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Abstract: This paper presents a fast, interactive and easily modifiable software tool for robust
PID design. The Matlab based program is supposed to give people with moderate knowledge
on PID control a possibility to learn more and also be a future part of an autotuner. The PID
design is made by minimizing the integrated absolute error value during a load disturbance
on the process input. The optimization is performed with H∞ constraints on the sensitivity
and complementary sensitivity function, providing a robust closed loop system. Nelder Mead
optimization is used with the AMIGO method providing an initial controller. The proposed
method works well, and is very efficient, on a large batch of systems common in process industry.
The design tool is also shown to work on a highly oscillatory process model.
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1. INTRODUCTION

The PID controller is by far the most common controller
in industry today. Even so, a lot of these controllers
are poorly tuned. Two of the main reasons for that is
lack of knowledge and time among the operators. As a
consequence, many controllers are set to default values. In
other cases, the derivative part is turned off because it was
not used correctly, giving noisy signals. It would therefore
be a good idea to educate the operators in the possibilities
of the PID controller and to provide them with simple
and fast design tools. This paper describes a program that
achieves both goals and should be useful for people in the
industry as well as for academics.

There are many PID design methods available today and
some of the most famous are collected and analysed in
Åström and Hägglund (2005). Of these, the MIGO and
AMIGO methods (also see Panagopoulos et al. (2002)
and Hägglund and Åström (2004)) are probably those
most worth mentioning in connection to this paper. They
are based on optimization of load disturbance rejection
under robustness constraints. A further development of
the MIGO method, and largely based on the same method
as used in this paper, was presented in Nordfeldt (2005).
An advantage with Nordfeldt’s method is that it also
works for some more advanced process structures. This
paper focuses on the software that solves the optimization
problem and how it can be used to increase people’s
understanding of PID control.

The proposed PID control design method is incorporated
in several Matlab functions. There are many good rea-
sons to have a software based tool for control design and
analysis. In Åström and Hägglund (2001) it is pointed out
that it would be of great value to have software that can
give persons with moderate knowledge on PID controllers
a possibility to experiment on those and at the same time

be able to use the program to build controllers for a real
plant, by incorporating it into an autotuning procedure.
For simulation experiments and real use purposes, the pre-
sented software is able to provide a well working controller
with analysis tools in just a few seconds time. The ad-
vanced user should also be able to modify the optimization
problem to broaden the possibilities. Besides the proposed
program, which is intended to be free of charge and down-
loadable, there are already several commercial software
packages able to provide PID design tools using a variety
of methods. Many of these are collected in Li et al. (2006)
and another one with very similar features to the proposed
is presented in Oviedo et al. (2006).

2. DESIGN CRITERION

The proposed PID controller design tool is mainly meant
to work well for systems common in process industry.
The kind of plants encountered there are often stable,
monotone and primarily affected by low frequency load
disturbances.

In order for the controller design to work well on a process,
P (s), it is important to take all system signals into consid-
eration, especially if optimization is used. Figure 1 shows a
block diagram of the system that the PID controller, C(s),
is designed for. There are two external signals entering the
system, namely load disturbance d (mainly low frequency)
and measurement noise n (assumed high frequency). Of
the closed loop transfer functions, those of greatest interest
for this paper are the complementary sensitivity function
T (s) and the sensitivity function S(s), defined as

T (s) =
P (s)C(s)

1 + P (s)C(s)
, S(s) =

1

1 + P (s)C(s)
.

The PID controller is on parallel form with a second order
low pass filter

C(s) = K(1 +
1

sTi

+ sTd) ·
1

1 + sTf + (sTf )2/2
,
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Fig. 1. A load disturbance, d, and measurement noise, n,
act on the closed loop system with process P (s) and
PID controller C(s).

on the measurement signal. Tf , is chosen to weight the
degree of measurement noise rejection.

The objective of the proposed PID design method is
to find the PID controller giving the least integrated
absolute error (IAE) value when a load disturbance d,
modelled as a step, is acting on the closed loop system. The
optimization is done under the constraints that the closed
loop system is stable and that the open loop Nyquist curve
is tangent to one or two prespecified circles in the complex
plane without entering either of them (see Figure 2), thus
maximizing the gain. These two circles are called the Ms-
and Mp-circles, which sizes and positions are given by

