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Abstract: An important and challenging research issue associated with mobile robots is simultaneous 
localization and map building (SLAM), which refers to the mobile robot’s capability of estimating its 
poses in the environment without external information, and simultaneous alignment of the local maps. To 
solve these kinds of research problems, researchers have proposed various methods such as odometry 
measurement, landmark matching, laser range image matching and a scale-invariant feature transform 
(SIFT)–based algorithm, all of which suffer from inevitable drawbacks such as a local minimum problem 
and a lack of SIFT features. Our solution for these problems is a sensor fusion method that uses a 
Dempster Shafer algorithm to fuse both the laser range information and the SIFT features information for 
the SLAM. Through a series of experiments, we tested and evaluated the proposed method. By real 
experiments, we analyzed the parameters of the ICP and SIFT features and we checked the robustness of 
our algorithm. 

 

1. INTRODUCTION 

Knowing the position and orientation in the operating 
environment is an essential capability for any robot that 
exhibits coherent, goal-oriented behavior. The basic principle 
of self-localization is based on a comparison of perceptual 
information derived from sensor readings with a priori or 
previously acquired knowledge about the environment. The 
self-localization problem has been studied intensively in the 
mobile robot community, and a wide variety of approaches 
with distinct methods and capabilities has been developed. 
(Dixon et al. 1997).  

Some researchers have generated the idea of detecting and 
matching landmarks (either natural or artificial) in the 
environment. When natural landmarks are used, the main 
problem is the difficulty of detecting and matching 
characteristic features from sensory inputs. The sensor of 
choice for this task is computer vision. Most computer 
vision–based natural landmarks are long vertical edges, such 
as doors and wall junctions. However, in some cases, the 
natural landmark features are not easy to detect, especially in 
unstructured environments. When artificial landmarks are 
used, it is much easier to detect the landmarks because the 
landmarks are designed for optimal contrast. However, this 
method needs human interference.  

To solve these problems, some research groups have 
proposed the idea of matching two range image maps 
obtained separately from two consecutive poses of a mobile 
robot. (Surmann et al. 2003; Downs et al. 2003) The main 
task is to align the overlapping parts of the range images 
together and subsequently achieve the translation and rotation 
matrix between the two consecutive poses of the mobile 
robot. The most popular matching or registering algorithm is 

called the iterative closest point (ICP) algorithm. (Besl et al. 
1992) 

The alignment of two range images obtained from two poses 
faces two main problems. First, only parts of the two range 
images can be overlapped together. Thus, any effort to align 
these outlier points is a waste of time and disturbs the 
registration process. Second, the ICP algorithm is not robust 
to noise and outliers. Note in particular that because our 
mobile robot uses a laser structured light laser range finder, 
the maximum range of which is 1.7 m, the matching by the 
ICP method is more difficult. We therefore propose a 
trimmed iterative closest point (TrICP) algorithm, which can 
help solve the outlier point problem in the matching process. 

Some researchers have recently used scale-invariant features 
to implement mobile robot localization and mapping. In their 
approach, they first extract scale-invariant feature transform 
(SIFT) features and then match the SIFT features. This 
algorithm is robust when many SIFT features exist in the 
environment but not if insufficient features can be detected. 
In addition, the map built with this method is not usable for 
obstacle avoidance and next view generation.  

To solve the problems of the ICP-based simultaneous 
localization and map building (SLAM) and the SIFT-based 
SLAM, we propose a fusion algorithm that combines these 
two methods. This paper is organized as follows. In Section 2, 
we introduce the mobile robot and its sensor system. In 
Section 3, we briefly introduce the basic concept and main 
procedures of the TrICP algorithm. In Section 4, we discuss 
the use of using the SIFT method in robot localization. The 
fusion algorithm is discussed in Section 5. Finally, Section 6 
offers a summary of the proposed algorithm along with the 
experimental results. 

