global
maximum point on the interval [0, a]. 2

Hence, the maximized Hamiltonian can be considered as
conjugation of three Hamiltonians corresponding to values
of the optimal investment plan inside and on the bounds
of the interval [0, a].

Let us denote by the symbol H1(k, ψ) the first branch of
the maximized Hamiltonian Ĥ(k, ψ) that results from the
Hamiltonian H(s, k, ψ) (13) at the optimal regime s = 0

H1(k, ψ) = ln f(k)− ψλk. (20)

At the optimal regime s = s0 the Hamiltonian H(s, k, ψ)
(13) possesses the value of the second branch H2(k, ψ) of
the maximized Hamiltonian Ĥ(k, ψ)

H2(k, ψ) = − lnψ + ψf(k)− ψλk − 1. (21)

At the optimal regime s = a the Hamiltonian H(s, k, ψ)
(13) possesses the value of the third branch H3(k, ψ) of
the maximized Hamiltonian Ĥ(k, ψ)
H3(k, ψ) = ln f(k) + ln(1− a) + ψ(af(k)− λk). (22)

Let us describe a formation rule for the maximized Hamil-
tonian Ĥ(k, ψ) out of its branches Hi(k, ψ), i = 1, 2, 3.
Let us define the sewing curve of branches H1(k, ψ) and
H2(k, ψ). To this end, one should compose the difference

H1 −H2 = ln(ψf(k))− ψf(k) + 1. (23)

One can easily check that this difference is less or equal to
zero. Let us note that it vanishes on the unique curve L1

described by equation

L1 = {(k, ψ) : ψ =
1

f(k)
, k > 0, ψ > 0}. (24)

From Inada’s conditions (7) it follows that curve L1 has a
hyperbolic form and the following relations are valid

ψ → +∞, for k → 0; ψ → 0, for k → +∞.

Let us define the sewing curve of branches H2(k, ψ) and
H3(k, ψ). Consider the difference
H3 −H2 = ln

(
(1− a)ψf(k)

)
− (1− a)ψf(k) + 1. (25)

This difference is less or equal to zero and it vanishes at
the unique curve L2 described by equation

L2 = {(k, ψ) : ψ =
1

(1− a)f(k)
, k > 0, ψ > 0}. (26)

The curve L2 is also a hyperbola which lies beyond the
curve L1.

On the basis of sewing curves L1 and L2 one can indicate
a formation rule for the maximized Hamiltonian Ĥ(k, ψ):

1. In domain

D1 = {(k, ψ) : ψ ≤ 1
f(k)

, k > 0, ψ > 0} (27)

assume Ĥ(k, ψ) = H1(k, ψ).

2. In domain

D2 = {(k, ψ) :
1

f(k)
≤ ψ ≤ (1− a)−1

f(k)
, k > 0, ψ > 0} (28)

assume Ĥ(k, ψ) = H2(k, ψ).

3. In domain

D3 = {(k, ψ) : ψ ≥ 1
(1− a)f(k)

, k > 0, ψ > 0} (29)

assume Ĥ(k, ψ) = H3(k, ψ).

Configuration of domains Dj , j = 1, 2, 3, and sewing
curves Li, i = 1, 2, is given on Fig. 1-b.
Lemma 4. The maximized Hamiltonian Ĥ(k, ψ) is
smoothly pasted out of branches Hi(k, ψ), i = 1, 2, 3, in
variables (k, ψ) on sewing curves Li, i = 1, 2.

The result of Lemma 4 is proved by direct calculations of
derivatives of the Hamiltonians on sewing curves.
Lemma 5. The maximized Hamiltonian Ĥ(k, ψ) is a
strictly concave function in variable k for all ψ > 0.

Proof. Let is analyze properties of branches Hi(k, ψ), i =
1, 2, 3. Strict concavity of the branch k 7→ H1(k, ψ) follows
from the following inequality for the second derivative

∂2H1

∂k2
=
f ′′(k)f(k)− (f ′(k))2

(f(k))2
< 0.
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Similarly, strict concavity of the branch k 7→ H2(k, ψ)
follows from the inequality

∂2H2

∂k2
= ψf ′′(k) < 0,

and for the branch k 7→ H3(k, ψ) – from the inequality

∂2H3

∂k2
=
f ′′(k)f(k)− (f ′(k))2

(f(k))2
+ aψf ′′(k) < 0.

