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1. INTRODUCTION 

 

 

Problem of chaos control has been the area of intensive study 

for the last decade. Many papers, devoted to problem of 

chaos control, have been published and a number of practical 

tasks, in which chaotic regimes can arise (Andrievskii and 

Fradkov, 2003; Andrievskii and Fradkov, 2004), have been 

discovered. Theoretic and practical components of this 

problem are conditioned by the fact that oscillatory and 

chaotic processes are often found in nature and technics. 

Forms of their description are constantly being developed 

and improved. One of classical examples of differential 

models, describing oscillatory and chaotic processes is Van 

der Pole equation (Gilbert and Gammon, 2000). 
 

In the given paper a problem of chaos control is considered 

for stabilization of chaotic processes arising in a Van der 

Pole system. 

 

 

 

 

 

2. PROBLEM STATEMENT 

 

 

Consider a nonlinear plant described by Van der Pole 

equation 
 

utEyyyy +=+−− )sin()1( 2
2

1 ωττ ɺɺɺ , (1) 

 

where 01 >τ , 02 >τ . 

 

Let us transform model (1) in the following way 
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where dtdp /= ; 1)( =pb ; 21
2)( ττ +−= pppa  is 

unstable polynomial ( 01 >τ  and 02 >τ ); pdpd 1)( = , 

311 τ−=d ; 1)( =pf ;   relative degree of the transfer 

function )()( papb  is 2=−= mnρ ; coefficients 1τ  and 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15143 10.3182/20080706-5-KR-1001.1281



2τ  are assumed to be unknown; )sin()( tEtw ω=  is an 

unknown, bounded disturbance; function 
3)( yy =ϕ . 

 

Purpose of control is to find a control law, which uses only 

measurements of the output variable of the model (2), 

ensuring convergence of output trajectory of the nonlinear 

system to an area 0ε . Boundaries of the area can be reduced 

by an appropriate selection of the controller coefficients. 

 

 

3. DESIGN OF CONTROL LAW 

 

 

Let us choose control law in the form 
 

ξµχ ))(( kpu +−= , (3) 

 

where coefficient 0>µ  (takes rather big value in common 

case) and any Hurwitz polynomial )( pχ  are chosen such 

that polynomial )()()()( ppbpap χµγ +=  is Hurwitz; 

function ξ  is formed by estimation algorithm 

 

)( ξνσξ −=ɺ , (4) 

 

where function 5
yy +=ν ; parameter 0>k  and function 

0>σ  are chosen according to requirements presented 

below. 
 

Substituting (3) in equation (2), we obtain 
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where ξνη −=  is error. 

After simple transformations, for model (5) we have 
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Denoting  
 

)()()()( pbppap µχγ +=  and )()()( pbpp χβ = , 

 

we obtain 
 

  +++++−−= )]()()([
)(

)( 5
twkykky

p

p
y ηµµ

γ

β
 

)(
)(

)(
y

p

pd
ϕ

γ
+ , (6) 

 

where function )(
)(

)(
)( tw

p

pf
tw

β
=  is smooth and bounded 

according to the view of function )(tw . 

 

Let us present input-output model (6) as input-state-output 

model 

 

++++−−+= ηµµ )()(( 5
kykkybAxxɺ  

)())( yqtw ϕ++ , xcy
T= ,  (7) 

 

where 2
R∈x  is state of model (7), A , b , q  и c  are 

transformation matrices from input-output model (6) to 

input-state-output model (7). As polynomial )( pγ  is 

Hurwitz and model (6) is strictly minimum phase, according 

to consequence 3 (Bobtsov and Nikolaev, 2005), it is 

possible to determine a symmetric positively determined 

matrix P , satisfying two following matrix equations: 
 

1QPAPA
T −=+ ,  cPb = , (8) 

 

where 011 >= T
QQ , entries of matrix 1Q  depend on 

parameter µ  and do not depend on parameter k . 

 

Consider derivative of function of deviation η  

 

yyyy ɺɺɺɺɺ Ω+−=−+=−−= σησηξνσνη 45)( , (9) 

 

where 
451 y+=Ω . 

 

Let us present a theorem describing conditions for 

calculation of parameter k  and function σ , ensuring 

accomplishing of purpose of control.  
 

Theorem. There exist a parameter k  and a function σ  such 

that all trajectories of system (7), (9) can be localized in any 

small area by increasing of parameter k .  
 