2.  THE SENSOR SYSTEM OF THE MOBILE ROBOT 
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As shown in Fig. 1(a), our mobile robot mainly consists of an 
on-board PC; 2 CCD cameras, which are used for stereo 
vision; 2 band-pass filters; an ultrasonic sensor; and several 
laser structured light projectors.  
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Fig. 1. Mobile robot LCAR III and the configuration of the 
laser range finder 

The sensing system of the mobile robot has two parts; 1) a 
laser structured light range finder, which consists of a CCD 
camera, a horizontal laser light, and a band-pass filter. 2) a 
stereo vision sensor that consists of 2 CCD cameras. (Cho 
2005) 

3.  SLAM ALGORITHM WITH A TRICP ALGORITHM 

3.1  Laser structured light range finder 

In previous chapter, we referred to the laser structured light 
sensor shown in Fig. 1(b).  (Izquierdo et al. 1999) As shown 
in Fig. 1(b), the laser structured light range finder is mainly 
composed of a horizontal laser and a CCD camera. When the 
horizontal laser line is projected onto the object, the image of 
the laser line appears on the image plane of the CCD camera. 
According to the depth of object the position of captured 
laser line in the image is changed. 

3.2  SLAM with the ICP algorithm 

By using the depth information and the ICP algorithm, we 
can apply the SLAM algorithm. (Se et al. 2002) Here we will 
briefly introduce this ICP algorithm. (Pulli 1997; 
Rusinkiewicz et al. 2001; Sharp et al. 2002; Zhang 2002; 
Chetverikov et al. 2005; Li et al. 2003; Shibata et al. 2003) 
First, in the original ICP algorithm, we regard the sets of 
points that compose the range image of the previous pose as 
M and the sets of points in the range image of the current 
pose as L (as shown in Fig. 2). The alignment process works 
to minimize the mean squared distance between the scene 
points and their closest model point. For each point, Li, from 
the set L, there is at least one point that is closer to Li than all 
the other points in M. This point, Mi, is defined as the closest 
point. After determining the closest points, we then need to 
find a 3-D transformation which, when applied to the data set 
L, minimizes the distance between two point sets. In short, 
the goal of the problem can be expressed as follows: 

2

1
min ( )

N

i iM RL T− +∑  (1)

where R is a 3-by-3 rotation matrix, T is a 3-by-1 translation 
vector, and the subscript i refers to the corresponding 
elements of sets M and L. To solve R and T, we can either use 
the unit quanternions or the singular value decomposition 
method.  

The procedures of the ICP algorithm can be stated as follows: 

Step 1: For each point in L, compute the closest point in M. 

Step 2: With the closest point pairs computed in step one, 
compute the translation matrix, T, and the rotation matrix, R, 
by using the least square method (equation (4)), where the 
total number of points in L is N. 
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Step 3: Apply the transformation matrix T and R to all the 
points in L. 

'
i iL RL T= +  (3)

Step 4: Compute the mean square error of each closest points 
pairs. 

2( )i i id M RL T= − +  (4)

Step 5: Compute the change in the total mean square error, 
which is the sum of the mean square error of each point pairs. 

2( )i i i
i i

S d M RL T= = − +∑ ∑
 

(5)

Step 6: If the change in error is less than a threshold value 
(  < threshold), then the algorithm ends. If not, go to step 1. 
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Fig. 2. Concept of the ICP algorithm  

4. SCALE-INVARIANT FEATURE TRANSFORM 

4.1 SIFT feature point extraction 

The SIFT feature is a kind of robust feature point that can be 
extracted from a 2-D image. (Lowe 1999; Lowe 2004) Each 
SIFT feature has a descriptor, which is composed of 128 
parameters, and in most cases, the descriptor is unique to 
each SIFT point. The SIFT features are therefore invariant to 
image scaling and rotation, and partially invariant to changes 
in illumination and to a 3-D camera viewpoint. Being well 
localized in the spatial and frequency domains, they also 
reduce the probability of disruption by occlusion, clutter, or 
noise. Large numbers of features can be extracted from 
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typical images with efficient algorithms. In addition, because 
the features are highly distinctive, they enable a single feature 
to be correctly matched with a high probability against a 
large database of features and they provide a basis for scene 
recognition and mobile robot localization.  
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Fig. 3. Feature matching with the SIFT 

4.2 SIFT Stereo 

We compute 3-D world coordinates for each feature by 
matching pairs of images from two stereo cameras. Using the 
epipolar and SIFT feature invariance constraint, we can 
match features in the right-left image pairs. As shown in Fig. 
3(b), the SIFT features and their 3-D coordinates serve as 
landmarks for the self-localization as well as for the local 
map alignment and matching of the mobile robot. 

