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Abstract: In this paper, a method of nonlinear control systems design for a water level process
is proposed. This design method uses operator based robust right coprime factorization for
the nonlinear process system, as a result, robust stability of the nonlinear process system is
guaranteed. For the obtained robust stable process system, an operator based process tracking
controller is also designed to realize the desired output tracking performance and to eliminate
the disturbance of the process system input. A simulation result obtained to a water level process
control system is given to show the effectiveness of the proposed method.

1. INTRODUCTION

Recently, with development of industry and increase in
kinds of product, practical processes have become com-
plex. In general, the well-known process system includes
reactors, heat exchangers, tanks, compressors etc. The
control variables are temperature, pressure, water level,
position, and reaction speed etc. The process model can
be derived based on physical understanding of process be-
haviour and system estimation techniques. However, most
of the above processes exhibit nonlinear performances,
as a result, it is difficult to control in the same way as
for an ideal linearized process. Thus, increasingly there is
interest in developing methods that deal directly with it
(Lee [1993]).

Control of nonlinear system has been studied in many
reports. The operator theory is one of the nonlinear control
system techniques, and it is based on nonlinear Lipschitz
operators from a normed linear space to another normed
linear space (Figueiredo and Chen [1993]). Based on this
theory, nonlinear tracking control system design scheme
(Deng et al. [2004]) has been studied by using robust right
coprime factorization (Chen and Han [1998], Deng et al.
[2006]). The merit of this method is that the process signal
does not affect the process output error signal. That is,
the nonlinear operator tracking system has no relation
with the process output error signal. However, the effect of
disturbance in the process input was not considered (Deng
et al. [2008]). In this paper, we design a new tracking
controller, the designed tracking controller can eliminate
the effect of the disturbance and can realize the prefect
tracking performance. A simulation result is given to show
effectiveness.

The outline of this paper is as follows. In Section 2,
several definitions of operator, right coprime factorization
and bounded input and bounded output stability are
given. Modeling of the process system for water level
control is shown in Section 3. In Section 4, robust tracking
control system using the operator theoretic approach is

designed. Simulation result confirms the effectiveness of
the proposed method in Section 5.

2. MATHEMATICAL PRELIMINARIES

For using operator based right coprime factorization to
the process, several definitions of operator and bounded
input bounded output stability (Chen and Han [1998],
Figueiredo and Chen [1993], Paice et al. [1992], Vidyasagar
[1985], Deng et al. [2006]) are reviewed.

Let U and Y be linear spaces over the field of real numbers,
and let U∗ and Y ∗ be normed subspaces, called the stable
subspaces, of U and Y , respectively. An operator Q : U →
Y is said to be bounded input bounded output (BIBO)
stable or simply, stable if Q(U∗) ⊆ Y ∗.

Let S(U, Y ) be the set of stable operators from U and Y .
Then S(U, Y ) contains a subset defined by

U(U, Y ) = {M : M ∈ S(U, Y )} (1)

where M is invertible with M−1 ∈ S(U, Y ). Elements of
U(U, Y ) are called unimodular operators.

In the following, well-posedness and stability of nonlinear
feedback systems are described, and only those systems
which are well-posed shall be considered. Consider the
problem of stabilizing a nonlinear continuous time process
P by a controller K, where the system is with real
input spaces of continuous functions with continuous first
derivative. For convenience, the feedback control system is
denoted as {P, K}.

Fig. 1. The feedback system {P, K}
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The system {P,K} which is shown in Fig. 1 is well-
posed if the closed-loop system input-output operator from
[u1 u2]

T to [e1 e2]
T , namely

[

I −K
−P I

]

−1

(2)

exists. Then the system {P, K} is said to be internally
stable if and only if for all bounded-inputs u1, u2 the
outputs y1, y2 and e1, e2 are bounded. This is equivalent
to

[

I −K
−P I

]

−1

(3)

being BIBO stable.

The given process operator P : U → Y is said to have a
right factorization (N, D) if and only if for any unbounded
input w ∈ W , N(w) or D(w) is unbounded, where N and
D are stable operators from the quasi-state space W to
the input space U and output spaces Y .

P = ND−1,
N : W → Y
D : W → U

(4)

Let N and D be a right factorization of P . The factoriza-
tion is said to have a right coprime factorization, if there
exist two stable operators S : Y → U and R : U → U ,
where R is invertible, satisfying the Bezout identity

SN + RD = M, for some M ∈ U(W,U) (5)

where U(W,U) is the set of unimodular operator.

The Bezout identity is often used in the following equation
for simplicity:

SN + RD = I, I: identity operator (6)

The following lemmas of a right coprime factorization are
employed (Paice et al. [1992]), rcf denotes right coprime
factorization.

Lemma 1. Given {P, K}, and P = ND−1 and K = SR−1,
the rcf ’s of the process and controller, respectively, then
{P, K} is well-posed if and only if

[

D −S
−N R

]

−1

(7)

exists and is internally stable if and only if

[

D −S
−N R

]

−1

(8)

is BIBO stable.

