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Abstract: This paper presents a dynamic output feedback controller design for fuzzy dynamic systems 
based on the concept of dynamic parallel distributed compensation (DPDC). Three types of stabilizing 
controller design methods are proposed based on state feedback design methods. The controller design 
involves solving a set of linear matrix inequalities (LMIs), and the control laws are numerically tractable 
via LMI techniques. Moreover, performance of the fuzzy controller in terms of decay rate and constraint 
on the control input is studied and LMI conditions for these performance criteria are obtained. An example 
is given to illustrate validity of the proposed methods, and to compare their performance. 

1. INTRODUCTION 

Nonlinear control systems based on the Takagi-Sugeno (T-S) 
fuzzy models (Takagi & Sugeno, 1985) have received a great 
deal of attention over the last decade (Tanaka et. al., 2007). 
To build a T-S fuzzy model, a number of linear time-
invariant models, which approximate to the nonlinear plant in 
some regions of the state-space, are obtained, and then they 
are combined using nonlinear fuzzy membership functions 
(Takagi & Sugeno, 1985). 

In most fuzzy control designs, it is assumed that the states of 
the systems are available, which is not true in many practical 
cases. On the other hand, output feedback controller approach 
in T-S fuzzy systems is considered in some papers, such as 
Han et. al. (2000) and Nguang & Shi (2003). Fig. 1 shows 
schematic of the fuzzy control system (T-S fuzzy model and 
dynamic PDC controller). 

In this paper we will design stabilizing dynamic output 
feedback controllers for T-S fuzzy model, using stability 
conditions in Tanaka et. al. (1998) and Kim & Lee (2000). 
These conditions will be converted to LMIs using proposed 
method in Scherer et. al. (1997). Then we will apply these 
conditions to a mass-spring-damper system to compare their 
performance. 

The paper is organized as follows. In Section-II, T-S fuzzy 
model and dynamic parallel distributed compensation 
(DPDC) are introduced. LMI-Based Design for the fuzzy 
control system is discussed in Section III. Simulation results 
are presented in Section IV. Finally, some concluding 
remarks are given in Section V. 

2. T-S FUZZY MODEL AND DYNAMIC PDC 

2.1  T-S Fuzzy Model  

The T-S fuzzy dynamic model of a continuous-time nonlinear 
system is described by some fuzzy IF-THEN rules each of 
which represent a local linear input-output relation of the 

system. The overall fuzzy model is achieved by fuzzy 
aggregation of the linear models (Tanaka et. al., 1998). The  
i-th rule of the T-S fuzzy model is of the following form: 
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where Mij denotes the membership function associated with 
the i-th model rule and j-th premise variable component, r is 
the number of rules. ntx ℜ∈  )( is the state vector, mtu ℜ∈  )(  is 

the control input vector, qty ℜ∈  )(  is the output 

vector, nn
iA ×ℜ∈  , mn

iB ×ℜ∈  , nq
iC ×ℜ∈   are local system 

matrices and z1(t) ~ zp(t) are known premise variables that 
may be functions of the state variables, external disturbances, 
and/or time. Suppose that a pair of ))(),(( tutx is given. The 
final output of the fuzzy system is inferred as follows: 
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2.2  Dynamic Parallel Distributed Compensation 

PDC is a T-S fuzzy controller designed based on a T-S fuzzy 
model. In PDC, there is a controller rule for each rule of the 
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T-S fuzzy model (Tanaka & Wang, 2001). The Dynamic 
PDC (DPDC) is a PDC whose THEN parts are dynamical 
systems. The DPDC structure consists of a double index set 
of fuzzy rules (Li et. al., 1999): 

Dynamic Part, Rule ij: 
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Output Part, Rule ij: 
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where ))(()( tzhzh ii = .  

2.3  Resulting Closed-loop System 

Now we are ready to obtain closed-loop system. By defining: 
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the resulting closed-loop dynamic equations are described by 
the equation: 
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3. LMI_BASED DESIGN FOR THE CLOSED LOOP 
SYSTEM 

The design of the stabilizing dynamic output feedback 
controller is to determine Ac

ij, Bc
i, Cc

j, and Dc in the 
consequent parts of the controller rules. In this section, we 
will derive the LMIs for stability, decay rate and constraint 
on the control input. 

