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Abstract: To answer the outstanding question of the set of all stabilising PID controller
parameters for a linear delay free system, the interval of all stabilising proportional gains KP

must be known, which admit stabilisation of the closed loop in addition with certain KI and KD.
This paper presents a new algorithm for the numerical calculation of the stabilising KP -interval,
which entirely avoids gridding KP . The algorithm is based on a new approach in analysing the
motion of the stability boundaries in the (KD, KI)-plane, when KP varies. A software tool
implementing the algorithm in Matlab is available for download.

1. INTRODUCTION

The PID controller is without doubt the most common
controller in industrial practice, and PID control per-
tains to the oldest control concepts. However, a generic
algorithm to calculate the set of all stabilising controller
parameters for an arbitrary linear system, even if it is delay
free, is still missing. A key idea on the way to decoding
the stable controller parameter space was that the stable
region in the plane of (KD, KI) for fixed KP consists of
convex polygons, which was shown by an extension of the
Hermite-Biehler-Theorem in Ho et al. (1998), in a simpler
way by a D-Decomposition approach in Ackermann and
Kaesbauer (2001, 2003) or by the Nyquist criterion in
Söylemez et al. (2003). Consequently, the subproblem of
calculating the stable region in the (KD, KI)-plane for
given KP can be considered as solved.

However, the question of choosing KP in such a way that
there is at least one stable (KD, KI)-plane polygon can
still not be answered rigourously. Necessary conditions on
the KP -problem have been published in Söylemez et al.
(2003) and Bajcinca (2006) which return KP -intervals
possibly being too large. The last reference mentions that
one reason for being the intervals too large lies in the
existence of so called stability peaks in the inner of the KP -
intervals where the stable region in the (KD, KI)-plane
degenerates to a single point at a certain KP .

This paper presents a new algorithm to calculate the
stabilising KP -interval rigorously, so that a gridding of KP

can be entirely avoided. A main point is the detection of
stability peaks in the controller parameter space. It should
not be concealed that the new algorithm does not apply
for all arbitrary systems, however, testing the algorithm
on a huge variety of systems showed that the conditions
are not very restrictive.

⋆ This work was supported by the Deutsche Forschungsgemeinschaft
(German Research Foundation) under project AB 65/2-1. The grant
is thankfully acknowledged.

r KI + KP s + KD s2

s

A(s)

R(s)

y

–

Fig. 1. PID control loop.

1.1 Problem Formulation

Consider a single control loop with an ideal PID con-
troller and a linear delay free system (see Fig. 1), where
KI , KP , KD are the controller parameters and A(s), R(s)
are polynomials. The characteristic function of the loop is

P (s) = (KI + KP s + KDs2) A(s) + B(s) , (1)

with B(s) = s R(s) and

A(s) = a0+a1 s + . . . + am sm, am 6= 0 , (2)

B(s) = b1 s + . . . + bn sn, bn 6= 0 . (3)

The stated problem is to calculate the set of all KP leading
to a stable region in the (KD, KI)-plane.

1.2 D-Decomposition

In this paper, the D-Decomposition method is used to
calculate the Hurwitz stable region in the controller pa-
rameter space. The method relies on the fact that the
roots of the polynomial (1) move continuously when the
controller parameters are changed continuously. Thus, a
stable polynomial, whose roots all lie in the left half plane,
becomes unstable if and only if at least one root crosses
the imaginary axis. The corresponding parameter values
of the root crossings form the stability boundaries in the
parameter space, which can be classified into three cases:
the real root boundary (RRB), where a root crosses the
imaginary axes at the origin, the infinite root boundary
(IRB), where a root leaves the LHP at infinity and the
complex root boundary (CRB), where a pair of complex
conjugate roots crosses the imaginary axes. Additionally
the moving direction of the roots can be calculated to mark
the ‘more’ stable side of each boundary.
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The stability boundaries separate different regions in the
parameter space. To classify an entire region as stable it
suffices to prove stability for one inner point (e.g. by the
Hurwitz criterion).

