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Abstract: This paper presents a dynamic output feedback controller design for fuzzy dynamic systems
based on the concept of dynamic parallel distributed compensation (DPDC). Three types of stabilizing
controller design methods are proposed based on state feedback design methods. The controller design
involves solving a set of linear matrix inequalities (LMIs), and the control laws are numerically tractable
via LMI techniques. Moreover, performance of the fuzzy controller in terms of decay rate and constraint
on the control input is studied and LMI conditions for these performance criteria are obtained. An example
is given to illustrate validity of the proposed methods, and to compare their performance.

1. INTRODUCTION

Nonlinear control systems based on the Takagi-Sugeno (T-S)
fuzzy models (Takagi & Sugeno, 1985) have received a great
deal of attention over the last decade (Tanaka et. al., 2007).
To build a T-S fuzzy model, a number of linear time-
invariant models, which approximate to the nonlinear plant in
some regions of the state-space, are obtained, and then they
are combined using nonlinear fuzzy membership functions
(Takagi & Sugeno, 1985).

In most fuzzy control designs, it is assumed that the states of
the systems are available, which is not true in many practical
cases. On the other hand, output feedback controller approach
in T-S fuzzy systems is considered in some papers, such as
Han et. al. (2000) and Nguang & Shi (2003). Fig. 1 shows
schematic of the fuzzy control system (T-S fuzzy model and
dynamic PDC controller).

In this paper we will design stabilizing dynamic output
feedback controllers for T-S fuzzy model, using stability
conditions in Tanaka ez. al. (1998) and Kim & Lee (2000).
These conditions will be converted to LMIs using proposed
method in Scherer et. al. (1997). Then we will apply these
conditions to a mass-spring-damper system to compare their
performance.

The paper is organized as follows. In Section-1I, T-S fuzzy
model and dynamic parallel distributed compensation
(DPDC) are introduced. LMI-Based Design for the fuzzy
control system is discussed in Section III. Simulation results
are presented in Section IV. Finally, some concluding
remarks are given in Section V.

2. T-SFUZZY MODEL AND DYNAMIC PDC

2.1 T-S Fuzzy Model

The T-S fuzzy dynamic model of a continuous-time nonlinear
system is described by some fuzzy IF-THEN rules each of
which represent a local linear input-output relation of the
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system. The overall fuzzy model is achieved by fuzzy
aggregation of the linear models (Tanaka ez. al., 1998). The
i-th rule of the T-S fuzzy model is of the following form:

Model Rule i:

IFz(f)isM; and...andz ,(t)is M,

x(t) = A;x(t)+ Bu(t) . 1)
i=12,...,r.

(1) = Cix(1)

where M;; denotes the membership function associated with
the i-th model rule and j-th premise variable component, » is

THEN {

the number of rules. x(¢) € R" is the state vector, u(t) e R"™ is
the control y(@)eR! is the

vector, 4; e R, B; e R"™ ,C; e R"" are

matrices and z,(f) ~ z,(¢) are known premise variables that
may be functions of the state variables, external disturbances,
and/or time. Suppose that a pair of (x(¢),u(?)) is given. The

input vector, output

local system

final output of the fuzzy system is inferred as follows:

(1) = D b () {A;x(0) + Bu(1)}, 2)
i=1

y(0) =D i (2() Cix(0), (3)

i=1

where for all # we have:

2(t) =[z,(t) 2,(1)...z, (1))
£ 4)

w,(ze) = [ [ Mz, 0,

J=1

hi (2(2)) = w; (2(2)) zwi (2(1) (&)

i=1
2.2 Dynamic Parallel Distributed Compensation

PDC is a T-S fuzzy controller designed based on a T-S fuzzy
model. In PDC, there is a controller rule for each rule of the
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T-S fuzzy model (Tanaka & Wang, 2001). The Dynamic
PDC (DPDC) is a PDC whose THEN parts are dynamical
systems. The DPDC structure consists of a double index set
of fuzzy rules (Li et. al., 1999):

Dynamic Part, Rule ij:
IFz (1)isM; andz, () is M j; ...
andz ,(1)isM, and zp()is M ;),
THEN x,(¢) = A x,(t) + B! y(2).
Output Part, Rule ij:
IFz(1)isM; andz, () is M ;; ...
andz,(t)isM,, and zp()isM ,
THEN u(t) = C/x.(t) + D, y(t),
which can be expressed as:

k(0= DD h(2)h(2) AT x (0)

i=1 =l

+ " hy(2) Bly(r) (©6)

i=1
u® =Y B2 Cix (0 + D,y(0),
i=1

where h,(z) = h; (z(¢)) .