3.1  Stabilizing Controller Design 

We can easily derive stability conditions for (8) using 
stability conditions in Tanaka et. al. (1998) and Kim & Lee 

(2000). Then by applying the proposed method in Scherer et. 
al. (1997), we derive stability conditions in the form of LMIs. 

Theorem 1: The fuzzy control system of (2) and (3) is 
quadratically stabilizable via the DPDC controller (6) if there 
exist symmetric matrices X,Y and matrices D̂,Ĉ,B̂,Â j
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Proof: We know that (8) is stable if there exists a symmetric 
matrix P such that (Tanaka et. al., 1998): 
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These conditions are not LMIs in P. In order to obtain these 
conditions in LMI form, we partition P and P -1 as: 
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where X and Y are nn ×  and symmetric matrices (Scherer et. 
al., 1997). Now we define the matrices 1Π  and 2Π  as: 
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and 21 Π=ΠP . Note that here we have: 

XYIMN T −= . (19) 
Matrices M and N should be chosen such that (19) holds. Pre- 
and post-multiplying (14), (15) and (16) by T

1Π and 1Π , we 
derive (10), (11) and (12), respectively, where:  
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This completes the proof.□ 
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Note that we can derive the controller matrices from:  
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In Tanaka et. al. (1998), the authors derived relaxed stability 
conditions for a fuzzy control system with a state feedback 
PDC. Now we use these conditions for deriving new stability 
conditions for system (8). 

Theorem 2: The fuzzy control system of (2) and (3) is 
quadratically stabilizable via the DPDC controller (6) if there 
exist symmetric matrices X, Y, F and matrices D̂,Ĉ,B̂,Â j

c
i
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such that (22), (23) and (24) are feasible: 
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where s is the maximum of the number of fuzzy subsystems 
that are fired at an instant and 

ijAΨ is defined in (13). 

Proof: Using the same method given in the proof of Theorem 
1 and relaxed stability conditions in Tanaka et. al. (1998), we 
can derive these conditions. □ 

More relaxed conditions than those described in the 
Theorems 1 and 2 were proposed in Kim & Lee (2000); thus, 
we use these conditions to derive more relaxed stability 
conditions for system (8) in Theorem 3. 

Theorem 3: The fuzzy system given by (2) and (3) is 
quadratically stabilizable via DPDC controller (6) if there 
exist symmetric matrices X, Y, Hijs )1( rj,i ≤≤  and matrices 

D̂,Ĉ,B̂,Â j
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where )/2)((
jiij AAij Ψ+Ψ=Λ  and 

ijAΨ  is defined in (13). 

Proof: Using the same method in the proof of Theorem 1 and 
stability conditions in Kim & Lee (2000), we can derive these 
LMIs. □ 

3.2  Decay Rate 

The speed of close-loop system response is related to decay 
rate, which is the largest Lyapunov exponent (Tanaka et. al., 
1998). Considering 0>α  as the decay rate, we have: 

))((2))(( txVtxV α−≤& , (29) 

where ))(( txV is the Lyapunov function. 

Lemma 1: The fuzzy control system of (2) and (3) is 
quadratically stabilizable via the DPDC controller (6) with 
the decay rate of α, if there exist symmetric matrices X, Y, 
Hijs and matrices D̂,Ĉ,B̂,Â j
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Proof: Applying (29) to (26) and (27), we have (30) and (31). 
Note that (25) and (28) do not change by decay rate 
condition. □ 

Note that the controller matrices can be obtained by (21).  

3.3  Constraint on the Control Input 

Lemma 2: The fuzzy control system of (2) and (3) with the 
DPDC controller (6) satisfies the condition ,etu tαζ −≤  )(  
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c
i
c

ij
c  

N,D̂  such that LMI conditions (25), (32), (33), (34) and (35) 
are feasible: 

 02)1( ,
YI
IX

FsT
AA iiii

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+Ψ+Ψ α  (32) 

02
22

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ψ+Ψ
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ψ+Ψ

YI
IX

Fjiijjiij AA
T

AA
α , (33) 

0
(0)(0)(0)

(0))0(
(0)

>
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
+

 INxYxx
NxYxYI

xIX

TT
c

TT
c

ζ
, (34) 

r,,i,
ICD̂Ĉ
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where
ijAΨ  is defined in (13) and the initial condition 
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cici CCDK = .Pre- and post-multiplying these 

conditions by ),( 1 Idiag TΠ  and ),( 1 Idiag Π , we will derive 
(34) and (35), respectively. This completes the proof.□ 