1.3 The Stable Region in the (KD, KI , KP )-Space

The key idea to obtain the stable region in the con-
troller parameter space is to compose the three dimen-
sional region by cutting it into (KD, KI)-plane slices by
gridding KP . For a fixed K∗

P , all stability boundaries in
the (KD, KI)-plane are simple straight lines (without any
approximations). Therefore, the stable regions are simple
convex polygons. The advantage of knowing the set of all
stabilising KP a priori is that gridding can be reduced to
this set.

1.4 Stability Boundaries in the (KD, KI)-Plane

Real and Infinite Root Boundary The RRB is given by
the equation

P (0) = 0 ⇔ KI = 0 if a0 6= 0. (4)

An IRB exists, when the leading coefficient of P (s) de-
pends on the controller parameter. This is only the case if
n = m + 2. Then the IRB reads

KD bn + am = 0 ⇔ KD = − bn

am
. (5)

Complex Root Boundary A CRB in a (KD, KI)-plane
for a fixed K∗

P is governed by the following system of
two equations (for a proof, see Ackermann and Kaesbauer
(2003); Bajcinca (2006))

f(ω) − K∗

P = 0, ω ∈ R
+ , (6)

KI = KDω2 + g(ω) (7)

where f(ω) and g(ω) are the rational functions

f(ω) =
IARB − RAIB

ω (R2
A + I2

A)
, (8)

g(ω) = −RARB + IAIB

R2
A + I2

A

, (9)

and R and I denote the real and imaginary parts of A and
B, respectively, at s = jω.

The solutions of (6) are called singular frequencies ωη.
Note that depending on the number and the position of
the extrema of f(ω) a unique index η can be assigned to
a certain solution (see figure Fig. 7). Each ωη corresponds
to a straight CRB line, ruled by (7). That way, each CRB
can be indexed by the index of its corresponding singular
frequency as well.

Thus, all stability boundaries RRB, IRB and CRB are
straight lines in the (KD, KI)-plane and partition the
plane into convex polygons. As mentioned above, for each
boundary line the ‘more’ stable side can be determined
by calculating the moving direction of the root crossings.
For the reason of brevity, details are omitted here, but
Bajcinca (2006) can be used as reference. By classical
stability tests of test points in the inner of the polygons
the polygons can be rated stable or unstable.

Note that for certain K∗

P the polygons may degenerate
to line sections (for a merging pair of singular frequencies

at extrema of f(ω)) or even to single points (at three-
points, see following section), however, in this cases the
degenerated polygons can still be classified as limit stable
or unstable.

1.5 The Stabilising KP -Interval

The remaining question is, which K∗

P should be chosen
to get at least one stable polygon in the (KD, KI)-plane.
In other words, the interval of stabilising KP is to be
determined.

Necessary Condition A necessary condition is given
in Bajcinca (2006) as theorem 2. The theorem states a
minimal number of singular frequencies at a certain K∗

P .
Note that depending on the number of extrema of f(ω) and
the function values of f(ω) at the extrema, the number of
singular frequencies may be different for different K∗

P (see
Fig. 7).

Assume that A(s) has no zeros on the imaginary axis. The
necessary stability condition for a K∗

P is that the number 1

Z of singular frequencies ωg ∈ R
+ suffices

Z ≥
⌊

n′ − m + 2p − 1

2

⌋

, (10)

where n′ = max(n, m + 2) is the degree of polynomial (1),
p is the number of zeros of A(s) in the right half plane and
⌊·⌋ denotes the floor function. For the proof and extensions
to the case of A(s) having zeros on the imaginary axis see
Bajcinca (2006).

Stability peaks In two different cases, the theorem leads
to KP -intervals which actually do not belong to the set of
all stabilising KP : Either a KP -interval, which possesses
a number of singular frequencies reaching the required
minimal number, is completely unstable, or the stability
property changes in the middle of such a KP -interval. The
latter case occurs if there exist so called stability peaks in
the controller parameter space, where a stable (KD, KI)-
plane polygon reduces to a single point for a certain KP

(see Bajcinca (2006)).

