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Abstract: A pseudo-partial-derivative based dynamic linearization method is introduced, the method can 
transform general discrete-time nonlinear model into discrete-time time-varying linear model. Based on 
this discrete-time time-varying linear model, a novel norm-optimal iterative learning control (NOILC), 
called model-free based norm-optimal iterative learning control (MFNOILC), is proposed for a class of 
discrete-time nonlinear systems. Through rigorous analysis, the convergence of the proposed algorithm is 
proved. The simulation results show the effectiveness of the algorithm. 
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1. INTRODUCTION 

Iterative learning control (ILC) has been intensively studied 
over the past two decades (Moore, 1993; Sun et al, 1995; 
Chen et al, 1999; Xu et al, 2003). ILC was originally 
proposed in the robotics community (Arimoto, Kawamura 
and Miyazaki, 1984) as an intelligent teaching mechanism for 
robot manipulators. The basic idea of ILC is to improve the 
control signal for the present operation cycle by feeding back 
the control error in the previous cycle. Nowadays, ILC has 
become one of the most active research areas in control 
theory and applications. It is one of the most effective 
methodologies for repeatable control environment which 
deals with repeated tracking control tasks for deterministic 
systems. Specifically, ILC improves the transient response 
and tracking performance in time domain when the system 
executes the same motion under essentially the same initial 
conditions.  

The formulation of ILC design problem could be divided into 
three categories, the first is the contraction mapping based 
ILC control design methods. So far, most of the ILC 
publications belong to this category (Chen, 1998; Kuc, Lee 
and Nam, 1992). This category is belong to the almost a 
model-free method. The second one is the energy function 
based ILC, which the dynamics in state space has been 
incorporated in ILC design (Ham, Qu, and Kaloust, 1995; Xu, 
and Tan, 2002). The third one is the optimization based ILC 
control design method, in which explicit optimization 
objective is introduced into the ILC control design, and the 
monotonic error sequence could be achieved (Amann, Owens 
and Rogers, 1996; Lee, Lee and Kim, 2000; Hatonen, Owens 
and Moore, 2004; Hatonen, 2004).  

The optimization based ILC control design method is also 
called model-based ILC methods. The model based ILC 
algorithms proposed were based on the known linear time-
invariant model of the controlled plant. So the algorithms 
become hyper-sensitive to model uncertainties and it cannot 
be used directly in the practice. 

There are certain additional traits and requirements found in 
model-based norm-optimal ILC approaches. First, dynamics 
of almost all practical processes are intrinsically nonlinear, 
and the nonlinearities become exposed when the processes 
are operated over a wide range of conditions. For this reason, 
it is desirable to derive a norm-optimal ILC control 
algorithms that can accommodate nonlinear system models. 
Secondly, to model the practical plants is not an easy thing, 
and sometimes it is impossible in the view of cost or 
accuracy. Hence, it is desirable to design directly the input-
output based ILC control law for the ILC control task. So we 
can enjoy not only extra good properties of the norm optimal 
ILC, but also the little requirements on the system dynamic 
model of the prototype of the ILC as well.   

The objective of this paper is to provide a more general and 
comprehensive framework for quadratic criterion based ILC 
that is capable of addressing all the issues that mentioned to 
be important for the process control applications. We first 
introduce a dynamic linearization method that can transform 
general discrete-time nonlinear model into a time-varying 
linearized model using a concept of pseudo-partial- derivative 
(PPD). Based on this discrete-time linearized model, the 
norm-optimal ILC for discrete-time nonlinear systems is 
designed, and the mathematical properties are also discussed 
similar to the outline of Amann, Owens and Rogers (1996).  
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The rest of the paper is organized as follows. In section 2, the 
problem formulation and the model transformation are 
presented. In section 3, the norm-optimal ILC is designed, 
and its properties are also discussed. In section 4, some 
numerical simulation studies are given in this section to 
demonstrate the efficiency and correctness for MFNOILC 
proposed. The conclusions are drawn in the section 5. 