4.  NUMERICAL EXAMPLE 

Nonlinear mass-spring-damper system: 

Consider a nonlinear mass-spring-damper system with a 
nonlinear spring (Huang & Nguang, 2007): 
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where )(2 tx  is the spring’s displacement. We can represent 
(37) exactly by a 2-rules T-S fuzzy model under the 
assumption on bounds of the state variable [ ]522)(2 .,tx −∈  
with the following subsystem matrices: 
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The controller’s order must be at least the same as the 
system’s order. Thus, here, the controller’s order is nc=2. In 
order to solve LMIs, we use Yalmip (Löfberg, 2004) as the 
parser and LMILAB (Gahinet et. al., 1994) as the solver. 

Using the results of Theorems 1, 2 and 3, we can derive the 
stabilizing controller matrices. For instance, using Theorem 2 
with s=2 yields the following dynamic output feedback 
controller matrices:  
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Theorem 1 yields the following dynamic output feedback 
controller matrices: 
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and  Theorem 3 these controller matrices: 
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Fig. 2 depicts the output y= x2(t) for the different results 
obtained by Theorems 1, 2 and 3. Here we assume that the 
initial condition is x(0)=[0.1,-0.5].  

Using Lemma 1 with α=1, we will obtain a dynamic 
controller which yields system outputs as shown in Fig. 3. 
We see that system response is very fast when we insert 
decay rate condition; however, control signal increases in all 
three cases. More specifically, we have maxt ||u(t)||= 1.3051 
in Theorem 3, but maxt ||u(t)||= 6.5709 in Lemma 1. Thus, 
we should use constraint on the control input condition to 
decrease maxt ||u(t)||. Using constraints on the control input 
(for example Lemma 2) with α=1 and ζ =10, we will obtain a 
dynamic controller which yields system outputs as shown in 
Fig. 4. In this case, we assume that initial condition for the 
controller is: xc(0)=[0,0].  

Fig. 5 shows u(t) for the stabilizing controller design. Fig 6 
depicts u(t) when we use decay rate condition. Fig. 7 shows 
u(t) when we use constraint on the input and decay rate 
condition. We see that all control signals satisfy the 
condition tetu αζ −≤  )(  in Fig. 7. Note that here we have 
maxt ||u(t)||= 2.9654.   

5. CONCLUSIONS 

In this paper, we presented three methods for designing 
dynamic output feedback controller for T-S fuzzy systems 
with LMI formulation. The constraints for stabilizing 
dynamic output feedback based on DPDC approach were 
obtained in each case in the form of LMIs. Then, by 
incorporating some control performances, such as decay rate 
and constraint on the control input in the design, their 
corresponding conditions were obtained. Numerical example 
was given to illustrate validity of the proposed methods, and 
to compare their performance. 
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Fig. 2: Closed loop system output y=x2(t) for the design given 
in Theorem 1 (solid lines), Theorem 2 (dotted lines) and 
Theorem 3 (dash-dot lines).  
 
 

 
Fig. 3: Closed loop system output y=x2(t) with the decay rate 
condition (α=1) for the design given in Theorem 1 (solid 
lines), Theorem 2 (dotted lines) and Lemma1 (dash-dot 
lines). 
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Fig. 1. Schematic of the fuzzy control system. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13131



 
 

     

 

 
Fig. 4: Closed loop system output y=x2(t) for decay rate 
condition and constraint on input (α=1, ζ=10) for the design 
given in Theorem 1 (solid lines), Theorem 3 (dash-dot lines) 
and Lemma 2 (dotted lines). 
 

 
Fig. 5: Control signal for the design given in Theorem 1 
(solid lines), (dotted lines) and Theorem 3 (dash-dot lines).  
 
 
 
 
 
 
 
 

 
Fig. 6: Control signal with the decay rate condition (α=1) for 
the design given in Theorem 1 (solid lines), Theorem 2 
(dotted lines) and Lemma1 (dash-dot lines). 
 
 

 
Fig. 7: Control signal for decay rate condition and constraint 
on input (α=1, ζ=10) for Theorem 1 (solid lines), Theorem 3 
(dash-dot lines) and Lemma 2 (dotted lines). The dashed lines 
stand for |ζe-αt|. 
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