The goal of this paper is to check if there exist sta-
bility peaks, and if so, to locate the stability peaks in
the (KD, KI , KP )-space. After dividing the KP -intervals
at the KP -values of all stability peaks, the question of
the stabilising KP -interval can be solved with sufficiency
by calculating the stable (KD, KI)-plane polygons at an
arbitrary KP in the interval.

Obviously, a stability peak exists, if and only if

• three root boundaries (RRB, IRB or CRBs) coincide
in one point (this point is called a three-point), and

• the three-point limits a stable region in the controller
parameter space.

2. KP -INTERVALS AND BOUNDARY
COMBINATIONS

The first step of the proposed algorithm is the definition
of intervals of KP in which some functions of the singular

1 Note that in this paper ω = 0 is not counted as singular frequency.
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frequencies behave monotonically such that interval ap-
proximations can be made.

Let Ωex be the set of all frequencies ω where the function
f(ω) (8), Kc

D(ω) (15) or h(ω) (41) possesses a local
extremum with ω ∈ R

+. The limits of the KP -intervals
are defined as

{f(ω) | ω ∈ Ωex} . (11)

The definition of the KP -intervals ensures that f(ωη),
Kc

D(ωη) and h(ωη) vary monotonically for each singular
frequency ωη, when KP is varied monotonically in a KP -
interval. The monotonicity properties will be needed in the
following sections.

The KP -interval defines a frequency interval

[ω−

η , ω+
η ], ω−

η < ω+
η , (12)

in which the singular frequency with index η resides (see
Fig. 7).

To search for three-points, all possible combinations of
three root boundaries need to be checked for each KP -
interval. Remember that individual indices are yet as-
signed to CRBs. To bring the RRB and the IRB into
the same framework, the following arbitrary indices are
assigned to these kind of root boundaries:

• η = −1 for the RRB,
• η = −2 for the IRB, if it exists.

The set of all combinations of three root boundaries in a
certain KP -interval is denoted as

Î := {Iν := {i, j, k}} , (13)

where i, j, k cycle through all combinations of three dif-
ferent indices of the KP -interval. Iν represents a certain
combination of three root boundary indices.

3. ROOT BOUNDARY MOTION

To find the three-points, the motion of the CRB lines in
the (KD, KI)-plane is analysed for varying KP and ω,
respectively. The motion w.r.t. ω described by (7) can be
split up into a translation and a rotation part by the help
of an instantaneous center of rotation (i.c.r.).

At the i.c.r. the movement is a pure rotation. As the
derivative of (7) w.r.t. ω

∂KI

∂ω
= 2KDω + g′(ω) , (14)

vanishes at the CRB line itself for

Kc
D(ω) = −g′(ω)

2ω
, (15)

Kc
I (ω) = −ωg′(ω)

2
+ g(ω) , (16)

the i.c.r. always lies on the CRB itself and is desribed by
the coordinates Kc

D(ω) and Kc
I (ω).

The CRB line is then described in parametric form as

KD = Kc
D(ω) + λ cos(α) (17)

KI = Kc
I (ω) + λ sin(α) (18)

α = arctan(ω2) (19)

with the parameter λ ∈ R.

The following important properties of the i.c.r. trajectory
w.r.t. ω can be summarised:

Table 1. Inhibited angle interval Γη depending
on the root boundary type and the stable side.

Γη Type Stable Side at

[α−

η , α+
η + π] CRB small KD

[0, α+
η ] ∪ [α−

η + π, 2π] CRB large KD

[0, π] RRB small KI

[π, 2π] RRB large KI

[π/2, 3π/2] IRB large KD

[0, π/2] ∪ [3π/2, 2π] IRB small KD

Fig. 2. Two different three-points as the intersection of
three CRBs 1,2,3. Left: Not stability critical three-
point. Right: Stability critical three-point.