Thus, branches Hi(k, ψ), i = 1, 2, 3, are strictly concave
and are smoothly pasted on sewing curves Li, i = 1, 2.
Hence, the graph of the continuously differentiable maxi-
mized Hamiltonian k 7→ Ĥ(k, ψ) lies below lines tangent to
this graph at any point including points on sewing curves.
Therefore, the maximized Hamiltonian k 7→ Ĥ(k, ψ) is a
strictly concave function according to results of convex
analysis (see Rockafellar [1970]). 2

The graph of the maximized Hamiltonian (19) is shown on
Fig. 1-a.

5. SUFFICIENT OPTIMALITY CONDITIONS IN
THE PONTRYAGIN MAXIMUM PRINCIPLE

Theorem 6. Under conditions of Lemmas 2 and 3-5 pro-
viding the smoothness property of the maximized Hamil-
tonian Ĥ(k, ψ) in variables (k, ψ) and its strict concavity
in variable k, the Pontryagin maximum principle ensures
sufficient optimality conditions in problem (9)-(10).

Proof. Let us denote by the symbol (k∗(·), s∗(·)) the con-
trol process satisfying the Pontryagin maximum principle
in problem (9)-(10). Such process exists according to Aseev
and Kryazhimskiy [2007]. Let us consider an arbitrary
control process (k(·), s(·)) differing from the optimal pro-
cess (k∗(·), s∗(·)). By virtue of smoothness and concav-
ity properties of the maximized Hamiltonian Ĥ(k, ψ) the
following estimate takes place for positive values of the
adjoint variable ψ(t) > 0

〈∂Ĥ
∂k

(t, k∗(t), ψ(t)) , k∗(t)− k(t)〉 <

Ĥ (t, k∗(t), ψ(t))− Ĥ (t, k(t), ψ(t)) , k∗(t) 6= k(t).(30)
Here the symbol 〈x, y〉 denotes the scalar product of
vectors x and y.

Let us multiply both parts of the adjoint equation in the
Pontryagin maximum principle by (k(t)− k∗(t))

〈ψ̇(t)− δψ(t), k(t)− k∗(t)〉 =

〈∂Ĥ
∂k

(t, k∗(t), ψ(t)) , k∗(t)− k(t)〉. (31)

Relations (30)-(31) lead to the inequality

〈ψ̇(t)− δψ(t), k(t)− k∗(t)〉 <
Ĥ (t, k∗(t), ψ(t))− Ĥ (t, k(t), ψ(t)) . (32)

Substituting expression for the difference of Hamiltonians
into the right-hand side of inequality (32) one obtains the
following relation

〈ψ̇(t)− δψ(t), k(t)− k∗(t)〉 < 〈ψ(t), k̇∗(t)− k̇(t)〉+

ln
(
f(k∗(t))(1− s∗(t))

)
− ln

(
f(k(t))(1− s(t))

)
. (33)

Passing to the adjoint variable ψ̃(t) (12) one can obtain
the the following form of inequality (33)

d

dt
〈ψ̃(t), k(t)− k∗(t)〉+

[
ln f(k(t)) + ln(1− s(t))

]
e−δt <[

ln f(k∗(t)) + ln(1− s∗(t))
]
e−δt.

Let us integrate both parts of this inequality over time t
and pass to the limit on the half-interval [t0,+∞)

lim
t→+∞

〈ψ̃(t), k(t)− k∗(t)〉 − 〈ψ̃(t0), k(t0)− k∗(t0)〉+

+∞∫
t0

[
ln f(k(t)) + ln(1− s(t))

]
e−δtdt ≤

+∞∫
t0

[
ln f(k∗(t)) + ln(1− s∗(t))

]
e−δtdt. (34)

Substituting the initial condition (10) and the transversal-
ity condition on the infinite horizon (16) to relation (34)
one obtains the inequality

+∞∫
t0

[
ln f(k(t)) + ln(1− s(t))

]
e−δtdt ≤

+∞∫
t0

[
ln f(k∗(t)) + ln(1− s∗(t))

]
e−δtdt. (35)

The last relation proves that the control process
(k∗(·), s∗(·)) satisfying the Pontryagin maximum principle
is the optimal process. 2

Corollary 7. If the maximized Hamiltonian Ĥ(k) has
strictly negative second derivative then one can prove that
the control process satisfying the Pontryagin maximum
principle is the strict global maximum.