2. PROBLEM FORMULATION AND MODEL 
TRANSFORMATION 

2.1 Problem formulation 

The system to be controlled is described by the following 
SISO discrete-time nonlinear equation 

( 1) ( ( ), , ( ), ( ), , ( )),y uy t f y t y t n u t u t n+ = − −                (1) 

where ( ), ( )y t u t  are the output and input at time t, 
{0,1, , 1}t T∈ − , ,y un n are the unknown orders, and ( )f ⋅ is 

an unknown nonlinear function.  

The control task is the perfect tracking in a finite interval 
under a repeatable control environment. The perfect tracking 
task implies that a trajectory must be strictly followed from 
very beginning of the execution. The repeatable control 
environment implies (1) identical target trajectory and (2) 
same initial condition for all trials. In more details, the 
control objective for ILC is to design a sequence of 
appropriate control inputs ( )ku t such that the system 
output ( )ky t approaches the target trajectory ( ),dy t  

{0,1, , 1}t T∈ − , and T > 0 is a finite number. The subscript 
k denotes the k-th repeated control operation period and is 
called k-th learning “iteration”. ( )dy t  is invariant in iteration 
domain.  

2.2 Model transformation 

The system dynamics in the k-th iteration  

( 1) ( ( ), , ( ), ( ), , ( )).k k k y k k uy t f y t y t n u t u t n+ = − −        (2) 

The system dynamics in the (k-1)-th iteration  

1 1 1 1

1

( 1) ( ( ), , ( ), ( ),

, ( )).
k k k y k

k u

y t f y t y t n u t

u t n
− − − −

−

+ = −

−
                    (3) 

We first make two assumptions with regards to the system. 

Assumptions: 

A1: The partial derivative of ( )f ⋅ with respect to control 
input ( )ku t is continuous. 

A2: The system (2) is generalized Lipschitz, that is, 
satisfying 

( 1) ( ) ( ) 0,k k ky t D u t t and u tΔ + ≤ Δ ∀ Δ ≠          (4) 

where D is a constant, 1( 1) ( 1) ( 1)k k ky t y t y t−Δ + = + − +  ,  

1( ) ( ) ( )k k ku t u t u t−Δ = − , [ ]( ) ( ), ( 1), , ( 1)k k k k

Tu t u t u t u t L= − − + ,  
and  L is a positive integer known as the control input length 
constant.  

Remark 1: These assumptions of the system are reasonable 
and acceptable from a practical point of view. Assumption 
(A1) is a typical condition for many control laws which a 
general nonlinear system should satisfy. Assumption (A2) 
poses a limitation on the rate of change of the system output 
permissible before the control law to be formulated is 
applicable. 

Theorem 1: For the nonlinear systems (2) and (3), when 
Assumptions (A1) and (A2) hold, then for a given L, there 
must exist ( )k tφ , called pseudo-partial-derivative (PPD), and 

( )k t Dφ ≤ such that if ( ) 0ku tΔ ≠ , the system may be 

described as 

( ) ( ) ( ),k k ky t t u tφΔ = Δ                                                         (5) 

where 1 2 .( ) ( ), ( ), , ( )L
k k kk

Tt t t tφ φ φ φ⎡ ⎤= ⎣ ⎦  

Proof:  

Subtracting (3) from (2), and using the differential mean 
theorem, yields 

*
1

*

( 1) ( 1) ( / ( )) ( )

( / ( 1)) ( 1) ( ),
k k k k

k k k

y t y t f u t u t

f u t L u t L tψ
−+ = + + ∂ ∂ Δ

+ + ∂ ∂ − + Δ − + +
 (6) 

where * / ( )kf u t∂ ∂  represents the partial derivative value of 
f at some point in the interval 1[ ( ), ( )]k ku t u t− , and  

1

1

1 1 1

1 1

( ) ( ( ), , ( ), ( ),

, ( 1), ( ), , ( ))
( ( ), , ( ), ( ),

, ( 1), , ( ),

k k k y k

k k k u

k k y k

k k u

t f y t y t n u t

u t L u t L u t n
f y t y t n u t

u t L u t n

ψ −

−

− − −

− −

= −

− + − −
− −

− + −

                           (7) 

and 1( ) ( ) ( )k k ku t u t u t−Δ = − . 