• The i.c.r. always lies on the CRB itself and moves in
direction of α when ω is varied.

• The i.c.r. trajectory is left-curved w.r.t. rising ω,
because of (19),

• The i.c.r. trajectory exhibits reversal points where
Kc

D(ω) possesses a local extremum.

4. NECESSARY CONDITIONS FOR THREE-POINTS

This sections derives necessary conditions for the existence
of three-points of a certain combination Iν . The conditions
serve to discard a huge amount of combinations which will
not lead to stability peaks.

4.1 Inhibited Angle Range

Assume that a certain combination Iν possesses a three-
point. It can be observed that the three-point may be
stability critical or not (see Fig. 2), depending on the
angles αη and the stable sides of the boundary lines.

The inhibited angle γη of a stability boundary is defined
as depicted in Fig. 2. When KP is varying in its interval,
each CRB line angle αη moves in an interval [α−

η , α+
η ]

with α−

η = arctan((ω−

η )2) and α+
η = arctan((ω+

η )2), so
the inhibited angle γη traverses the interval Γη given in
Table 1. The intervals for RRBs and IRBs are denoted as
well.

Obviously, if the union of all intervals Γη of a combination
Iν does not cover the entire circle,

⋃

η∈Iν

Γη 6= [0, 2π] , (20)

the combination Iν will not lead to a stability critical
three-point and can be discarded.

4.2 Root Boundary Envelopes

For each root boundary η an envelope of the root boundary
movement can be given. The envelope describes the region
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ω

trajectory of i c r. . .

ωi
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KI

trajectory of i c r. . .

ωj

ωi

ω

Fig. 3. Envelopes of a CRB for increasing (left) or de-
creasing Kc

D(ω) (right). The hatched region represents
the conservatism added by substituting the i.c.r.-
trajectory by a line.

in the (KD, KI)-plane which is traversed by the root
boundary when KP is varied in its interval.

Considering the properties of the i.c.r.-trajectory and the
fact that in a KP -interval Kc

D(ω) varies monotonically, the
traversed area of a CRB is bounded by five elements which
restrict a non-convex and non-bounded region (see Fig. 3):

(1) The part of the i.c.r.-trajectory between ω−

η and ω+
η .

(2) Two rays as elongations of the i.c.r-trajectory at both
ends, with angles arctan((ω−

η )2) and arctan((ω+
η )2).

(3) Two rays which start at the intersection point of the
CRBs at ω−

η and ω+
η , with angles arctan((ω−

η )2) and

arctan((ω+
η )2).

By substituting part 1 by a line connecting the points of
the i.c.r-trajectory at ω−

η and ω+
η , a conservative envelope

of the traversed area can be derived. It is a non-convex
and non-bounded polygon which can be handled much
simpler by computer algorithms than the exact region.
The envelope boundaries of a CRB can be described by
the following linear inequalities:

If Kc
D(ω) is increasing in [ω−

η ω+
η ]:

bl1η = {{KD, KI} | KI ≤ c KD + d} (21)

bl2η = {{KD, KI} | KI ≤ (ω−

η )2KD + g(ω−

η )} (22)

bl3η = {{KD, KI} | KI ≤ (ω+
η )2KD + g(ω+

η )} (23)

br1
η = {{KD, KI} | KI ≥ (ω−

η )2KD + g(ω−

η )} (24)

br2
η = {{KD, KI} | KI ≥ (ω+

η )2KD + g(ω+
η )} (25)

If Kc
D(ω) is decreasing in [ω−

η ω+
η ]:

br1
η = {{KD, KI} | KI ≥ c KD + d} (26)

br2
η = {{KD, KI} | KI ≥ (ω−

η )2KD + g(ω−

η )} (27)

br3
η = {{KD, KI} | KI ≥ (ω+

η )2KD + g(ω+
η )} (28)

bl1η = {{KD, KI} | KI ≤ (ω−

η )2KD + g(ω−

η )} (29)

bl2η = {{KD, KI} | KI ≤ (ω+
η )2KD + g(ω+

η )} , (30)

where

c =
Kc

I (ω+
η ) − Kc

I (ω−

η )