Proof. The following lemma plays the key role in proof
of this fact.
Lemma 8. Let function Ĥ(k) be twice continuously dif-
ferentiable and its second derivative be strictly negative
Ĥ ′′(k) < 0 in compact domain K1. Then there exists a
positive constant α > 0 such that the following relation
takes place

Ĥ(k) < Ĥ(k∗) +
∂Ĥ

∂k
(k∗)(k − k∗)− α(k − k∗)2,

k∗, k ∈ K1, k 6= k∗. (36)

Proof. Let us present function Ĥ according to the Taylor
expansion of second order with the Cauchy remainder term

Ĥ(k) = Ĥ(k∗) +
∂Ĥ

∂k
(k∗)(k − k∗) +

∂2Ĥ

∂k2
(z)ϑ(k − k∗)2,

z = ϑk∗ + (1− ϑ)k, 0 < ϑ < 1, ϑ = ϑ(k). (37)
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Let us show that there exists a positive constant α such
that the following inequality takes place∣∣∣∂2Ĥ

∂k2
(z)
∣∣∣ϑ(k − k∗)2 > α(k − k∗)2. (38)

On the contrary, assume that
inf
k∈K1

ϑ(k) = 0. (39)

Let sequence kn ∈ K1 be such that ϑn = ϑ(kn) → 0
when n→∞. Since K1 is a compact set then without loss
of generality one can assume that sequence kn converges,
limkn→∞ = k1 ∈ K1. Two cases are possible. In the first
case, k1 6= k∗. In this case, passing to the limit in formula
(37) one obtains the relation

Ĥ(k1) = Ĥ(k∗) +
∂Ĥ

∂k
(k∗)(k1 − k∗), (40)

which contradicts to strict concavity of function Ĥ(k).
In the second case, k1 = k∗. Let us present the Cauchy
remainder term in the Taylor form

∂2Ĥ

∂k2
(zn)ϑn(kn − k∗)2 =

∂2Ĥ

∂k2
(k∗)(kn − k∗)2 + o

(
(kn − k∗)2

)
. (41)

Dividing the last formula by (kn−k∗)2 and passing to the
limit, one obtains the relation

∂2Ĥ

∂k2
(k∗) = 0, (42)

which contradicts to assumptions of Lemma. Finally, one
concludes that

inf
k∈K1

ϑ(k) > 0. (43)

The last inequality proves the Lemma. 2

To finalize the proof of Corollary, one should substitute
inequality (32) by estimate (36). Then integration of
the quadratic term α(k − k∗)2 in relation (34) provides
the addition strictly positive term which gives the strict
inequality for global maximum in relation (35). 2

6. QUALITATIVE ANALYSIS OF THE
HAMILTONIAN SYSTEM

6.1 Hamiltonian System in the Steady State Domain

Consider the Hamiltonian system in the steady state
domain D2 (28)

ψ̇ = ψ
(
δ + λ− f ′(k)

)
,

k̇ = f(k)− λ k − 1
ψ
.

(44)

Let us introduce the new variable z = ψk and express the
Hamiltonian system in variables (k, z)

ż = z
(f(k)

k
+ δ − f ′(k)

)
− 1,

k̇ = f(k)− λk − k

z
.

(45)

A steady state of the Hamiltonian system (45) is defined
by the system of equations

(f(k)
k

+ δ − f ′(k)
)
− 1 = 0,

f(k)− λk − k

z
= 0.

(46)

Lemma 9. There exists the unique steady state (k∗, z∗) for
which the following estimates are valid

k∗ > 0, 0 < z∗ <
1
δ
. (47)

The proof of the lemma follows directly from the property
of strict concavity of the production function f(k).
Lemma 10. At the steady state (k∗, z∗) the optimal invest-
ment level s0 (18) is bounded below by zero and above by
a number strictly less than unit.

Proof. Indeed, the following estimate takes place

0 < s0(k∗) < λ
1

f ′(k∗)
=

λ

λ+ δ
< 1. 2 (48)

6.2 Saddle Character of the Steady State

Analysis of properties of the steady state (k∗, z∗) is based
on characterization of eigenvalues and eigenvectors of the
linearized Hamiltonian system.
Lemma 11. Eigenvalues of the linearized Hamiltonian sys-
tem are real numbers. One of them is positive and another
one is negative. Moreover, the positive eigenvalue is larger
than the discount coefficient δ.

Lemma is proved by direct calculations of coefficients of
the Taylor expansion for the Hamiltonian system (45).
Remark 1. Lemma 11 implies that the steady state
(k∗, z∗) is a saddle point. According to the Grobman-
Hartman theorem (see Hartman [1964]) the nonlinear sys-
tem (45) admits a trajectory the same as the linear system.
This trajectory converges to equilibrium and is tangent to
the eigenvector corresponding to the negative eigenvalue.