2.3 Resulting Closed-loop System

Now we are ready to obtain closed-loop system. By defining:

a0 =P <o) )

the resulting closed-loop dynamic equations are described by
the equation:

i (0= DD (2()h; (2(0) Al x4 (1) (8)

i=l j=I

where

i A4+ BiDch BICC/ ‘ )
“ BiC, AV
3. LMI_BASED DESIGN FOR THE CLOSED LOOP
SYSTEM

The design of the stabilizing dynamic output feedback
controller is to determine 4. B, C/ and D, in the
consequent parts of the controller rules. In this section, we
will derive the LMIs for stability, decay rate and constraint
on the control input.

3.1 Stabilizing Controller Design

We can easily derive stability conditions for (8) using
stability conditions in Tanaka et. al. (1998) and Kim & Lee

(2000). Then by applying the proposed method in Scherer et.
al. (1997), we derive stability conditions in the form of LMIs.

Theorem 1: The fuzzy control system of (2) and (3) is
quadratically stabilizable via the DPDC controller (6) if there
exist symmetric matrices X,Y and matrices Aéj ééCCf ﬁ
such that the following LMI conditions are feasible:

X! >0 (10)
IY ’
¥, +¥) <0, i=12,...r (11)
v, +v, Y (¥, +¥,
ij i + ij i g()’
2 2 (12)
(1<i<j<rh(z(O))h;(z(1) # 0)
where
A X+B,C/ A+B.DC,
v, = NOERE (13)
AV Y4;+ B.C;

Proof: We know that (8) is stable if there exists a symmetric
matrix P such that (Tanaka et. al., 1998):

P>0, (14)
(AT P+ P4 <0, i=12,...r (15)
44 40" i 4 4Tt
cl cl P+ P cl cl SO,
2 2 (16)

(1<i<j<rh(z@)h;(z(1) #0),

These conditions are not LMIs in P. In order to obtain these
conditions in LMI form, we partition P and P ' as:

Y N 1 X M
P= T , P = T >
N * M *

where X and Y are nxn and symmetric matrices (Scherer et.
al., 1997). Now we define the matrices I1; and I, as:

(17

oo X1 017 a8)
T o) > lo NT )

and PII; =II, . Note that here we have:

MN" =1-XY . (19)

Matrices M and N should be chosen such that (19) holds. Pre-

and post-multiplying (14), (15) and (16) by HlT and IT,, we

derive (10), (11) and (12), respectively, where:

AT =NATM" + NBIC,X+YBCIM"
+7(4,+B,D.C,)x

B! = NB!+YB,D,

Ci=c'M"+D,C;X

D=D,.

(20)

This completes the proof.o
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Note that we can derive the controller matrices from:

D=D,

Cl = (éé—DCCiX)IW_T

B =N (Bf,—YBiDC)

AV = N7 (215? ~NBIC;X-YB,C/ M"

~¥(4,+B,D.C,)xMT.

21

In Tanaka et. al. (1998), the authors derived relaxed stability
conditions for a fuzzy control system with a state feedback
PDC. Now we use these conditions for deriving new stability
conditions for system (8).

Theorem 2: The fuzzy control system of (2) and (3) is
quadratically stabilizable via the DPDC controller (6) if there
exist symmetric matrices X, Y, F' and matrices ;lcl/ lg’éé J D
such that (22), (23) and (24) are feasible:

X I
>0, Fz=0, (22)
1Y
v, +\p§”_ +(s-DF<0, i=12,...r (23)
v, +v, \ (¥, +V,
U Jt + y Jt —FSO,
2 2 (24)

(1<i< j<rh(z(t)h;(z(1) #0),

where s is the maximum of the number of fuzzy subsystems
that are fired at an instant and ¥ 4 is defined in (13).

Proof: Using the same method given in the proof of Theorem
1 and relaxed stability conditions in Tanaka ez. al. (1998), we
can derive these conditions. O

More relaxed conditions than those described in the
Theorems 1 and 2 were proposed in Kim & Lee (2000); thus,
we use these conditions to derive more relaxed stability
conditions for system (8) in Theorem 3.