Kc
D(ω+

η ) − Kc
D(ω−

η )
, (31)

d =
Kc

D(ω+
η )Kc

I (ω−

η ) − Kc
D(ω−

η )Kc
I (ω+

η )

Kc
D(ω+

η ) − Kc
D(ω−

η )
. (32)

The envelope env(η) for a CRB η is the intersection of the
union of all left boundaries bl and the union of all right
boundaries br

KD

KI

Fig. 4. Intersection of a line with a CRB envelope.

env(η) =

(

⋃

κ

blκη

)

∩
(

⋃

κ

brκ
η

)

. (33)

As the RRB and IRB do not depend on KP , its envelopes
env(η) = bη are the stability boundaries (4,5) themselves.

4.3 Three-Point Regions

A necessary condition for the existence of a three-point
is that the envelopes of a combination Iν possess a non-
empty intersection, which will be called a three-point
region tpr(Iν).

The intersection of a combination Iν (e.g., let i, j be CRBs
and k a RRB) is

tpr(Iν) = env(i) ∩ env(j) ∩ env(k) =
(

⋃

κ1

blκ1

i

)

∩
(

⋃

κ2

brκ2

i

)

∩
(

⋃

κ3

blκ3

j

)

∩
(

⋃

κ4

brκ4

j

)

∩ bk =

⋃

κ1,κ2,κ3,κ4

(

blκ1

i ∩ brκ2

i ∩ blκ3

j ∩ brκ4

j ∩ bk

)

, (34)

where κ1, κ2, κ3, κ4 cycle through all combinations of the
boundary elements of the CRB envelopes.

By (34), handling of the non-bounded envelopes can be
circumvented by calculating the intersection of all com-
binations of all left and right boundaries of the CRB
envelopes and the RRB and IRB boundaries, respectively.
Each intersection will be a convex polygon as it results
from a system of linear inequalities.

It can be shown by a short proof of contradiction that
tpr(Iν) is bounded and consists of at most one connected
region: Consider the intersection of two CRB envelopes.
Now from the first envelope an arbitrary CRB is taken and
intersected with the second envelope (see Fig. 4). If there
are more than one unconnected intersections or if there is
an unbounded intersection, the slope of the CRB has to be
between the slopes of the boundary elements of the second
envelope. As the slopes are ω2

η, the frequency ranges of the
CRBs have to intersect. However, this is a contradiction to
the definition of the KP -intervals, which implies that the
frequency ranges are seperated. This holds for all CRBs in
the first envelope and so for the whole intersection of both
envelopes and obviously also for the intersection of three
envelopes. Note that the proof extends to RRB and IRB
envelopes as well.

Note that by uniting bounded convex polygons, a bounded
non-convex polygon may result. As the three-point region
is always a single connected region the non-convex polygon
may be approximated by a convex hull polygon without
adding too much conservatism.
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5. UNIQUENESS OF A THREE-POINT

With means of the necessary conditions in the last section,
many combinations Iν can be discarded when searching
for a stability peak. However, if a non-empty three-point
region is found, it is important to determine wether the
region contains a unique three-point. For that reason, the
motion of intersection points of the root boundaries for a
variation of KP is further studied.

5.1 Kinematics of Intersection Points

In this section the intersection point motion of two root
boundaries is calculated by applying basic kinematics (see
Fig. 5). To describe the motion, a velocity vector is defined
as the following partials

v =
(

∂KD

∂KP

∂KI

∂KP

)T

, (35)

which represents the movement of a certain point in the
(KD, KI)-plane when KP is varied.

