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Abstract: This paper presents how to get a high control performance and a reliable operation, by means of
a suitable combination of several Embedded Control Systems. For this purpose, a hierarchical and
distributed control model is proposed. The model holds a set of activities that should be executed on it,
such as change, switch and delegate new code of controllers into embedded nodes. All of these activities
are managed by a middleware component following the control kernel concept. This model was tested on
real processors interconnected in a CAN network, using a XScale microcomputer with a real time
operating system (RTLinux) running a high level controller (GPC) and a dsPIC microcontroller for signal

acquisition and delivering of control actions.
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1. INTRODUCTION!

Distributed Control Systems (DCS) are used in industrial and
civil engineering applications to monitor and control
distributed equipment with remote human intervention.
Moreover, these systems use a network to interconnect
sensors, controllers, operator terminals and actuators.

While computing power of embedded systems is increasing
over time, the networking technology trend is to move from
control-specific networks to Ethernet based infrastructures
and wireless communication. In this scenario the control
strategy should be tolerant to variations in the message delays
as well as bandwidth availability. Some work has been done
in communication protocols with traffic characterisation,
bandwidth allocation and clock synchronisation (Coronel et
al., 2005). But this kind of cyber-physical interaction
motivates a big amount of innovations in many Information
Technology related fields including DCS architectures and
controller design (Lee, 2000).

The DCS architecture assumed in this work is based on the
“control kernel” concept (Albertos et al., 2006). These
principles of organisation are intended to the automatically
distribution of control code in a DCS insuring safe operation.
The functionalities are provided by a specific middleware
responsible of information and code distribution over the
communication infrastructure.

Section 2 presents a distributed control model and gives an
overview of the main components of the architecture. In the
section 3, the main elements of the experimental platform are
presented. Afterward, in section 4, two experimental cases
studies are presented using the developed experimental
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platform depicted in section 3. The first experiment illustrates
the controller switching mechanism while the second
experiment present the implementation of a more complex
hierarchical controller that uses a predictive controller (GPC)
to develop a safe control system. Finally, section 5
summarizes the conclusions of the work.

2. AN APPROACH TO DISTRIBUTED EMBEDDED
CONTROL

Safety is a crucial issue in embedded control systems.
Independently of the number of variables to be controlled by
the same processor, the systems with hard real time
requirements must ensure the delivering of control actions to
all actuators. The quality of the delivered signal can depend
on the processing level: used data, the computational
algorithms, resources availability, among other, but always
must ensure the safe performance of system (Albertos et al.,
20006).

Apart from components malfunction, in complex DCS, safety
can be affected by the variation of the controlled system
dynamics that requires controllers switching, missing
execution deadlines, loosing messages and variation of
communications delays. In this context, for running control
applications in a safe mode, the following activities should be
taken into account:

¢ Communication links with other activities should be
activated.

e« Some data should be recorded, displayed, stored and
updated.

o It exist at least one controller that computes the control
action based on available data at each time instant and
using the predefined algorithms.

e According to the system behaviour, it must advance
actions such as: disconnect and switch controllers.
Controllers are parts of code that run spread in a
distributed environment.
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o If the control action has not been delivered by the current
controller on time, a safe control action should be
delivered at time required to the process. This signal may
be the result of a simple calculation (but sufficiently safe)
an emergency shutdown or simply a safe back-up
response such as: keep unchanged. Note that this
operation can be interpreted as a controller switching.

For this purpose, a distributed embedded control model can
be defined as composed by two node types: light nodes and
Service nodes (Fig.1). Service nodes are powerful embedded
computers running a full featured RTOS and complete
networking with I/O capabilities. Light nodes are small and
low power consumption SoC processors with limited
computing and networking capabilities but complete 1/O
features.
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Fig. 1. Architecture of the Proposed Control Model
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Control Applications run in service nodes on top of a full
featured Control Kernel Middleware (CKM). This
middleware offer abstractions and functionalities related to
control tasks real time execution, access to sensors and
actuators, and communications management. The
programming model of CKM follows the concept of code
delegation. In this sense, a control application delegates the
execution of some control code to the CKM that provides
computational resources to execute it. Note that a control
task, once inside the CKM, can run on whatever service node
of the DCS that have access to the communications space of
the task.