Ms = max
ω

|S(iω)|, Mp = max
ω

|T (iω)|,

hence the names. The resulting, non-convex, optimization
problem can be written as

min
K,Ti,Td∈R+

∞
∫

0

|e(t)|dt = IAEload (1)

subject to |Go(iω) − CMs
|2 ≥ R2

Ms
∀ω ∈ R+,

|Go(iω) − CMp
|2 ≥ R2

Mp
∀ω ∈ R+,

|Go(iω
s) − CMs

|2 = R2
Ms

,

|Go(iω
p) − CMp

|2 = R2
Mp

,

where e(t) is the control error, Go(iω) is the open loop
frequency response, ωs are frequencies for which Go(iω)
is tangent to the Ms-circle and vice versa for ωp on the
Mp-circle. Either ωs or ωp could be an empty vector, but
not at the same time. The radius and centre point of
the Ms-circle are denoted by RMs

and CMs
respectively,

with corresponding measures for the Mp-circle, RMp
and

CMp
. Small Ms- and Mp-values result in large circles. In

the software, the maximum allowed Ms- and Mp-values
can be prespecified by the user (Ms = Mp = 1.4 is
default, resulting in 41.8◦ phase margin). The Ms- and
Mp- criterions are known to set the closed loop robustness
towards process variations, disturbances and nonlinearities
as described in Åström and Hägglund (2005). MIGO on
the other hand uses a simplified robustness criterion called
the M -circle, defined as the smallest circle that can be
drawn around both the Ms- and Mp-circle.

3. ALGORITHM OVERVIEW

The main goal of the new design algorithm was to develop
a fast, interactive and easily modifiable software tool for
robust PID design.
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Fig. 2. The Ms-circle (dashed), Mp-circle (dash-dotted)
and the open loop Nyquist curve (solid) when the
optimization criterions are fulfilled.

A non-convex optimization problem like (1) may have
many local minima. It is therefore hard to guarantee that
the solution obtained always is the global solution. It is
also difficult to draw any general analytical conclusions as
the problem is far from trivial. The method of gridding
does however give a possibility of drawing surface plots of
the cost function. These can be used to determine whether
or not it is likely that a given solution is in fact the global
minimum. This is also the major reason why gridding is
an optional optimization method in the proposed design
program.

Analysis of many cost function surfaces have shown that
if not all, then at least a lot of them only have one
minimum. This finding gave the idea to use a faster and
more advanced optimization tool than gridding, called the
Nelder Mead (NM) method, Nelder and Mead (1965), in
order to find the minimum in the Ti-Td plane, see below.

The new algorithm can be summarized by

(1) Given a linear transfer function, initial PID parame-
ters are chosen using the AMIGO method.

(2) NM optimization finds the PID controller giving the
minimum cost function in the Ti-Td plane.
(a) For each Ti-Td couple, a proportional gain, K, is

found such that the constraints are fulfilled.
(b) Simulink simulations are used to calculate IAE-

values in the points through which the NM
method proceeds.

An interactive program menu has been added to make
it possible for the user to change a number of settings
in the algorithm as well as for the presentation of the
results. When the program is run in Matlab, the menu
will come up unless the opposite is stated by the user.
New default values for the optimization can also be set
as input parameter. This is especially useful for batch
runs, when you may want to choose the settings before
a number of program runs are started. An experienced
user should easily be able to modify the program, to for
instance, change the optimization method or at least to
change the cost function.
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4. ALGORITHM DETAILS

In this section, the optimization algorithm will be ex-
plained in further detail.

4.1 The Nelder Mead Method

Nelder Mead optimization belongs to the subclass of opti-
mization methods called direct search methods. The main
theme among these is that they only use function values
without creating approximations of the function gradients
explicitly. These methods are especially useful if, for in-
stance, the cost to evaluate the function is high and if it is
impossible to derive the exact gradient. These statements
apply to the optimization problem (1). Whenever the cost
function is evaluated, the feasible proportional gains must
be calculated and Simulink simulations run. The simula-
tions are particularly costly if the given PID parameters,
at a certain grid point, gives a very sluggish closed loop.

The Nelder Mead method is a simplex-based method.
There are many papers and books which describe in detail
how the NM algorithm works (see for instance Walters
et al. (1991) and Lagarias et al. (1998)). Two of the reasons
why the method is popular are that it is easy to both
understand and implement. It is only necessary to look
at two dimensional NM optimization in this paper as (1)
can be viewed as an unconstrained minimization problem
in R2, when K is chosen separately. Two dimensional
NM optimization can be interpreted as triangle search
progression with variable area.
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Fig. 3. The Nelder Mead progression in one iteration. The
initial simplex is the one with corners in B, G and
W . The simplex will change it’s shape depending on
function evaluations in closely situated points.