Rewriting (6) in a compact form, we obtain 

1 , 0,1, 2, ,k k k ky y G u k−= + Δ =                                       (8) 

where 
[ ](1) (2) ( ) T

k k k ky y y y T= , [ ]1 1 1 1(1) (2) ( ) T
k k k ky y y y T− − − −= ,

[ ](0) (1) ( 1) T
k k k ku u u u TΔ = Δ Δ Δ − , 

1

2 1

1

1

(0)
(1) (1) 0

.
( 1) ( 1)

0 ( 1) ( 1)

k

k k

k L
k k

L
k k T T

G
L L

T T

φ
φ φ

φ φ

φ φ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦
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Considering the following equation with a variables ( )k tη   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−Δ

−Δ
Δ

=

)1(

)1(
)(

)()(

Ltu

tu
tu

tt

k

k

k

T
kk ηψ

.                                                    (8) 

Equation (8) must have at least a solution )(tkη since 
condition 0)( ≠Δ tuk holds. In fact, it must have infinite 
solutions. 
Let         

* *( ) / ( ) / ( 1) ( ).
T

k k k kt f u t f u t L tφ ∂ ∂ ∂ ∂ η⎡ ⎤= − + +⎣ ⎦                  (9) 

Replacing )(tkψ of (7) by (9), then we have  

( ) ( ) ( ),k k ky t t u tφΔ = Δ  

where [ ]T
kkkk Ltutututu )1(,),1(),()( +−Δ−ΔΔ=Δ , and 

1 2( ) ( ), ( ), , ( ) .
TL

k k k kt t t tφ φ φ φ= ⎡ ⎤⎣ ⎦  The boundedness of PPD 
is the straightforward result from the assumption (A2) and (5). 

Remark 2:  Theorem 1 is an extension of the results in Hou, 
et al. (1994 and 1997). This theorem shows that ( )k tφ is a 
differential signal in some sense along the iteration axis and 
bounded for any iteration number k. Furthermore, 
PPD ( )k tφ is a slowly time-varying parameter along the 

iteration axis and its relation with ( )ku t  may be ignored 

when ( )ku tΔ  is not too large. 

Remark 3: For the time-invariant linear system 

0( 1) ( ) ( ) (0) ,
( ) ( ),

x t Ax t Bu t x x
y t Cx t

+ = + =

=
 

where 0,1, , 1t T= − . Obviously, the system output is 
1

1
0

0

( ) ( )
t

t t i

i

y t CA x CA Bu i
−

− −

=

= + ∑ , then the output in the k-th iteration 

is  

1

0

( 1) (0) ( ),
t

t t i
k k k

i

y t CA x CA Bu i+ −

=

+ = + ∑  

the output in the (k-1)-th iteration is 

 1
1 1 1

0

( 1) (0) ( ),
t

t t i
k k k

i

y t CA x CA Bu i+ −
− − −

=

+ = + ∑  

thus we have  

0

( 1) ( ) , (0 ) (0 ), .
t

t i

k k k
i

y t C A B u i if x x k−

=

Δ + = Δ = ∀∑  

From the above expression, we can see that, the PPD 
vector ( )k tφ is just the Markov sequence of the system if the 
given constant L is sufficiently large such that L=T, that is 

1 ( )k t CBφ = , 2 ( )k t CABφ = , , 1( )T T

k t CA Bφ −= , this is the 
same description as Amann, Owens and Rogers (1996). 

3. NORM-OPTIMAL ITERATIVE LEARNING CONTROL 

3.1 Optimal learning control law algorithm 

Let ( )dy t  be the desired output signal, ( ) ( ) ( )k de t y t y t= − be 
the output error, and define the optimization design problem 
for the ILC controller as follows 

 
1 1

2 2

1 1 1 1
( ) ( )

min ( ) min( ),
k k

k k k k k
u t u t

J u e u uλ
+ +

+ + + += + −                         (12) 

subject to 

1 1 1,k k k ke e G u+ + += − Δ                                                       (13) 

where 0.λ >  

To simplify notions, we will hereafter use k d ke y y= −  to 
denote ( ) ( ) ( )k de t y t y t= − . 