Light nodes are a cost-effective solution to have some
computer power as close as possible of each actuator. This is
mandatory in order to reduce the indeterminism in the time of
delivering control actions to the controlled process. Light
nodes run a retail of the CKM: the CKM Runtime. This
Runtime communicates with the CKM offering interfaces for
management, sensing and acting and code upload. Features of
CKM Runtime include network interfacing to sensors and
actuators and controller code pages upload. A light node can
be used as simple slave component to interface DCS or can
run locally controllers in a cyclic executive environment.

Any controller of a Control Application that has been
delegated to the CKM with attached native code page for the

light node type, can be delegated to this light node by
uploading this codepage and asking for switching. Controller
pages can be uploaded through the CKM Runtime without
any interference with the controllers currently running in the
node. The uploaded pages are activated for running by the
switching mechanism provided by the CKM Runtime.

In particular, service nodes may include supervising and
optimising control activities and /ight nodes can run activities
to drive the system to a safe position or run simple algorithm
that guarantees a minimum of stability in the system at any
time.

Light node ensures that always exist a control action (u,(k)) to
be sent to the process. This signal may be just a safe action
(disconnect, open, close, unchange, etc.) or the result of a
simple calculus (computed locally in the node) (u (k) or it
may be the signal calculated (u,(k)) and received from a
service node.
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Fig. 2. The light node ensures that always exist a control
action to be sent to the process (u,(k) or uy(k))

Let’s consider the model depicted in figure 2. Two modes are
defined for this control model:

e The service node produces high-quality control
responses (u,(k)) which are sent to the /ight node to
be applied on the plant. If u,(k) is not received or it
has some delay, then, the light node will apply his
calculated control action u(k).

e The light node controls directly the process and the
service node only monitors and analyzes the sensory
data and the control action u(k) to determine if it is
suitable.

When u(k) is not detected or is wrong, immediately the
signal ugk) is switched to a safe signal u,(k). This switching
may be executed into a light or a service node. Under these
circumstances, the service node can determine if it is
necessary to change and delegate new code into light node to
execute other controller.

3. EXPERIMENTAL PLATFORM ELEMENTS
3.1 Embedded Nodes

The light and service nodes are based respectively on a dsPIC
microcontroller and a XScale microprocessor.
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The Microchip dsPIC (Microchip 2006) combines the huge
computation speed of a Digital Signal Processor (DSP) with a
powerful 16-bit microcontroller (MCU), to produce a tightly
coupled single-chip single-instruction stream solution for
embedded systems design. This dsPIC device achieves
speeds of up to 30 MIPS, is efficient for C programming and
has Flash program memory, data EEPROM, data SRAM,
powerful peripherals and a variety of software libraries.

On the other hand, the XScale embedded architecture has
been chosen as development platform for our service node
due to their low power consumption, their high performance
and their low cost. All the generations of XScale are 32-bit
ARM v5TE processors manufactured with a 0.18 um process
technology. This processor support changes of core
frequencies between 100 MHz and 400 MHz for optimization
of power consumption with a top of computing power of 700
MIPS.

Service node uses the Real Time Operative System
“RTLinux” (Yodaiken and Barabanov, 1996) which offers
characteristics of a hard real-time system in a multi-threaded
real-time kernel and which can be used as embedded O.S.
But, for this it was necessary to make a porting to adapt the
original RTLinux source code to XScale architecture. We
have developed an RTLinux version with support to XScale
architecture, available on http://rtportal.upv.es/

3.2 Communication protocol

Although there is a great variety of real time buses, CAN
(Controller Area Network) (CiA, 1996) is one of the
preferred solutions to communicate distributed real time
systems (Coronel et al, 2005). Therefore, for our
experimental case, the communication middleware will use
CAN as infrastructure to interconnect the two units.

In order to incorporate this communication protocol into
XScale node, it has been designed an expansion board with a
PIC microcontroller which has an embedded CAN chip. This
PIC communicates with the XScale through a double port
RAM memory. Moreover, the respective CAN drivers have
been developed for RTLinux. On the other hand, the dsPIC
node already has an embedded CAN chip.

4. EXPERIMENTAL WORK

In order to test the characteristics and capabilities of the
proposed distributed control kernel model (Crespo et al.,
20006), two cases study will be presented in this section: first,
we evaluate the ability to switching simple controllers located
on different computation nodes interconnected through a
shared communication channel, and after that, we take
advantage of the distributed computing availability to run a
predictive control algorithm to control a real process and
provide fault tolerance to communication sporadic error.