In order to begin the NM optimization, an initial triangle
has to be specified. The function to be minimized - lets
call it f - is evaluated at all three edges and the points are
sorted in the order: B (Best, lowest function value f(B)),
W (Worst, highest function value f(W )) and G (Good,
function value, f(G), in between the other two). From this
point, the algorithm will alter the shape of the triangle to
give a new one with less total cost. These steps are well
explained in the given sources and will not be presented
in further detail here. Figure 3 gives a hint of possible

new simplexes. When a new simplex has been determined
- again with corners B, G and W - the algorithm will
iterate until a termination condition has been fulfilled.

4.2 Initial Values

It is preferable to have a good initial guess of where
the minimum is located to have fast convergence of the
optimization. Another reason is that there is a chance -
although not so big when solving (1) - of ending up in
a local minimum. The method used to receive an initial
controller in the proposed algorithm is called AMIGO,
which is a tool for robust PID (and PI) synthesis. To
understand AMIGO, it is also important to understand
the MIGO method for PID design.

The optimization problem that the MIGO design deals
with is very similar to (1). But instead of minimizing over
the IAE-value, it uses the Integrated Error,

IEload =

∞
∫

0

e(t)dt,

as cost function and the M -circle as robustness constraint,
to determine the PID parameters. The IE cost is pro-
portional to 1/ki = Ti/K, which reduces the problem to
maximizing the ki-gain over the robustness area.

The AMIGO design is basically a set of formulas yielding
K, Ti and Td. In order to determine these, the MIGO
method was run on a large number of systems common in
process industry (with Ms = Mp = 1.4). Secondly, each
and every process in the batch was approximated as a first
order system with time delay (FOTD)

Gp(s) =
Kp

sT + 1
e−sL. (2)

The PID-parameters were then plotted versus the normal-
ized time delay, τ = L/(L + T ), and parameter fittings
were made on these curves resulting in the formulas.

In the proposed PID design method, the system of inter-
est is approximated as a FOTD system, (2), through a
step response test and the AMIGO parameters are then
determined. Let the index A denote the AMIGO PID
parameters. The AMIGO parameters provided are used
as one of the corners, (T A

d , T A
i ), in the initial Nelder Mead

simplex. Taking into account that the evaluation time is
usually greater far out in the Ti-Td plane, the two remain-
ing corners have been set to (0.4T A

d , T A
i ) and (T A

d , 0.4T A
i ).

4.3 Determining the proportional gain K

The key idea to find K in every point (Td,Ti), is to
determine all K-values putting the open loop Nyquist
curve on a circle in the complex plane (at every frequency
point ω), resulting in a function K(ω). Since the method
is numerical, the frequency span is divided into a finite
number of points ωk, k = 1, 2, .... In order to determine
K(ω), let us first assume that the open loop frequency
response, Go(iω), can be written as

Go(iω) = K(X(ω) + iY (ω)), (3)

where X(ω) and Y (ω) are the real and imaginary parts of
G′

o(iω) = Go(iω)/K. From the optimization problem (1)
we have the constraint

|Go(iω) − C|2 = R2, (4)
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for any circle with center in C and radius R. Using (3) and
(4), but changing K to K(ω), will lead to

(K(ω)X(ω) − C)2 + (K(ω)Y (ω))2 = R2 ⇒ (5)

K(ω)2 −
2CX(ω)

X(ω)2 + Y (ω)2
K(ω) +

C2 − R2

X(ω)2 + Y (ω)2
= 0.

The two solutions correspond to the gains for which the
open loop Nyquist curve will cross the front and back side
of the circle respectively (see Figure 4)

K1,2(ω) =
CX(ω) ±

√

R2(X(ω)2 + Y (ω)2) − C2Y (ω)2)

X(ω)2 + Y (ω)2
.

(6)
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Fig. 4. Proportional gain functions K1(ωk), K2(ωk), for
which KjG

′
o(iωk), j ∈ [1, 2], is tangent to a circle in

the complex plane. G′
o(iωk) is the open loop frequency

response with K = 1 and ωk denotes the discrete
frequency points.

K1,2(ω) could for instance look like the plots in Figure
5. For some frequency points, (6) will assume imaginary
or negative numbers, which are discarded. In the intervals
for which K assumes positive real values, there can be
multiple minima and maxima.

There are a few observations needed in order to conclude
which K-values will fulfill the constraints in (1).