Proof. The proofs are given in Appendix A.

Hence the stability and well-posedness of the system de-

pend on the existence and stability of operator

[

D −S
−N R

]

−1

.

Lemma 2. Suppose P = ND−1 and K = SR−1, such that
the operators D, N , S, R are BIBO stable. Then these are
rcfs for P and K if they satisfy (8).

Fig. 2. The water level process system

Proof. The proofs are given in Appendix B.

Lemma 3. Suppose that Lemma 1 and Lemma 2 are
satisfied. Then the system is overall stable if and only if
the operator M is a unimodular operator, namely, M ∈
U(W,U).

Proof. Based on Lemma 1 and Lemma 2, the sufficiency
and necessity can be proofed. Here the process of proofs is
omitted.

3. MODELING OF THE PROCESS SYSTEM FOR
WATER LEVEL CONTROL

In this section, the process control system is introduced.
Top part of the system has two tanks and bottom part of
this system has a tank. The outside tank of top part is
called TANK1, and the inside one is called TANK2. The
bottom part tank is called TANK3 which stores water from
TANK1.

The diagram of the process control system is shown in Fig.
2. TANK1 has a supersonic wave sensor and this sensor
can measure water level. An inflow mouth on TANK1, and
volume of water can be measured. Water is carried from
TANK3 to TANK1. We can control the volume of water by
using the valve. In addition, water is outflow from bottom
of TANK1 to TANK3 through a drain pipe.

Parameters of the system in Fig. 2 are given as follows.

Parameters
D1: Diameter of Tank1 [m]
D2: Diameter of Tank2 [m]

d: Diameter of outlet [m]
hs: Level of Tank2 from Tank1 [m]
g: Gravity acceleration [m/s2]

Pa: Pressure in tank [hPa]
ρ: Density of water [kg/m3]
h: Water level in Tank1 [m]
q0: Inflow [l/min]
q: Outflow [l/min]
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Fig. 3. Model of the water level process

In this paper, we consider that water level changes from
30[cm] to 72[cm] because a sensor can work by this range.
In this range, the tank could not occur super heating or
spillover. Then, sectional square A of Tank1 and square a
of drain pipe is given as follows.

A =
D1

2π

4
−

D2
2π

4
(9)

a =
d2π

4
(10)

In the following, we will derive a mathematical model of
the water level process using the parameters from Fig.
3. Considering mass balance of the tank, the following
equation is obtained.

Aḣ(t) = q0 − aV (11)

Based on Bernoulli theorem, the relationship between
water level and outflow is obtained. This theorem is shown
in the following equation.

v2

2g
+ z +

p

ρg
= const (12)

If we consider that velocity of varying water level is q0

A
and

velocity of outflow is V , the following equation is obtained.

q0
2

2gA2
+

Pa

ρg
+ h =

V 2

2g
+

Pa + ∆Pa

ρg
(13)

We assume that ∆Pa = 0, model of water level process is
presented by the following equation.

ḣ =
q0

A
−

a

A

√

q0
2

A2
+ 2gh (14)

Considering that a is much less than A in our water level
process equipment, we have that

a

A
≃ 0 (15)

Therefore, in this paper model of water level process is
approximately derived as follows.

ḣ =
q0

A
−

a

A

√

2gh (16)

where, the considered process is nonlinear.

The objective is to design an operator based nonlinear
controller which makes process output h track the desired
reference, where the control input is q0.

4. NONLINEAR CONTROL SYSTEM DESIGN FOR
THE PROCESS

Nonlinear tracking control using operator theoretic ap-
proach (Deng et al. [2004]) is used to design control system
for the water level process system. The design produces are
shown as follows.

Fig. 4. Tracking control system

Fig. 5. Equivalent tracking control system of Fig. 4

Fig. 4 is the water level tracking control system of the
process. If we consider a plant P , P = ND−1 by right
coprime factorization. Then N and D are obtained. In
addition, N and D are satisfying the following Bezout
identity.

SN + RD = I (17)

In the real design, we need to design S and R such
that Bezout identity (17) is satisfied. C is called tracking
operator (Deng et al. [2004]).

The detailed design produce for the water level process
system (16) is given as follows. According to the design
method, we consider that q0 is plant input u, h is plant
output y and a function about u to y is plant P (u(t)).
That is, a function P−1(y(t)) : y → u can be described as
follows.

P−1(y, t) = u(t) = Aẏ(t) + a
√

2gy(t) (18)

From (18), N(w(t)) and D(w(t)) are selected as

N(w(t)) = y(t) =
w(t)2

2ga2
(19)

D(w(t)) = u(t) =
A

2ga2

d

dt
{w(t)2} + w(t) (20)

Design of controllers S and R is presented as follows.
According to N and D, S and R must be designed to
satisfy Bezout identity (17). Based on operator based right
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coprime factorization approach, two controllers S and R
are given as

R = I(u(t)) (21)

S =−Aẏ(t) (22)

The water level process system should be stabilized by
these operator based controllers. For making this system
track the desired output, a stable operator based tracking
controller (Deng et al. [2004]) was designed to satisfy
NM(r(t)) = I(r(t)). In practical sytem, the disturbance
∆(t) usually exists and affects the tracking performance.
According to the framework of the system which is shown
in Fig. 4, signal w between D−1 and N can be obtained
(Deng and Inoue [2006]). That is, the output of operator
R(∆(t)) can be obtained (see Fig. 5), where u is known.
Using this signal, the tracking controller with function
of eliminating the disturbance is designed to satisfy the
following condition.