4.1 Case Study 1. Switching of Process Controllers

The switching of controllers is one of the key features in the
control kernel model to run control applications in a safe
mode. For this case study the light node is directly connected
to a simulated process and it send information about process
state to the service node through the CAN communication
bus.

4.1.1 Description of the Simulated Process

The light node has been connected through a DAQ card to a
PC running a simulated system in MatLab with Simulink and
Real-Time WorkShop toolboxes (MathWorks 2006). The
system is a simulation of the real HUMUSOFT CE 152
Magnetic Levitation educational scale model. The simulated
model transforms the error signal into a real analog one
through the DAQ analog output. An analog input of the DAQ
is used to get the control or feedback signal.

As shown the figure 3, the error signal (e(k)) is directly
sampled by the dsPIC and its value is transmitted to service
node by means of the communication bus. The light node
also applies directly the final feedback signal (u;) on the
control process, whose us can be the u, or u, signal. This last
depend of the switching mode.

Levitation
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ight Node
etk | O Vi (k) Simulated Y

AN B Process
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Fig. 3. Distributed System Diagram with Simulated Process
Model

4.1.2 Regulator design

In this first test, for simplicity and in order to illustrate the
controllers switching, the light node gets the tracking error
signal of the system through an A/D converter pin and solves
a simple proportional derivative PD discrete regulator. The
control algorithm on the light node is:

us(k) = qo-e(k) +q;-e(k—1) (1)

The service node receive the error signal and executes a PID
discrete regulator. The control algorithm on the service node
uses the following difference equation (2):

u(k) =uplk =D +qo-e(k) +q etk =D +q,-e(k-2) (2

where e(k) is the error in the instant “A”, and wu,(k) is the
calculated control signal to apply to the simulated system.

Several tests have been made on a simulated environment to
obtain the optimal coefficient values for the given process.
With that result a local control for the simulated plant could
be done at Sms control cycles.

The result is sent from the light node to the system by a
PWM output, though a RC low-pass filter to be converted
into an analog continuous signal.

4.1.3 Running Modes

Two types of situations are defined for this control model
(see figures 2 and 3): first, when the service node produces a
high-quality control response (u,(k)) which is sent to the light
node to be applied on the plant, and therefore the light node
acts only as an interface; and second, when the control is
performed by the light node and the service node only
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monitors and analyzes the sensory data and the control action
uy(k) received through the CAN bus.

For the first situation, if u,(k) is not received or has some
delay, then, the light node (dsPIC) will apply his calculated
control action (u,(k)) (see figure 2). Thus, if an internal timer
is up to a critical time delay, then CKM Runtime switches to
the local PD controller into the dsPIC. A communication
delay may represent that the light node is not working
properly or the communication network is busy or down.
This switching ensures that always exists a control action
(us(k)) to be sent to the process. The figure 4 shows that the
switching no affect the evolution of the process.

The light node takes the control
0.7 T T T T T T T
Reference

Controlled by Service node

D& Controlled by Light node 7

05r q

Output (v oltage)

Time (seconds)

Fig. 4. Process signals evolution when some control CAN
messages are lost and the system controller is switching from
the service node to the light node.

For the second situation, the control action produced by the
light node (uy(k)) is analyzed to determine if it is suitable to
control the system. When uy (k) is detected as wrong,
immediately the signal uy(k) is switched to a safe signal u,(k)
(see figure 2). The present and accumulated error signal
values is analysed on the dsPIC, and if the error parameter
exceeds a programmed value, the regulator changes to the
service node controller. In the figure 5, the regulation is
working successfully until the second 5 a lost data is
simulated, then the process begins to be unstable, and
therefore the regulator switches to service node controller to
command it.

These nodes get the sensory data and deliver the control

actions to the system through the communication
middleware.
4.2 Case Study 2. Supervising control with local

compensating

In this case the idea is to use the distributed computing
availability to run a predictive control algorithm. This piece
of control will provide future control actions that can be used
by the local processor to feed actuators in the case of
unexpected communications delays or missing data.

The predictive control algorithm is a Generalized Predictive
Control (GPC). Next the developed strategy is explained.

4.2.1 Developed Strategy

The developed structure basically involves a distributed
control system made by a service node, with a supervisor

control GPC, and a light node. The service node is a system
with wide capacity in computation and communication
resources, whereas the light node is an embedded system
with limited computation resources.