First, the intersection point of two CRBs i and j is
considered. Remember that the i.c.r. always moves in the
direction of its corresponding CRB angle αη (see vi/j in
Fig. 5). Thus, the normal velocity at the intersection point
of the CRB η only depends on the rate of change of αη

v
r
η = aη

∂αη

∂KP

(

− sinαη

cos αη

)

, η = i, j , (36)

where aη is the distance from the i.c.r. η to the intersection
point xp. aη is defined positive when the intersection
point is at the side of larger KD/KI w.r.t. to the i.c.r.
η. Otherwise aη is negative.

Only the normal velocities v
r
η influence the intersection

point movement. The velocity of the intersection point
v

xp
ij is the sum of both normal velocities projected onto

the other CRB, as depicted in Fig. 5

v
xp
i =

|vr
i |

cos αi sin2 αi + sin αi sin2 αj

(

cos αj

sinαj

)

, (37)

v
xp
j =

|vr
j |

cos αj sin2 αj + sin αj sin2 αi

(

cos αi

sinαi

)

, (38)

v
xp
ij = v

xp
i + v

xp
j . (39)

With α = arctan(ω2), ∂α
∂KP

= 2ω
f ′(ω)(1+ω4) and some

trigonometric simplifications, the velocity of the intersec-
tion point can be described as

ai

αi

i.c.r i.

vi

KD

KI

aj

vi
xp

vj
xp

xp

i.c.r. j
vj

αj

vj
r

vi
r

vij
xp

Fig. 5. Kinematics of the intersection of CRBs i and j.

KD

KI

1

2

3

(1,2)
(1,3)

(2,3)

1

2

3

(1,2) (1,3)

(2,3)1

2
3

(1,2)

(1,3)

(2,3)

c) Vertices change side.a) Original situation b) Vertices stay at same side.

Fig. 6. Enclosed triangle of a combination Iν at KP -
interval limits. a) First KP limit. b) Second KP

limit, where the vertices stay at the same side of the
opposite edges. c) Second KP limit, where the vertices
change the side w.r.t. the opposite edges.

v
xp
ij =

1

ω2
j − ω2

i

(

h(ωi) ai − h(ωj) aj

ω2
j h(ωi) ai − ω2

i h(ωj) aj

)

, (40)

where

h(ω) =
2ω

f ′(ω)
√

1 + ω4
. (41)

Note that the movement of the intersection point of a CRB
and a RRB or an IRB can be calculated similarly and is
omitted here for the reason of brevity.

5.2 Unique Solution Condition of a Three-Point

No more than one Solution By equation (40), velocity
intervals of the intersection points of a combination Iν

can be derived. As three-points only reside in tpr(Iν), an
interval for the distances aη can be estimated as [a−

η , a+
η ].

In the KP -interval, h(ω) varies monotonically when ωη

varies monotonically in (12). Thus, by applying basic
interval algebra on the equation (40), intervals for both
coordinates of the intersection point velocity

[vxp
ij−,vxp

ij+] (42)

can be given.

A sufficient condition to check if the combination Iν

possesses no more than one three-point in the KP -interval
can be derived from the intervals

[vxp
ij−,vxp

ij+] (43)

[vxp
ik−,vxp

ik+] (44)

[vxp
jk−,vxp

jk+] i, j, k ∈ Iν . (45)

If the KD-coordinates or the KI -coordinates of the inter-
vals (43,44,45) do not intersect this condition is fulfilled.
To prove this proposition the reader may consider that
the root boundaries i, j, k coincide in the point [K∗

D, K∗

I ].
If the velocity coordinates do not intersect, the three
intersection points diverge in the (KD, KI)-plane.

One Unique Solution If the intersection point velocities
do not intersect, the enclosed triangle can be examined
at the KP -interval limits to decide if the combination Iν

possesses a unique or no three-point.