Inserting (13) into (12), and differentiating the objective 
function, and setting the differential equal to zero yields the 
following norm-optimal ILC control law 

1
1 1 1 1( ) .T T

k k k k k ku u I G G G eλ −
+ + + += + +                                      (14) 

Remark 4: The row of the matrix 1kG +  could not be zero 
vector, otherwise the problem is not solvable. 

Remark 5: when 1L = , the norm optimal ILC control law 
becomes 

21 1
1 1 1( ) ( ) ( )( ( ) ( )) /( ( ) ),

[0, 1], 1, 2, .
k k k d k ku t u t t y t y t t

t T k

φ λ φ+ + += + − +

∀ ∈ − =
     (15) 

It is the default form for the norm-optimal ILC controller. 

Since the PPD ( )k tφ  is unknown, a new parameter estimation 
Criterion function is used for the derivation of the estimator.  

2

1 1

2

1

ˆ ˆ( ( )) ( 1) ( ) ( )

ˆ ˆ( ) ( ) ,

k k k k

k k

J t y t t u t

t t

φ φ

μ φ φ

− −

−

= Δ + − Δ

+ −

                                       (16) 

where 0.μ >  

By using (3), the minimization of above criterion function 
gives estimation algorithm 

1 1 1

2
1 1 1

ˆ ˆ( ) ( ) ( )( ( 1)
ˆ( ) ( )) /( ( ) ),

k k k k

T
k k k

t t u t y t

u t t u t

φ φ

φ μ

− − −

− − −

= + Δ Δ +

− Δ + Δ

                                   (17) 

and control law algorithm becomes 

1
1 1 1 1

ˆ ˆ ˆ( ) , {0,1, 1}.T T
k k k k k ku u I G G G e t Tλ −

+ + + += + + ∈ −                   (18) 
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In order to make the condition ( ) 0ku tΔ ≠  in theorem 1 
satisfied, and meanwhile to make parameter estimation 
algorithm (17) have stronger ability to track time-varying 
parameter, a reset measurement of estimation algorithm 
should be taken 

0
ˆ ˆ( ) ( ),k t tφ φ= if ˆ ( )k tφ ε≤  or 1( ) ,ku t ε−Δ ≤                 (19) 

where ε  is a some small positive constant, 0
ˆ ( )tφ  is the initial 

estimation value of ˆ ( ).k tφ  

In order to obtain the convergence and stability for the 
controller, another assumption about the system should be 
made. 

A3: Estimation error of ppd ( )k tφ  is sufficiently small, such 

that { }1 1 1 1 1
ˆ ˆ ˆ min , {0,1, 1},T T

k k k k kG G G G t Tσ+ + + + +− < ∀ ∈ −  

and {0,1, },k∀ ∈  where { }1min kσ + is the smallest 

eigenvalue of 1 1
ˆ ˆ .T

k kG G+ +   

Theorem 2 Assume A1-A3 hold, Suppose that the plant 
described by (2) is controlled by (18) and the estimate ˆ ( )k tφ  
is identified using (17) and (19), then 

Estimate ˆ ( )k tφ  is bounded for all {0,1, 1}t T∈ −  and 
{0,1, }.k ∈  

1 ,k ke eρ+ ≤  where 0 1.ρ< <  

lim ( ) 0.kk
e t

→∞
=  

Proof:  

Introduce the following notation: 

ˆ( ) ( ) ( ).k k kt t tφ φ φ= −                                                              (20) 

From (5) we have 

1 1 1( 1) ( ) ( ).T
k k ky t u t tφ− − −Δ + = Δ                                                (21) 

When 1( )ku t ε−Δ ≤ , from (19) we can see that ˆ ( )k tφ  is 

bounded. When 1( ) ,ku t ε−Δ >  subtracting ( )k tφ  from both 
sides of (17) yields 

2
1 1 1 1 1

1 1

ˆ( ) ( ( ) ( ) ( )) /( ( ) )

( ) ( ) ( ).