The services node take the control

————— Reference §
0.9 .......... Controlled by light node i 7
Controlled by service node §

0.5

Cutput (voltage)

Time (seconds)

Fig. 5. Evolution of the process signals when a control error
is detected and the controller is changed from the light node
to the service node.

The service node manages the GPC control actions
calculation that applies the light node. The service node
sends, in each sampling period, the trajectories of control
actions and outputs. If the /ight node applies the sequence of
control actions that have calculated the GPC from the
iteration “k”, an open loop strategy would be done during the
prediction horizon [Ny, N,]. Therefore, the receding horizon
strategy will be applied, so the light node uses only the first
control action u(k) that has been sent by supervisor control,
and this is a close loop strategy. This procedure is repeated in
every sampling instant.

Nevertheless, the control actions sequence obtained by GPC
is optimal, since it is obtained as a result of minimizing a cost
function. In an embedded system with limited computation
resources, the information of future control actions is very
valuable, since it could be used, within the prediction
horizon, to apply them under scarce measurements or
excessive calculation time for that period.

In case of missing data in communication channel which
becomes is to apply at the previous sampling instant, with the
information received until instant k. For this strategy the
prediction horizon are N;=1 and N,=N.

4.2.2 Generalized Predictive Control

The Generalized Predictive Control (GPC) is a Model-Based
Predictive  Control (MBPC) strategy. Their main
characteristics are (Clarke et al., 1987):

e  GPC use a process model of explicit form

e From minimize a cost function, is obtained the
sequence of optimal control signals at every instant.

e Receding horizon strategy is applied. That is,
although an optimal sequence of control is obtained,
is only used the first control action signal of all of
them, discount the others. At the next sampling
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instant, the calculations are repeated again using the
new information.

In the GPC design an index of quadratic cost is considered,
expressed normally in the form:

JWNy Ny, N = {52y ;- 90k + 1K) — wlk + D12 + 22, 4 - [Aulk +j — DI?} (3)

The first term considers the error between the outputs and the
references in the prediction horizon, whereas the second
penalizes the control effort. 1; and 4; are the weights of the
output error and the control effort, respectively. y(k + j|k) is
the prediction of the output in the instant k+i with the
information available in the sampling instant k.

And minimizing this index with respect to AU analytically,
the control law is obtained:

AU=[GT- -G+ AI™ -GT-p-[W—-T-AUT—F Y] =
= Hyyy - [W=T-AUT = F- Y] 4)
and a prediction model:
Y=G-AU+T-AUf+F-Y/ 5)

G, F and I are arrays with the coefficients calculated
recursively (Clarke et al., 1987),1 and A are the arrays with
the weights 1; and 4;, and W is the array with the references.

The control law is transformed with the receding horizon
strategy, as explained above. Considering this, a linear
expression for the regulator is obtained.

4.2.3 Control and output postulates trajectories

Now the GPC must calculate the control actions postulated
and the output trajectory for the applied prediction horizon.
From prediction model matrices and the control law result a
set of equations in differences (Camacho et al., 2004).

From the control law (4), the values of postulated control
actions for the control horizon are obtained:

Au(k) w(k + Ny) Au(k — 1) y(k)
Au(k + 1) = Hyyy - wk+N +1D)| . ] _F ] (6)
Au(k + N, — 1) w(k + Ny) Au(k —n,) y(k —ng)

From the prediction model (5), the output trajectories for the
prediction horizon are obtained:

y(k + N;) Au(k) Au(k —1) y(k)
[ﬂ" FNAD =g || Ak D el e E L ] @
y(k + N,) Au(k + N, — 1) Au(k —ny) y(k —ng)

Therefore, for every sampling instant k, and for the prediction
horizon N;=1 and N,=N, the following trajectories are
obtained:

Y ={y(k+1|k),..,9(k + N|k)} ®)
U= {u(klk), .., ulk + N, — 1]k)} 9)

output and control trajectories are those that the supervisor
control GPC will send to the local control in each period.

4.2.4 Light Node. Compensation of control action

Since it has been seen previously, this way to act has the
problem of open loop strategy, with the usual problems as
stability due to possible errors in the modelling of the plant
and the inevitable disturbances in the measurement.