4.3 Local Map Alignment with the SIFT 

To build a map, we need to know how the robot moves 
between frames. Robot odometry can give a rough estimate, 
though it is prone to errors such as slipping. Nonetheless, it 
enables us to more efficiently predict the region in which we 
need to search for each match. Once the SIFT features are 
matched, we can obtain the 3-D coordinate of the SIFT 
features. To this end, we can use the matches between a 
previous view (namely the view of the robot at a previous 
position) and the current view (namely the view of the robot 
at the current position) in a least square procedure to compute 
a more accurate camera ego-motion and, hence, better 
localization. 

Many researchers have tested and proved the robustness of 
localization using SIFT features. As indicated, however, the 
SIFT algorithm cannot work if only a few SIFT intensity 
features exist in the environment. Furthermore, a map built 
by the SIFT cannot be used for obstacle avoidance and next 

view generation. We therefore propose to fuse the SIFT 
algorithm with the TrICP algorithm, and to consequently 
integrate the SIFT feature map built by the SIFT with the 
laser map built by the TrICP algorithm. 

5.  SENSOR FUSION ALGORITHM 

In this chapter, we introduce our fusion algorithm. (Lee et al. 
2005) The basic idea of the fusion algorithm is to fuse the 
information obtained by both the SIFT and the TrICP 
algorithm. 

5.1 Dempster Shafer Sensor Fusion Algorithm 

If we estimate the probability of two events A and B using 
two sensors, then, given  two sensors with probability masses 
of P1(A) (the probability of A being estimated by sensor 1), 
P1(B) (the probability of B being estimated by sensor 1), 
P2(A) (the probability of A being estimated by sensor 2), 
P2(B) (the probability of B being estimated by sensor 2), U1 
(the uncertainty of sensor 1), and U2 (the uncertainty of 
sensor 2), we can describe the Dempster Shafer sensor fusion 
algorithm as follows: 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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= − −

 
(6)

where Pfusion refers to the probability estimate of each event 
after fusion and k is the normalization parameter. 
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Fig. 4. Axis of the robot’s movement 

5.2 Sensor Fusion Algorithm for Self-Localization 

As mentioned, our method of mobile robot self-localization 
and mapping relies on both the TrICP algorithm and the SIFT, 
respectively. Fig. 4 shows the axis of the robot. At each step, 
our mobile robot has only two kinds of movement. The first 
movement is the translation along the Z coordinate, and the 
second is the rotation around its local origin. Hence, the main 
task of our fusion algorithm is to obtain the translation in the 
Z direction, Tz, as well as the rotation theta. 

Step 1: First we use the trimmed ICP method to obtain the 
robot translation in the Z direction, Tz, as well as the 
translation in the y direction, Ty, and the robot rotation angle, 
theta. Next, we denote the Tz estimated by the TrICP 
algorithm as Tz_icp; we also denote the Ty estimated by the 
TrICP algorithm as Ty_icp, and we denote the theta 
estimated by the TrICP algorithm as theta_icp. By using the 
SIFT to implement the SIFT feature extraction and self-
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localization, we can estimate Tz, Ty, and theta on the basis of 
the estimation of the SIFT feature points matching. Similarly, 
we denote the Tz estimated by the SIFT as Tz_sift; we denote 
the Ty estimated by the SIFT as Ty_sift; and we denote the 
theta estimated by the SIFT as theta_sift. In fact, neither 
Tz_icp, Ty_icp and theta_icp nor Tz_sift, Ty_sift and 
theta_sift are likely to be the exact value of Tz, Ty, and theta. 
To obtain a more accurate value, we therefore need a sensor 
fusion algorithm. 

Step 2: Once we get an estimate of the robot’s position from 
the TrICP algorithm (Position_icp) and the SIFT 
(Position_sift), we can assume that the real position of the 
robot might be near to the two positions estimated by the 
TrICP algorithm and the SIFT. Subsequently, we can 
generate several candidate positions in the region near 
Postion_icp and Position_sift. To do this, we assume that 
Tz_candidate(i) is the candidate value that we have generated 
for the real value of Tz, and that one of the values of 
Tz_candidate(i) must be closest to the real value of Tz. 
Similarly, we assume that theta_candidate(k) is the candidate 
value we generated for the real value of theta. Here, i = 1~N 
and k = 1~N (where N is the number of candidate values). In 
addition, we did not calculate the fusion results for Ty 
because of the likelihood of Ty being small in most of the 
navigation cases (since the robot only moves in the Z 
direction). We therefore calculated Ty by combining Ty_icp 
and Ty_sift. 