T
k k k k k k

k k k

t u y t u t t u t

t t t

φ φ μ

φ φ φ

− − − − −

− −

= Δ Δ − Δ + Δ

+ + −
         (22) 

Substituting (21) into (22) gives 

2
1 1 1 1

1

( ) ( ( ) ( )) ( ) /( ( ) )

( ) ( ).

T
k k k k k

k k

t I u t u t t u t

t t

φ φ μ

φ φ
− − − −

−

= − Δ Δ + Δ

+ −
              (23) 

Let  

2
1 1 1( ) ( ( ) ( )) ( ) /( ( ) ).T

k k k kt I u t u t t u tφ μ− − −Ξ = − Δ Δ + Δ                 (24) 

Computing 2( )tΞ  yields 

22 2 2
1 1 1

2
2

1 1 1

( ) ( ) ( 2 || ( ) || /( || ( ) || ))

( ) ( ) /( || ( ) || ).

k k k

T
k k k

t t u t u t

u t t u t

φ μ

φ μ

− − −

− − −

Ξ = + − + Δ + Δ

× Δ + Δ

     (25) 

Since ( )k tφ  is an iteration dependent column vector and 
0,μ >  we have  

22
1( ) ( ) .kt tφ −Ξ <                                                              (26) 

This implies that there exist positive constant 1d <  such that 
following inequality holds 

0( ) || ( ) || 2 (1 ) /(1 ).k k
k t d t D d dφ φ≤ + − −                           (27) 

In view of (27), ( )k tφ  is bounded, ( )k tφ  is bounded, so all of 

the ˆ ( )k tφ  is bounded. 

Substituting (18) into (13)  

1
1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) .T T T T
k k k k k k k ke I G G I G G G G eλ λ−

+ + + + + + += + + −                     (28) 

Taking norms on both sides of (28) we have 

{ }

1
1 1 1 1 1

1 1 1 1

1

ˆ ˆ ˆ( ( ) )

ˆ ˆ ˆ
|| || .

min

T T
k k k k k k

T T
k k k k

k
k

e I G I G G G e

G G G G
e

λ

λ

λ σ

−
+ + + + +

+ + + +

+

= − +

+ −
≤

+

              (29) 

From assumption 3 and (29) we can conclude 

1 ,k ke eρ+ ≤  and lim ( ) 0.kk
e t

→∞
=   

Remark 6: For the time-invariant linear system 

0( 1) ( ) ( ) (0) ,
( ) ( ),

x t Ax t Bu t x x
y t Cx t

+ = + =

=
 

where 0,1, , 1t T= − .  

If the given constant L is sufficiently large such that L=T, 
that is  1 2 1( ) ( ) , ( ) ,, , T T

k k kt CB t CAB t CA Bφ φ φ −= = =  and let 
1,λ =  then the theorem2 becomes 

( )2
1 1/(1 ) ,k ke eσ+ ≤ +   where 2σ  is the smallest 

eigenvalue of .TGG   

lim ( ) 0.kk
e t

→∞
=  

This is the same as in Amann, Owens and Rogers (1996). 

4. SIMULATION STUDY 
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In order to demonstrate effectiveness of the proposed ILC 
algorithm, two simulation examples are now presented. 

Example 1: The system to be controlled is the same as in 
Hou (2004), the SISO nonlinear model is 

2 3

2 2

2 2

( 1)

( ) /(1 ( ) ) ( ) ,0 50,
( ) ( 1) ( 2) ( 1)( ( 2) 1) /(1 ( 1) ( 2) ) ,

( ) ( ) /(1 ( 1) ( 2) ),50 100,

y t

y t y t u t t
y t y t y t u t y t y t y t
a t u t y t y t t

+

⎧ + + ≤ ≤
⎪

= − − − − − + − + −⎨
⎪+ + − + − ≤ ≤⎩

     (30) 

where ( ) 1 ( / 50)a t round t= +  is parameter of the system. 

Obviously the structure, order, and parameter of the system 
to be controlled are time-varying. 

The control task of system is 
( /10)

( /10)

0.5 ( 1) ,0 30,
( 1) 0.5sin( /10) 0.3cos( /10),30 70.