In order to minimize these problems, in case of using the
postulated control actions calculates by the GPC, the light
node makes modifications in the propose control actions,
considering the discrepancy between the output calculated
trajectory and the real output is applied.

ey =Yk +ilk) = yreq(k +10), i=1,..,N (10)
If i <Ny — 1, thenu = u(k +i|k) + Kgqin - €y 1D
If i > Ny, —1,thenu(k +ilk) = u(k + N, — 1]k) (12)

where §(k + i|k) and u(k + i|k) are elements of the Y and U
vector, respectively. Kgain is the local compensator gain that
is due to determine of empirical method, studying the
influence of error “e,” in the final control action. The propose
strategy is shown in figure 6.

Service node

Reference
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Control Kernel
Middleware

RTOS

(k) |ulk-1) yra |y
Light node
Control Kernel
Middleware
Runtime

kb (ylkeNa) (0

ulk+1) yik+2} :
ufk) k1) |

1 y (k)
Local Control | ulk)

Compensator

l

Fig. 6. Distributed control structure.

Plant

The advantage of these systems is that service node can make
the supervision of several light nodes.

Considering that the maximum horizon calculated by the
GPC corresponds to sampling instant k+N,, it is necessary to
design this horizon so that all the system dynamics is
included, thus is case of missing all data makes sure that the
output arrive at the reference.

In case of massive missing data, further the designed control
horizon, it is necessary to apply a safe control strategy, that
according to the controlled process it can consist of constant
control action application or an emergency shutdown (Crespo
et al., 20006).

Finally, it is necessary to consider that when recovering the
communications between [light and service node, the
supervisor control GPC must known the control action
applied during missing data and the real output, for
recalculate the trajectories with the real data.

4.2.5 Implementation Example

The plant tested is an electronic process of second order with
a stable overshoot response in open loop. The transfer
function is:

6.818

Gp(s) = 0.1021-52+0.9588-5+7.818

(13)
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The parameters of the GPC are:
N=1, N,=8, Nu=3, w=1, /=0.1, T(z)=1 and Ts=0.05 seconds

Following the figure 6, a dsPIC microcontroller act as /ight
node, it has been directly connected to process. As service
node a XScale embedded computer has been used, it
computes the GPC algorithm. The interconnection and data
exchange between the nodes are carried out through the CAN
communication bus (Coronel et al, 2005). The main
characteristics of these nodes are described in (Martinez ef al.
2007).

Basically, light node gets, via CAN, the control values
computed by the GPC on service node, and apply them to the
electronic process with its analogue outputs. The data values
sent to light node are the present control action, two future
predicted actions, and eight predicted output trajectories
based on the GPC process model.

4.2.6 Results

The main advantage of this distributed system approach is its
fault tolerance for sporadic error communication. As shown
in the figure 8, when the control action is not received at the
light node (data lost), it has to apply the predicted actions at
the next sample times. If the communication errors are longer
than control horizon, the /ight node has to apply the last
control action value according to the predicted trajectory
data. This is shown in the figures 8 and 9, where the data is
lost during five sample periods (50 milliseconds).

Both figures are from the same experimental test, figure 8
shows the evolution of the process (system signal tries to
follow the reference value), whereas figure 9 displays the
control signal applied, the control value computed by the
GPC and the difference between them.

System Evolution with Communication Errors
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Fig 8. Process Evolution when some data is lost

The higher difference between the applied control value and
the GPC computed value occurs when the data is lost just
within the transitory response (third second in figure 9).
Although this is the worst situation for loosing data, the
control in the light node overcomes with the process
evolution as it is shown in figure 8. The control in the /ight
node corrects the action values considering the discrepancy
between the calculated output trajectory and the present
output, minimizing the output error.

Difference between Signal Applied and GPC Signal when some data is lost
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Fig. 9. Control Signal Applied, GPC Control Value computed
and their discrepancy when data is lost.

5. CONCLUSIONS

In this paper a distributed control kernel model to complex
control applications has been presented. Furthermore, from
the implementation point of view, the proposed control
model permits to perform a set of basic activities to ensure a
safe operation of the system under control. A realization of a
control algorithm GPC is described. The proposed distributed
control scheme, through a combination of embedded systems,
permits to ensure a safe and suitable operation of the system
under control. This work is intended to be a proof of concept
of some of the characteristics that are going to be
implemented in the middleware kernel of the project
KERTROL
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