Step 3: Once we obtain the candidate position values, we 
assign a probability value to each value of T_z_candidate(i) 
and theta_candidate(k). First, we propose to assign a 
probability value on the basis of the TrICP algorithm. To 
assign the probability value, we should first obtain the 
probability distribution curve of the estimation error of 
Tz_icp and theta_icp. Obtaining an exact probability 
distribution curve is not easy; hence, researchers usually 
obtain it through experimentation or from experience. Of 
course, the greater the number of experiments, the greater the 
accuracy of the probability curve. In our case, we conducted 
60 experiments, each time using different objects in the 
environment. Furthermore, we limited the mobile robot’s 
movement to only 300 mm to 800 mm in the Z direction for 
each step, along with a rotation range of 10 degrees to 40 
degrees for each step. The reason for the limitation is that 
these ranges are generally adequate for robot navigation.  

In our experiment, the probability distribution curve of the 
estimation error of Tz_icp is similar to the Gaussian curve. 
We therefore approximated the probability distribution curve 
as a Gaussian distribution with a mean of 16 mm and a 
deviation of 6 mm. Similarly, we approximated the 
probability curve for theta_icp as a Gaussian curve with a 
mean of 0.2 degrees and a deviation of 2 degrees. After 
obtaining the probability distribution, we then assigned the 
probability for each candidate position. 

Step 4: Similarly, through experimentation, we can also get 
the following: a probability distribution curve of the 
estimation error of Tz_sift, a Gaussian distribution with a 
mean of 7 mm and a deviation of 10 mm, a probability 
distribution curve of the estimation error of theta_sift, a 

Gaussian distribution with a mean of 0.1 degrees and a 
deviation of 1.7 degrees. Furthermore, the uncertainty value 
of the SIFT estimation is based on the number of matched 
SIFT feature points. Our experimentation also shows that the 
greater the number of SIFT feature points, the greater the 
accuracy of the estimation results. Actually, if only a few 
SIFT features exist in the environment, the uncertainty of the 
SIFT estimation is very high. Table 2 shows the uncertainty 
assignment for the SIFT estimation. 

Table 1. Uncertainty assignment for the TrICP algorithm 

Number of corners Uncertainty (U) 

0 U = 0.8 

1 U = 0.5 

≥2 U = (L-x)/L×0.5  (x ≤ 1/2L) 
U = 0.2               (x > 1/2L) 
L = 200 mm (x is the length of the 
overlapping region) 

Step 5: Up to this stage, we have obtained the probability and 
uncertainty assignment from the TrICP algorithm and from 
the SIFT. We can therefore obtain the probability value of 
each candidate position on the basis of the fusion. 
Consequently, the candidate position with the highest 
probability is the position we would choose for the mobile 
robot. 

Table 2. Uncertainty assignment for the SIFT 

Number of SIFT features Uncertainty (U) 

≤ 3 U = 0.9 

≤ 7 U = 0.8 

≤ 12 U = 0.6 

≤ 17 U = 0.5 

≤ 22 U = 0.4 

> 22 U = 0.2 

6. EXPERIMENTAL RESULTS 

6.1 Parameter Analysis of Sensor Fusion 

Through our experiments, we found that the number of 
overlapping points between the previous laser range data and 
the current laser range data, as detected by the robot, can 
influence the self-localization results of the TrICP algorithm; 
we also found that the number of SIFT intensity features in 
the environment can influence the self-localization results of 
the SIFT. Consequently, the two parameters influence the 
fusion results. We therefore analyze the two parameters in 
this section.  

First we made the mobile robot move in the ZR direction. For 
each movement of the robot, we obtained the real translation 
distance in the ZR direction, Transz_real; we also used the 
TrICP algorithm to estimate the robot’s movement in the ZR 
direction, Transz_icp; similar estimations were made with the 
SIFT for Transz_sift and with fusion for Transz_fusion. 
Consequently, we define the error of self-localization for one 
step as follows: 
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Erroricp= Transz_icp - Transz_real 
Errorsift= Transz_sift - Transz_real 

Errorfusion= Transz_fusion - Transz_real. 