Theorem 1. The open loop Nyquist curve, (3), of an
arbitrary controlled process, will be tangent a circle in the
complex plane, given by the center point C and radius R,
if and only if

dK1(ω)

dω
= 0 or

dK2(ω)

dω
= 0 (7)

Proof. In vector form, the open loop frequency response
becomes

Go(iω) = K

(

X(ω)
Y (ω)

)

. (8)

There are two conditions that has to be fulfilled in order for
the open loop Nyquist curve to be tangent to the circle at
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Fig. 5. A constructed sketch of how the functions K1(ω)
(solid) and K2(ω) (dashed) could look for a time
delayed system. Only K-values unique in ω - i.e. the
first two minima and first maximum in this case - will
fulfill the circle constraints in (1).

a given frequency point ω∗. The open loop Nyquist curve
should lie on the circle determined by

(KX(ω∗) − C)2 + (KY (ω∗))2 = R2, (9)

while the tangent of the open loop Nyquist curve and the
vector between the center point and Nyquist curve should
be orthogonal

(

dGo(iω
∗)

dω

)T (

KX(ω∗) − C
KY (ω∗)

)

= 0. (10)

Denoting X ′(ω) = dX(ω)/dω, Y ′(ω) = dY (ω)/dω, (10)
can be rewritten as

(

KX ′(ω∗)
KY ′(ω∗)

)T (

KX(ω∗) − C
KY (ω∗)

)

=

K2X(ω∗)X ′(ω∗) − KCX ′(ω∗) + K2Y (ω∗)Y ′(ω∗) = 0,

and in turn, by solving for K, we end up with

K =
CX ′(ω∗)

X(ω∗)X ′(ω∗) + Y (ω∗)Y ′(ω∗)
. (11)

Let us now go back to equation (5). Taking the derivative
with respect to ω, given that K ′(ω) = dK(ω)/dω, leaves
us with

2KK ′X2+2K2XX ′ − 2CK ′X − 2CKX ′+ (12)

2KK ′Y 2 + 2K2Y Y ′ = 0,

with ω omitted. Using K ′(ω) = 0, results in

K(ω)X(ω)X ′(ω) − CX ′(ω) + K(ω)Y (ω)Y ′(ω) = 0 ⇒

K(ω) =
CX ′(ω)

X(ω)X ′(ω) + Y (ω)Y ′(ω)
, (13)

which is identical to (11) in ω∗. Since (9) is fulfilled for all
frequencies in K(ω), the proof is concluded. 2

Go(iω) can, however, be tangent to the circle on both the
inside or outside, but still have points within (thus giving
an infeasible solution). To explain why, it is a good idea to
once again view Figure 4. At a given frequency point ωk, it
is obvious that all proportional gains between K1(ωk) and
K2(ωk) will place Go(iω) inside the circle, thus resulting
in infeasible K. Looking at Figure 5, this means that only
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the minima and maxima, for which K is unique in ω, are
feasible. For this particular case, it corresponds to the first
two minima and first maximum.

Once all possible K-values have been determined (the two
minima and the maximum from Figure 5 for example),
closed loop stability is evaluated. If there is stability, the
optimal proportional gain at a given point in the Ti-Td

plane, is then given by the K resulting in the lowest IAE-
value (determined by Simulink simulations).

Up to now it has been assumed that it is just one circle
in the complex plane that the open loop Nyquist curve
may be tangent to. Since the constraints of (1) demands
that the Nyquist curve is located outside both the Ms- and
Mp-circles, the algorithm has to be run twice.

5. EXAMPLES

In this section there will be a few examples highlighting the
benefits of the proposed program and algorithm compared
to other methods. It will also show that the new method
is reliable in many design cases.

Example 1. (The AMIGO test batch). The AMIGO for-
mulas, Hägglund and Åström (2004), were derived using
MIGO on a test batch, which includes 134 essentially
monotone systems common in process industry. In order
to compare with the MIGO PID designs on the batch, the
PID design software presented in this paper was modified
to use the M -circle as constraint. It took the program
just more than one hour to run through all sub-batches
except some integrating processes. This gives an average
time of 30 seconds per process in the batch. The batch
was however run to get a high accuracy on the optimal
solution rather than optimized for a fast design. If speed
is of essence, the average design time per process could
be cut by at least two thirds of the time. The designs
was run on an Intel R© Dual-CoreTM, 2.13 GHz with 1 GB
RAM and Fedora 7 using Matlab R© 7 R2007a. The only
two parameters that had to be modified from the default
values (depending on the process) in order for the batch
to run through properly, were Tf and the frequency grid.