6.3 Hamiltonian System in the Zero Control Domain

Consider the Hamiltonian system in the zero control
domain D1 (27) defined in variables (k, z)

ż = δz − kf ′(k)
f(k)

,

k̇ = −λk.

(49)

The Hamiltonian system (49) has no any steady state.

6.4 Hamiltonian System in the Intensive Control Domain

Consider the Hamiltonian system in the intensive control
domain D3 (29) defined in variables (k, z)

ż = z
(
δ + a

f(k)
k
− af ′(k)

)
− kf ′(k)

f(k)
,

k̇ = af(k)− λk.

(50)

Let us note that the Hamiltonian system (50) has no
steady state in the domain D3.
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7. ALGORITHM FOR CONSTRUCTION OF
OPTIMAL TRAJECTORY

Let us design an algorithm for construction of optimal
trajectory in control problem (9)-(10) based on the con-
jugation of Hamiltonian systems (45), (49) and (50). To
follow the algorithm one should represent domains Dj ,
j = 1, 2, 3, and sewing curves Li, i = 1, 2, in variables
(k, z). Let us remind that the unique steady state (k∗, z∗)
belongs to domain D2.

Numerical Algorithm. The algorithm for construction of
the optimal trajectory includes the following steps.

1. Numerical estimation of the steady state (k∗, z∗).

2. Linearization of the Hamiltonian system (45) in the
neighborhood of the steady state (k∗, z∗).

3. Calculation of eigenvalues and eigenvectors of the lin-
earized Hamiltonian system.

4. Fixation of the precision parameter ε > 0 and cal-
culation of the characteristic point (kε, zε) at the ε-
neighborhood of the steady state (k∗, z∗) in the direction of
the eigenvector corresponding to the negative eigenvalue.

5. Integration of the Hamiltonian system (45) in the
reverse time starting from the characteristic point (kε, zε).
Integration is performed until one of two alternatives:
1) if the integrated trajectory reaches the initial point
k0 in domain D2 then the algorithm is stopped and the
trajectory is built; 2) if the integrated trajectory reaches
sewing curves Li, i = 1, 2, before it reaches the initial point
k0 then the Hamiltonian system (45) is switched either to
the Hamiltonian system (49) at points of the sewing curve
L1, or to the Hamiltonian system (50) at points of the
sewing curve L2.

6. Expansion of the integrated trajectory in the direct time
and its time scaling.

8. SIMULATION OF THE MODEL

The numerical algorithm is realized in the elaborated soft-
ware for construction of optimal trajectories of economic
growth and optimization of investment level. Numerical
experiments are presented for parameters identified from
the real data on the Japan’s economy. Parameters of
the Cobb-Douglas production function f(k) = Akα are
identified in the econometric package ”SPSS Sigma Stat
3.0”. Their values are estimated as follows: A = 1.677,
α = 0.588. The discount coefficient δ and the rate λ are
given by estimates: δ = 0.1, λ = 0.02. Parameter a of
restrictions on control s(t) is defined by inequality (48) and
is chosen at the level a = 0.17. Parameters of numerical
integration are: precision parameter ε = 0.001, time step
∆ t = 0.0001. The values of the steady state are calculated
as (k∗, z∗) = (155.897, 5.259). The system is integrated
in the reverse time until the stopping criterion k0 = 7.5.
Results of construction of the synthetic model trajectory
is shown on Fig. 1-b.

On Fig. 1-c the investment plan s0(t) is given. The graph of
investments show that, firstly, in the period 1962-1997 the
optimal investment level stays at the intensive level s∗ =
a = 0.17; secondly, on sewing curve L2 a switch happens

Fig. 1. Results of numerical simulations.

from the intensive level s∗ = a to the transition level
s∗ = s0 which is implemented in domain D2; thirdly, while
time t grows to infinity the investment level monotonically
decreases to the level s∗ = 0.095 defined by the steady
state (k∗, z∗). On Fig. 1-d the obtained optimal synthetic
trajectory of capital growth shown by the heavy line is
compared with the time series of the macroeconomic data
for Japan depicted by the grey line. The comparison shows
that the synthetic trajectory adequately reflects trends
of the real data and can be used for forecasting future
scenarios of growth. The character of the graph has an
S-shape which is provided by the restriction parameter a
on investment s(t). Moreover, the graph demonstrates the
saturation tendency of growth. Experiments show that in
the absence of the restriction parameter a or its overstating
the graph has a concave form and does not reflect the data
trends.
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