N(SN + RD)−1(C(r(t)) + R(∆(t))) = r(t) (23)

where SN + RD = I, and the equivalent framework is
shown in Fig. 5.

Remark 1: In the design of the controller S in (22), we
use a derivative feedback. In general, it is inconvenient
in control engineering. However, in the real control, a
supersonic wave sensor for measuring the water level was
used (Deng et al. [2008]), a desired control performance
can be obtained.

5. SIMULATION RESULT

In this section, water level control simulation is conducted
for the process system. The initialized water level is about
33cm, the reference input of r is 36cm and the total
simulation time is 600 seconds. The other used parameters
are shown as follows.

A = 69.4 × 10−3[m2] a = 0.113 × 10−3[m2]
D1 = 0.3185[m] d = 0.012[m]
D2 = 0.1143[m] g = 9.8[m/s2]
P0 = 1013[hPa] Pa = 1013[hPa]
hs = 0.2[m]

We assume that water inflow is limited in [0, 4.5][l/m]
and control input is limited in [0, 20][mA]. A sine wave
1.042 × 10−5 sin π

2
t regarded as disturbance is added into

the system. Using the proposed method, the operator
based controllers are designed as follows.

R = I(u(t)) (24)

S =−69.4 × 10−3ẏ(t) (25)

C = 0.113 × 10−3
√

2gr(t) − ∆̄ (26)

where ∆̄ can be obtained depending on the observation of
the signal w.

Level control simulation result is shown in Fig. 6.

Control input and water inflow are shown in Figs. 7 and
8. In them, x coordinates denote simulation time [sec], y
coordinates denote control input signal [mA] and water
inflow [l/min]. From Fig. 6, the desired tracking result has
been obtained.
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Fig. 6. Response of water level control
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Fig. 7. Control input
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Fig. 8. Water inflow

6. CONCLUSION

A water level process system design based on operator
theory is considered. The proposed method ensures the
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robust stability of the system and realizes the tracking
performance when the disturbance appears in the process
input. The effectiveness of the proposed method is con-
firmed through simulation.
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Appendix A

The proof of Lemma 1.

First we note that

[

I −K
−P I

]

−1

=

[

I −SR−1

−ND−1 I

]

−1

=

{[

D −S
−N R

] [

D−1 0
0 R−1

]}

−1

(A.1)

=

[

D 0
0 R

] [

D −S
−N R

]

−1

It is straightforward to see (7) holds if and only if {P,K}
is well-posed.

(Sufficiency) Suppose that (8) holds, then for a, b bounded
we define c, d as follows:

(

c
d

)

=

[

D −S
−N R

]

−1 (

a
b

)

(A.2)

where c, d are bounded. Hence, by (A.1),

[

I K
−P I

]

−1 (

a
b

)

=

[

D 0
0 R

]

−1 (

c
d

)

(A.3)

Under rcf , D and R are BIBO stable. Hence D(c) and
R(d) are BIBO. Thus, the system inverse operator exists
and it is BIBO.

(Necessity) Suppose that {P, K} is well-posed and stable,
P = ND−1 and K = SR−1 are stable rcf . Let

(

e
f

)

=

[

I −K
−P I

]

−1 (

c
d

)

(A.4)

then for all a, b bounded, we have e, f bounded. Define c,
d as in (A.2), note that as a, b and e, f are bounded, the
following equations hold

(

a
b

)

=

[

D(c) − S(d)
−N(c) + R(d)

]

−1

(A.5)

(

e
f

)

=

(

D(c)
R(d)

)

(A.6)

As e is bounded, D(c) is bounded, and since a and D(c)
are bounded, S(d) is bounded. Similarly, as b and f are
bounded, R(d) and N(c) are bounded. By coprimeness
of ND−1, since N(c) and D(c) are both bounded, c is
bounded. Similarly, by coprimeness of SR−1, d is bounded.
This completes the proof.

Appendix B

The proof of Lemma 2.

Since the matrix inverse is stable we require that un-
bounded inputs yield unbounded inputs. Consider x an
unbounded signal, and consider the action of the system
as follows.

[

D −S
−N R

](

x
0

)

=

[

D(x) − S(0)
−N(x) + R(0)

]

(B.1)

As x is unbounded, the output is also unbounded. Thus, we
must have D(x) or N(x) unbounded for giving coprimeness

of D, N . Considering the action of

[

D −S
−N R

] (

0
y

)

the

y unbounded gives coprimeness of S, R.
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