The PID parameters derived by the proposed algorithm
were compared to those given by the MIGO method. Since
the MIGO method was not derived to minimize IAE, the
proposed method should give lower values at all times.
The MIGO method is however a good indicator to see if
the new algorithm works or not. The batch run showed
that the two methods are very similar. In average, the
new controllers resulted in IAE values at 95% of what
the MIGO controllers gave over the whole batch. This
gives both a strong indicator that the new program works
properly and that the MIGO method gives essentially IAE
minimized controllers for the batch.

To see the benefit of using the Ms- and Mp-circles instead
of the M -circle, the whole batch was compared when the
two different constraints were used respectively. Figure 6
shows that the biggest percentual gain is given for low
values on the normalized time delay, τ , while more delay
dominated systems are less dependent on the choice of the
constraints. This indicates that the IAE can be decreased
a great deal without changing the essential robustness
constraints.
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Fig. 6. IAE values comparison for the testbatch using the
M -circle constraint alone or both the Ms- and Mp-
circles. The plot displays 100 · IAEMs,Mp

/IAEM as a
function of τ .

The one subbatch where the newly proposed PIDs gave
IAE values with the most deviation from the MIGO ones
was

P (s) =
1

(s + 1)((sT )2 + 1.4sT + 1)
, (14)

with T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.,

i.e. processes with complex poles. In particular, when
T = 0.1, the new IAE is as small as 62.5% of the
MIGO IAE, corresponding to a significant improvement.
Figure 7 shows the output signal, y, and control signal,
u, when a load disturbance, d (see Figure 1), is acting on
this process. The dashed curves correspond to the MIGO
controller (K = 3.96, Ti = 0.46, Td = 0.08), the solid lines
to the proposed controller with the M -circle constraint
(K = 5.42, Ti = 0.29, Td = 0.16) and the dash-dotted
line to the new design method with the Ms- and Mp-
constraints (K = 6.53, Ti = 0.22, Td = 0.16). The open
loop Nyquist curves for the three cases are shown in Figure
8. It is known that the MIGO method discards solutions
that touches the M -circle twice. This example shows that
this choice may be overly conservative. It is also evident
that the substitution of the M -circle to the Ms- and Mp-
circles gives a much lower IAE-value in this case.

Example 2. (An oscillatory process). Consider an oscilla-
tory system with the linear transfer function

P (s) =
9

(s2 + s + 9)(s + 1)
, (15)

which has two poles with a relative damping of ζ = 0.17.
An IE-cost function is not suitable for PID design when the
system is oscillatory, ruling out use of the MIGO method.
The proposed design algorithm, however, can derive a PID
design without problems. For Ms = Mp = 1.4 the program
gave the parameters: K = 0.37, Ti = 0.23, Td = 0.80.
Figure 9 shows the control- and output signals.

6. CONCLUSIONS

This paper has presented a new software tool that can help
educate people in PID control systems as well as provide
them with controller designs in short time. The controller
designs are made to minimize the integrated absolute
error during a load disturbance on the process input. The
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with M -circle constraint; Dash-dotted line: Proposed
PID with the Ms- and Mp-circle constraints.
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Fig. 8. The open loop Nyquist curves when three different
design methods were used on (14), T = 0.1. Dashed
line: MIGO control; Solid line: Proposed design with
M -circle constraint; Dash-dotted line: Proposed de-
sign with the Ms- and Mp-circle constraints.

optimization is constrained by robustness conditions on
two of the sensitivity functions. The finding that a lot
of processes only give one unique minimum solution to
the optimization problem lead to the use of the Nelder
Mead method. The initial simplex is provided by the
AMIGO method, a choice made rather for the speed of
the algorithm than it being necessary to find the global
minimum.

The software tool was shown to give reasonable controllers
on a large batch of processes common in process industry.
The use of IAE as cost function also give the possibility
to run the program on highly oscillatory systems, as was
shown in an example.

Future research should provide a better way of handling
the effect of measurement noise on the control signal, pro-
viding a sophisticated way of choosing the filter constant
Tf . It may also be needed to include even more constraints
in the optimization problem in order to, e.g, give robust-
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Fig. 9. The output signal, y, and control signal, u, when the
proposed design method was used to find a controller
for the oscillatory process (15). Ms = Mp = 1.4.

ness to time delay uncertainty. With these modifications
it should be possible to use the program for PID controller
design on real plants.
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K.J. Åström and T. Hägglund. The future of PID control.
Control Engineering Practice, 9:1163–1175, 2001.
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