0.5 ( 1) ,70 100,

t

d
t

t
y t t t t

t
π π

⎧ × − ≤ ≤
⎪+ = + < ≤⎨
⎪ × − < ≤⎩

  (31) 
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Fig.1 The norm of the error with random initial conditions 

In order to illustrate the proposed MFNOILC algorithm can 
overcome the limitations on identical initial condition of 
traditional ILC, a random varying along iteration axis (0)ky is 
used. In the simulation we choose 1,2, 1.5, 1,L λ μ= = = and 
Fig.1 shows the tracking error with random initial conditions, 
where the learning error norm is a usual vector norm, e.g., 

1/ 2
2

1
( ) ( ) , 1, 2 .

T

k k
t

e t e t k
=

⎧ ⎫= =⎨ ⎬
⎩ ⎭
∑  Form fig.2 we can see that the 

convergence over the entire finite time interval can be 
guaranteed when the initial conditions are randomly varying 
along the iteration axis, and the tracking performance when 
L=2 is better than when L=1. 

Example 2: Freeway traffic system 

The system to be controlled is the same as in M. 
Parageorgiou, et al. (1990), the macroscopic traffic flow 
model is 

1( 1) ( ) ( ( ) ( ) ( ) ( )) / ,i i i i i i it t q t q t r t s t T Lρ ρ −+ = + − + −                    (32) 

( ) ( ) ( ),i i iq t t v tρ=                                                                (33) 

1

1

( 1) ( ) ( ( ( )) ( )) /
( )( ( ) ( )) /
( ( ) ( )) /( ( ( ) )),

i i i i

i i i i

i i i i

v t v t V t v t T
v t v t v t T L
T t t L t

ρ τ

ν ρ ρ τ ρ κ
−

+

+ = + −

+ −

− − +

                 (34) 

( ( )) (1 ( ( ) / ) ) .l m
i free i jamV t v tρ ρ ρ= −                                               (35) 

The definition of parameters in model and the setting of 
parameters are similar to M. Parageorgiou, et al. (1990), and 
Hou (2007).  

Boundary conditions are summarized as follows 

0 0 1( ) ( ) / ( ),t q t v tρ = 0 1( ) ( ),v t v t= 1( ) ( ),N Nt tρ ρ+ =    
1( ) ( ).N Nv t v t+ =  

Consider a long segment of freeway that is subdivided into 5 
sections. The length of each section is 0.5 km. The desired 
density is 30 /veh km .The initial traffic volume entering 
section 1 is 1500 vehicles per hour. The initial density, mean 
speed, and other parameters used in this model are listed in 
Table 1.There exist an on-ramp with known traffic demands 
in section 3 and an off-ramp with unknown exiting traffic 
flow in section 4. The parameters used in this model are 
listed in Table 1. In order to illustrate the proposed 
MFNOILC algorithm can overcome the limitations on 
identical initial condition of traditional ILC, a random 
varying along iteration axis (0)iρ is used. In the simulation 
we choose 1, 0.001, 1.L λ μ= = =  Fig.2 shows the tracking 
error of the traffic flow density in section 3 and Fig.3 shows 
density tracking performance in section 3 with random initial 
conditions, where the learning error norm is a usual vector 
norm. 

Table1:  Parameters associated with the traffic model 

freev  
jamρ  l  m  κ  τ  

80 80 1.8 1.7 13 0.01 

T  ν  )(0 kq  )0(ir  α   

0.00417 35 1500 0 0.95  

 

For practical urban freeway traffic control system, form fig.2 
and fig.3 we can see that the proposed ILC can overcome the 
limitations of traditional ILC with respect to initial condition, 
achieve the perfect tracking except initial point. 