Obviously, there exists a unique three-point if and only if
the vertices of the enclosed triangle of the combination Iν

change the side w.r.t. to their opposite edges, when KP

jumps from the first to the second limit of the KP -interval
(see Fig. 6).
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6. NUMERICAL SOLUTION

If the existence and the uniqueness of a three-point in a
KP -interval is shown by the proposed means, the following
nonlinear system (here given for the combination of three
CRBs, all other cases are similar) of six equations can be
safely solved by standard numerical algorithms

Kxp
I − Kxp

D ω2
η − g(ωη) = 0 ,

f(ωη) − Kxp
P = 0 , η = i, j, k ,

(46)

with the six unknown variables Kxp
I , Kxp

D , Kxp
P , ωi, ωj and

ωk. As initial conditions for the numerical search, mean
values of the tpr(Iν), the KP -interval and the singular
frequency intervals (12) can be used.

7. PROPOSED ALGORITHM

The complete algorithms consists of the following steps:

(1) Define KP -intervals (see Section 2).
(2) Apply necessary condition in Section 1.5 on all KP -

intervals: Discard all intervals that possess a lower
number of singular frequencies than required.

(3) For all remaining KP -intervals:

(a) For all combinations Iν ∈ Î: Check inhibited
angle range (see Section 4.1) and discard the
combinations Iν which cannot lead to a stability
peak.

(b) For all remaining combinations Iν : Check, if com-
bination Iν possesses a non-empty three-point
region tpr(Iν) (see Section 4). If no three-point
region exists or all combinations Iν are discarded:
Jump to next KP -interval.

(c) For all three-point regions tpr(Iν): Check if the
intersection point velocities do not intersect to
guarantee that there is no more than one three-
point in the tpr(Iν) (see Section 5.2). If yes:
Proceed. If no: This case can not be handled by
the algorithm.

(d) For all three-point regions tpr(Iν): Check if the
order of the enclosed polygon vertices of the
combination Iν changes at the KP -interval limits
to check if there exists a unique three-point (see
Section 5.2). If not, discard the three-point region
tpr(Iν).

(e) For all remaining three-point regions tpr(Iν):
Perform numerical search for a solution of equa-
tion system (46) (see Section 6) in tpr(Iν). Divide
current KP -interval into two intervals at the KP -
value of the found solution.

(4) For all KP -intervals: Evaluate stability of the KP -
interval by inspecting the number of stable polygons
in the (KD, KI)-plane for an arbitrary K∗

P in the
interval.

(5) Join all stabilising KP -intervals to the searched set of
all stabilising KP .

8. EXAMPLE AND SOFTWARE TOOL

The following example out of Bajcinca (2006) illustrates
the proposed algorithm. Let the polynomials be
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Fig. 7. Function f(ω) (solid), KP -interval limits (dashed)
and singular frequencies with ids 2 and 3 for a K∗

P =
10.
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Fig. 8. Left: The CRBs at KP = −9.00238 and the
three-point region of indices 1, 2, 3 in the KP -interval
(−9.673227,−5.027932). Right: The space of all sta-
bilising controller parameters.

A(s) = 1890 s2 + 658 s + 215 (47)

B(s) = s8 + 1032/25 s7 + 6175327/10000 s6+

98620159/25000 s5 + 92785263/10000 s4+

97588159/25000 s3 + 5413746/625 s2 .

(48)

The monotonicity conditions in Section 2 lead to 11 KP -
intervals. The function f(ω) and the KP -interval limits are
depicted in Fig. 7. Only the combination ν = {1, 2, 3} in
the KP -interval (−9.673227,−5.027932) returns a tpr(ν)
(see Fig. 8). The tpr(ν) satisfies the uniqueness condition
in Section 5.2. The numerical search returns the new KP

limit as −9.00238. Continuing the algorithm the searched
interval of all stabilising KP for the example reveals to be
(−9.00238, 44.54973).

A software tool based on Matlab, which performs all
steps calculating the space of the stabilising controller
parameters automatically, is available for download at
http://www.irt.rwth-aachen.de/pidrobust.
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