Proof. Consider a Lyapunov function of the form 
 

21 VVV += ,                         (10) 

 

where 
 

PxxV
T=1 , (11) 

2
2 η=V . (12) 

 

Differentiating (11) with respect to time subject to equation 

(7) we obtain 
 

−+++= ηµ PbxkxPAPAxV
TTT )(2)(1
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TT µ  
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Substituting equations (8) into (13) and considering the 

following equations 
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[ ]21 )()(2 yPxPqqxyPqx
TTT ϕδδϕ −+≤ , 

 

 for derivative of Lyapunov function (11) we obtain 
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where small value 0>δ . 

Differentiating (12) with respect to time subject to equation 

(7) we receive 
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where in equation (15) yɺ  was substituted by summand 
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Then, considering inequalities  
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for derivative of function (12) 
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for derivative of Lyapunov function (10) we obtain 
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Let us choose 0>δ  such a way that the following 

inequality holds 
 

( ) 21 QIPPqqQ
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where T
QQ 22 =  is a positively determined matrix.  

 

Choose function σ , so the following inequality holds 
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where 0>λ . 

Evidently that inequality (19) holds if the parameter σ  

would be greater or equal than some number 0σ : 
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Then, according to restrictions on the nonlinearity for 

derivative of Lyapunov function we obtain 
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Choosing number 3>k  as 
 

k
k

11
+>

δ
,  (21) 

 

we obtain 
 

22
2

2
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k
xQxV

T +−−≤ ληɺ . (22) 

 

From inequality (22) as disturbance ∞<≤ 0)( wtw  is 

bounded, it follows that there exists such 3>k , that 

trajectories of system (7), (9) can be localized in any given 

area 0ε , which was to be proved. 

 

Consider results of computer simulation of Van der Pole 

system. First let us assume that 0)( =tw  and there appear 

stable oscillations in system (1) (system possesses a stable 

limit cycle). Then, with harmonic disturbance there arise 

chaotic phenomena in the system. And finally, on the last 

step of simulation of system (1) with control law (3), (4), we 

discover accomplishment of purpose of control. 
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Figures 1 and 2 show results of computer simulation of 

undisturbed system (1) for  5,01 =τ , 22 =τ , 0)( =tw  and 

disturbed system (1) for 5,01 =τ , 22 =τ , )5,0sin()( ttw =   

respectively. Results of computer simulations (Figures 1 and 

2) show, that system (1) possesses stable limit cycle in 

absence of disturbance ( 0)( =tw ) and that in presence of 

harmonic disturbance ( )5,0sin()( ttw = ) there appear chaotic 

processes in system (1). 
 

To stabilize system (1) let us choose control algorithm (3). 

Choose polynomial 1)( += ppχ , then  

 

))(())(1( ξξµξµ ɺ++−=++−= kkpu , (23) 

 

where function ξ  is formed by estimation algorithm (4). 

 

 

Fig. 1. Phase portrait of system (1) for 1.0)0( =yɺ , 0)( =tw . 

 

 
Fig. 2. Transients of system (1) for 1.0)0( =yɺ , 0)( =tw . 

 

 

Fig. 3. Phase portrait of system (1) for 1.0)0( =yɺ , 

)5.0sin()( ttw = . 

 

Fig. 4. Transients of system (1) for 1.0)0( =yɺ , 

)5.0sin()( ttw = . 
 

Function σ  is chosen so that inequality (19) holds, i.e. 
 

2( )kσ µ= + +  

( )2 2 8 21 2 ( ) 2( ) .k k k y kµ µ+ + + + Ω + + Ω  (24) 

 

Let us choose parameter 2=µ , and simulate control system 

for different values of parameter k . Transients of closed 

loop system for nonzero initial conditions ( 1,0)0( =yɺ ) and 

values 10=k  and 25=k  are shown on Figure 5 and 6. 
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Fig. 5. Transients of system (1), (23), (24) for 10=k , 

)5.0sin()( ttw = . 

 

Fig. 6. Transients of system (1), (23), (24) for 25=k , 

)5.0sin()( ttw = . 

 

 

CONCLUSION 

 

 

Problem of stabilization of a chaotic Van der Pole system is 

solved. Control law uses only measurements of output 

variable, not its derivatives or state vector of the system. In 

comparison with known results proposed scheme has smaller 

dimension equal to one. 
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