5.  CONCLUSION 

The MFNOILC scheme based on the discrete-time linearized 
model is proposed in this paper, and the convergence over the 
entire finite time interval can be guaranteed by theoretical 
analysis when the initial conditions are randomly varying 
along the iteration axis. Moreover, this paper covers the 
results of Owens (1996), which is the special case of the 
MFNOILC in LTI system. The main features of the 
MFNOILC scheme is that the controller design only depends 
on the I/O data of the dynamic system. The simulation results 
show effectiveness of proposed algorithm. 
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Fig.2 The norm of tracking error of traffic flow density in 
section 3 with random initial conditions 
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Fig.3 Traffic flow density tracking performance in section 3 
with random initial conditions 

REFERENCES 

Arimoto, S., Kawamura, S., and Miyazaki, F. (1984). 
Bettering operation of robots by learning. Journal of 
Robotic Systems, 1, (1), 123-140. 

Amann, N., Owens, D. H. and Rogers, E. (1996). Iterative 
learning control for discrete-time systems with 
exponential rate of convergence. IEE Proc.-Control 
Theory and Applications, 143, (2), 217-224. 

Chen, C. J. (1998). A discrete iterative learning control for a 
class of nonlinear time-varying systems. IEEE 
Transactions on Automatic Control, 43, (5), 748-752. 

Chen, Y. Q. and Wen, C. Y. (1999). Iterative Learning 
Control: Convergence, Robustness and Application. 
Lecture Notes in Control and Information Sciences 248, 
Springer. 

Ham, C, Qu, Z. H. and Kaloust, J. H. (1995). Nonlinear 
learning control for a class of nonlinear systems based on 
Lyapunov’s direct method. In Proceeding of 1995 IEEE 
American Control Conference, 3024-3028. 

Hatonen, J. J., Owens, D. H. and Moore, K. L. (2004). An 
algebraic approach to iterative learning control. 
International Journal of Control, 77, (1), 45-54. 

Hatonen, J. J. (2004). Issues of algebra and optimality in 
iterative learning control. PhD dissertation, University 
of Oulu, Finland. 

Hou, Z. S. (1994). The parameter identification, adaptive 
control and model-free learning adaptive control for 
nonlinear systems, PhD thesis, Northeastern University, 
China. (in Chinese) 

Hou, Z. S. and Huang, W. H. (1997). Model-free learning 
adaptive control of a class of SISO nonlinear systems. 
Proc of Amer. Control Conf., Albuquerque, New Mexico, 
343-344. 

Hou , Z . S. (1999) .Non-Parametric Model and its Adaptive 
Control. Science press, Beijing. (in Chinese) 

Hou, Z. S., Xu, J. X. and Zhong, H. W. (2007). Freeway 
Traffic Control Using Iterative Learning Control-Based 
Ramp Metering and Speed Signalling. IEEE Transaction 
on vehicular technology. 56, (2), 466-477. 

Hou, Z. S., Xu, J. X. and Yan, J. W. (2007). An Iterative 
Learning Approach for Density Control of Freeway 
Traffic Flow via Ramp Metering, Transportation 
Research Part C, In Press 

Moore, K. L. (1993). Iterative Learning Control for 
Deterministic Systems, Springer-Verlag, Advances in 
Industrial Control Series. 

Kuc, T. Y. Lee, J. S. and Nam, K. (1992). An iterative 
learning control theory for a class of nonlinear dynamic 
systems.  Automatica, 28, (6), 1215–1221. 

Lee, J. H., Lee, K. S. and Kim, W. C. (2000). Model-based 
iterative learning control with a quadratic criterion for 
time-varying linear systems. Automatica, 36, (5), 641-
657. 

Parageorgiou, M., Blosseville, J. M. and Hadj-Salem, H. 
(1990). Modelling and real time control on traffic flow 
on the southern part of Bpulevard Peripherique in Paris. 
Part I: Modelling; Part II: Coordinated on-ramp metering, 
Transportation Research, A24, 345-370. 

Sun, M. X. and Huang, B. J. (1998). Iterative Learning 
control. National Defence Industry Press, Beijing. (In 
Chinese) 

Xu, J. X. and Tan, Y. (2003). Linear and Nonlinear Iterative 
Learning Control. Lecture Notes in Control and 
Information Sciences, 291, Springer. 

Xu, J. X. and Tan, Y. (2002). A composite energy function 
based learning control approach for nonlinear systems 
with time varying parametric uncertainties. IEEE 
Transactions on Automatic Control, 47, (11), 1940-1945. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2819