Theorem 3: The fuzzy system given by (2) and (3) is
quadratically stabilizable via DPDC controller (6) if there
exist symmetric matrices X, Y, Hys (1<, j <r) and matrices
Af’ Z-}(’CA'(’ 13 such that the following LMI conditions are
feasible:

(X 1}0’ o5)

Iy

AL+ A, +H,; <0, i=12,...r, (26)

A+ Ay +Hy <0, (1<i<j<r), (27)
Hy Hp - Hy

= H.12 H.zz Hy, >0, (28)
Hy Hy - H,

where A; = ((\PA,-/ +‘I’Aﬁ )/2) and ‘I’A[/_ is defined in (13).

Proof: Using the same method in the proof of Theorem 1 and
stability conditions in Kim & Lee (2000), we can derive these
LMIs. o

3.2 Decay Rate

The speed of close-loop system response is related to decay
rate, which is the largest Lyapunov exponent (Tanaka et. al.,
1998). Considering « > 0 as the decay rate, we have:

V(x(t)) < 2aV (x(1)) , (29)

where V' (x(t)) is the Lyapunov function.

Lemma 1: The fuzzy control system of (2) and (3) is
quadratically stabilizable via the DPDC controller (6) with
the decay rate of a, if there exist symmetric matrices X, ¥,

Hjs and matrices IZIL’J ézé J ,D such that LMI conditions
(25), (28), (30) and (31) are feasible:

T X I o
AN +A,; +H,;+2a 7y <0, i=12,...,r, 30)

T X 1 o
ANy +Ay;+H+2a Iy <0,(1<i<j<r), (€28)

where A =((\PA,/ +‘PAﬂ )/2) and \PA,; is defined in (13).

Proof: Applying (29) to (26) and (27), we have (30) and (31).
Note that (25) and (28) do not change by decay rate
condition. O

Note that the controller matrices can be obtained by (21).

3.3 Constraint on the Control Input

Lemma 2: The fuzzy control system of (2) and (3) with the
DPDC controller (6) satisfies the condition ||u(t)|| <fe™™,
Vt >0 , if there exist symmetric matrices X, Y, a symmetric
positive semi-definite matrix F and matrices ,213 f}éécf R

D,N such that LMI conditions (25), (32), (33), (34) and (35)
are feasible:

; X I
lI’AH+\I‘Aﬁ+(s—1)F+2oz Iy <0, 32)
T
Y, +¥, VY, +¥, X I
b A ) Ry <0, (33)
2 2 I Y
X I x(0)
I Y Yx(0)+ Nx,(0) | >0,  (34)
xT(0) xT ) Y+xTO)NT I
AT
x 1
Iy cIp’|>0 ,i=1..,r, (35)
Ci pc, (1
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whereY, is defined in (13) and the initial condition

isx,(0) =" 7).

Proof: Applying (29) to (23) and (24), we can derive (32)
and (33), respectively. Two other conditions for obtaining

p
constraint on the control input u(t):Zhi (2)K;x, () is

i=1

that (Tanaka & Wang, 2001):

( P Px,, (0)] p kT
T >0, >0,
x,0)P {1 K, (I

where K; =[D,C; C!].Pre- and post-multiplying these

(36)

conditions by diag(I1! 1) anddiag(I1,,I), we will derive
(34) and (35), respectively. This completes the proof.o

4. NUMERICAL EXAMPLE

Nonlinear mass-spring-damper system:

Consider a nonlinear mass-spring-damper system with a
nonlinear spring (Huang & Nguang, 2007):

%, () ==01125x,(£) - 0.02 x, (1) - 0.67 x3 (£) +u(2),
X, (1) = x, (1), y(0) = x5 (0),
where x,(¢) is the spring’s displacement. We can represent

(37

(37) exactly by a 2-rules T-S fuzzy model under the
assumption on bounds of the state variable x,(¢) € [— 2,2.5]

with the following subsystem matrices:

-0.1125 1.32 -0.1125 -1.695
1= Ay = ’
e Y

1
B, =B, :M,c, =C, =0 1]
and the following membership functions:

2 2
X (t)'z Xy (t)+25
By (o (1) = =222 b (x, (1) = 22—
1(x2(1) 15 2 (%, (1)) 45

The controller’s order must be at least the same as the
system’s order. Thus, here, the controller’s order is n=2. In
order to solve LMIs, we use Yalmip (Lofberg, 2004) as the
parser and LMILAB (Gahinet et. al., 1994) as the solver.