(7)

By keeping the number of SIFT features constant in the 
environment, we changed the number of overlapping points 
between the previous laser range data and the current laser 
range data, all of which could be detected by the mobile robot 
with the aid of a laser structured light range finder. For each 
environment, we conducted the experiments 5 times, and we 
obtained the mean value and the deviation of the 
experimental data.  

Fig. 5 shows the accuracy and uncertainty of the TrICP-based 
self-localization results with the change of overlapping points 
between the previous laser range data and the current laser 
range data detected by the robot in the environment. We can 
see that whenever the number of overlapping points is small 
the localization accuracy is low and the estimation 
uncertainty is quite high. Moreover, with the increase in the 
number of overlapping points between the two range data 
sets detected from the environment, the error and uncertainty 
of the estimation tend to be lower. 
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Fig. 5. Results of the TrICP-based self-localization for 
analysis of the number of overlapping points  
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Fig. 6. Results of the SIFT based self-localization for the 
analysis of the number of SIFT features  

Fig. 6 shows the accuracy and uncertainty of the SIFT-based 
self-localization results with the change in the number of 
SIFT features the robot can detect in the environment. We 
can see that whenever the number of SIFT features detected 
by the robot is less than 5 the localization accuracy is low and 
the estimation uncertainty is quite high. Moreover, with the 
increase in the number of SIFT features detected from the 

environment, the error and uncertainty of the estimation tend 
to be lower.  
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Fig. 7. Results of the fusion experiment for the analysis of the 
number of SIFT features  

Fig. 7 shows the accuracy and uncertainty of the fusion-based 
self-localization results with the change of SIFT features the 
robot can detect in the environment. We can see that the error 
and uncertainty of the estimation tend to be lower. However, 
in contrast to the estimation results of the SIFT, the fusion 
estimation results tend to produce a high level of accuracy 
and a low degree of uncertainty, regardless of the number of 
SIFT features. This phenomenon implies that sensor fusion, 
in comparison with the SIFT method, tends to produce self-
localization results with a lower degree of uncertainty. 
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Fig. 8. Environment for the mobile robot’s navigation  

6.2 Sensor Fusion Experiment in a Real Environment 

Fig. 8 shows the objects in the experimental environment. 
The objects include a chair, a shelf, books, a panel, a table, an 
experimental device, and various polygonal objects, all of 
which are commonly seen in our lab environment. Fig. 9 
shows the map that was built includes laser structured line 
data and SIFT feature points. The results of the map 
alignment are acceptable as shown in Fig. 9 (a) and (b). 
However, if we only use the TrICP algorithm and the SIFT 
algorithm in the robot self-localization and map alignment 
process, as shown in Fig. 9 (c) and (d), the results of the map 
alignment are inaccurate in certain areas. This inaccuracy 
shows that the localization and map matching results have a 
high degree of uncertainty if there is no fusion and only a 
single method is used.  

6. CONCLUSIONS 

Self-localization and the matching between two range images 
are important and challenging requirements for autonomous 
mobile robot navigation. We propose a sensor fusion 
algorithm based on the Dempster Shafer method. This 
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algorithm makes use of the advantage of the TrICP algorithm 
and the SIFT to produce better localization and mapping 
results.  

1). If the overlapping points between the previous laser range 
data and the current laser range data are increased with a 
fixed number of SIFT features, the uncertainty of robot 
localization is decreased and the accuracy of the fusion 
algorithm is increased.  

2). If the SIFT feature points between the previous image 
data and the current image data are increased with a fixed 
number of overlapped laser range data points, the uncertainty 
of robot localization is decreased and the accuracy of the 
fusion algorithm is increased.  

Our experimental results in real robot navigation 
environments confirm the usefulness and robustness of the 
proposed method. 

In our future work, we plan to refine the proposed algorithm 
by doing more experiments in various kinds of environments 
in order to strengthen its robustness in more complex 
environments and to improve the accuracy of self-localization 
on uneven ground.  
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(a) map alignment using 
Fusion – SIFT feature map 

(b) map alignment using 
Fusion – laser map 
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(c) map alignment using 
TrICP – laser map 

(d) map alignment using SIFT 
– laser map 

Fig. 9. The map comparison 
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