Using the results of Theorems 1, 2 and 3, we can derive the
stabilizing controller matrices. For instance, using Theorem 2
with s=2 yields the following dynamic output feedback
controller matrices:

D, =0,C! =[-0.034 —0.168]

~45.21 35.31
C?=[-0.025 -0.041] B! = B? = ,
44.98 7.74

Ly [05506 596207 , [-1.0140 2.5651
¢ {—1.1916 —2.8488} ¢ {—0.4674 —1.2830}
s [05508 595687 ,, [-1.0138 25599
¢ {—1.1906 —2.8500} ¢ {—0.4664 —1.2843}'

Theorem 1 yields the following dynamic output feedback
controller matrices:

D, =0,C! =[-0.015 -0.064]

- B ,_[-105.05] , [77.97
c?=[0.011 -0.012] B! = B2 = ,
104.73 13.86

0 [05870 532637 |, [-0.9737 2.1806
€ 1-1.2433 —2.6285] ¢ | -0.4683 -1.0676|
5, [05870 532557 ,, [-0.9737 2.1798
A2 = A2 = )
€ 1212431 -2.6287 ¢ | -0.4681 —1.0678

and Theorem 3 these controller matrices:

D, =0,C! =[-0.023 -0.0307]

~51.17 53.43
c? =[0.023 —0.156],33,{ },BZ:{ }

c

53.51 21.75
o [03200 1250777 , [-12499 7.2719
¢ {—0.9795 —4.7818}’ ¢ :{—0.4995 —3.2000}’
o [0.3300 1249967 ,, [-1.2498 7.2638
¢ :{—0.9789 —4.7839} ¢ {—0.4989 —3.2021}'

Fig. 2 depicts the output y= x,(f) for the different results
obtained by Theorems 1, 2 and 3. Here we assume that the
initial condition is x(0)=[0.1,-0.5].

Using Lemma 1 with a=1, we will obtain a dynamic
controller which yields system outputs as shown in Fig. 3.
We see that system response is very fast when we insert
decay rate condition; however, control signal increases in all
three cases. More specifically, we have max, ||u(?)||= 1.3051
in Theorem 3, but max, ||u(?)||= 6.5709 in Lemma 1. Thus,
we should use constraint on the control input condition to
decrease max; ||u(¢)||. Using constraints on the control input
(for example Lemma 2) with o=1 and { =10, we will obtain a
dynamic controller which yields system outputs as shown in
Fig. 4. In this case, we assume that initial condition for the
controller is: x.(0)=[0,0].

Fig. 5 shows u(?) for the stabilizing controller design. Fig 6
depicts u(f) when we use decay rate condition. Fig. 7 shows
u(f) when we use constraint on the input and decay rate
condition. We see that all control signals satisfy the

condition"u(t)" <¢e ™™ in Fig. 7. Note that here we have
max;, ||u(f)||=2.9654.

5. CONCLUSIONS

In this paper, we presented three methods for designing
dynamic output feedback controller for T-S fuzzy systems
with LMI formulation. The constraints for stabilizing
dynamic output feedback based on DPDC approach were
obtained in each case in the form of LMIs. Then, by
incorporating some control performances, such as decay rate
and constraint on the control input in the design, their
corresponding conditions were obtained. Numerical example
was given to illustrate validity of the proposed methods, and
to compare their performance.
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Reference Output Fuzzy
feedback dynamic —
Controller model

Fig. 1. Schematic of the fuzzy control system.

=x,t)

0 5 10 15 20

t (sec)
Fig. 2: Closed loop system output y=x,(#) for the design given
in Theorem 1 (solid lines), Theorem 2 (dotted lines) and
Theorem 3 (dash-dot lines).
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i,

&
[
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0% 2 1 6 8 10
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Fig. 3: Closed loop system output y=x,(¢) with the decay rate
condition (0=1) for the design given in Theorem 1 (solid
lines), Theorem 2 (dotted lines) and Lemmal (dash-dot

lines).
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t(sec)

Fig. 4: Closed loop system output y=x,(f) for decay rate

condition and constraint on input (a=1, {=10) for the design

given in Theorem 1 (solid lines), Theorem 3 (dash-dot lines)

and Lemma 2 (dotted lines).

uf)

15 5 10 15 20
t (sec)
Fig. 5: Control signal for the design given in Theorem 1

(solid lines), (dotted lines) and Theorem 3 (dash-dot lines).

0 2 2 5 8 10
t (sec)

Fig. 6: Control signal with the decay rate condition (a=1) for

the design given in Theorem 1 (solid lines), Theorem 2

(dotted lines) and Lemmal (dash-dot lines).
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-10
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t(sec)

Fig. 7: Control signal for decay rate condition and constraint

on input (a=1, {=10) for Theorem 1 (solid lines), Theorem 3

(dash-dot lines) and Lemma 2 (dotted lines). The dashed lines

stand for |(e™.
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