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Abstract: The NARMA model is an exact representation of the input-output behavior of finite-
dimensional nonlinear discrete-time dynamical systems in the neighborhood of the equilibrium state. 
However, it is inconvenient for purposes of adaptive control due to its nonlinear dependence on the control 
input, even by using the neural network method.  In this paper, we introduce a so called model-free 
adaptive control (MFAC) method, which is based on some new dynamical linearization model and concept, 
the partial form linearization (PFL) and the pseudo-partial derivative (PPD) of a SISO nonlinear discrete-
time system. The model-free means that the controller design is only based on the I/O data of the 
controlled plant, no training process, no structure information and no model are needed. Rigorous analysis 
and extensive simulations have shown that it has BIBO stability and performs very well. 
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1. INTRODUCTION 

For the adaptive control of linear systems, the theory and 
powerful design methods have been available and the 
theoretical analysis methods are well established. However, 
topics on nonlinear discrete-time systems, only some special 
nonlinearity have been considered. One of the reasons is that 
the well-known Lyapunov design technique, an extremely 
useful tool in continuous-time, is of little use in nonlinear 
discrete-time systems because the increments of the 
parameter estimates do not appear linearly in the increments 
of Lyapunov function (Elshafei, et al., 1995, Etxebarria,  
1994). Moreover the methods for directly adjusting the 
controller parameters based on the output error for general 
nonlinear discrete-time systems are very few.   

As we have known, the dependence on mathematical model 
structure of the controlled system and the un-modelled 
dynamics are the two main inevitable problems for the 
traditional adaptive control theory, therefore the design of the 
adaptive control system only using the I/O data of controlled 
plant will be of great significance both in the development 
and applications of control theory. Two kinds of model-free 
control techniques applied successfully in practice are the 
PID typed control technique and the adaptive control by 
using the neural networks method, but they both suffer some 
limitations themselves: The PID typed can only cope with 
linear time-invariant system, and the neural networks 
technique also has some problems which are very difficult to 
be overcome, such as, the need of the orders of the plant and 
high speed computer, the determination of numbers of nodes 
and hidden layers and theoretical analysis. 

The MFAC is proposed by Prof. Hou Z. (1994), the design of 
the MFAC uses the I/O data of the controlled system only 
and can realize the parameter adaptive control and structure 
adaptive control. Under some assumptions, the convergence 
and stability of MFAC scheme based on tight form 
linearization model is proved by Hou Z., (1994, 1997, 1999), 
and this method is widely used in many fields, e.g. in 
chemical industry (Coelho et al, 2006), in sheet forming 
process (Liu et al., 2004), in linear motor control and in 
injection modelling process (Tan, et al., 1999, 2001), in PH 
value control (Zhang et al., 2006). At present, stability 
analysis of the MFAC based on partial form linearization 
model or full form linearization model is still an open 
problem. In this paper, the BIBO stability of MFAC based on 
the former is provided, and simulation results show the 
efficacy of this scheme. 

The rest of the paper is organized as follows. In section 2, the 
problem formulation and the model transformation are 
presented. In section 3, the MFAC system is designed. In 
section 4, the BIBO stability of the MFAC system is 
provided. In section 5, some numerical simulation studies are 
given to demonstrate the efficiency and correctness for the 
MFAC scheme. The conclusions are drawn in the section 6. 

2. PLANT DESCRIPTION AND MODEL 
TRANSFORMATION 

Following discrete-time SISO nonlinear systems is 
considered: 

( 1) ( ( ), , ( ), ( ), , ( )),y uy k f y k y k n u k u k n+ = − −                             (1) 
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where ,y un n  are orders of output ( )y k  and input ( )u k   
respectively, ( )f is a nonlinear function. 

Rewrite (1) as 

( 1) ( ( ), ( ), ( 1)),y k f Y k u k U k+ = −                                                   (2) 

where ( ) { ( ), ( 1), , ( )}yY k y k y k y k n= − − and 
( ) { ( ), ( 1), , ( )}uU k u k u k u k n= − − , for the simplicity of notation. 

It is also called NARX model. Hammerstein model, bilinear 
model and some other nonlinear system models can be shown 
to be special cases of (1) or (2). 

The MFAC is based on the following assumptions made 
about the systems: 

A1: System (1) or (2) is observable, and controllable in 
following meaning, that is, for some expected system output 
bounded signal *( 1),y k + there exists a bounded control input 
signal in time instant k, the output ( 1)y k + controlled by it will 
be equal to the set value *( 1).y k +  
A2: The partial derivative of with respect to control input u(k) 
is continuous. 
A3: The system (1) or (2) is generalized Lipschitz, that is, 
satisfying ( 1) ( )y k b U kΔ + ≤ Δ   for any k and ( )U kΔ , where 

( ) [ ( ), , ( 1)]TU k u k u k LΔ = Δ Δ − + , and L  is a positive constant, 
which is called as control input length constant of 
linearization of the discrete-time nonlinear system. b is a 
positive constant. 

Remark 1: These assumptions of the system are reasonable 
and acceptable from a practical viewpoint. Assumption A1 is 
a basic assumption about the controlled system, controlling 
such a system is impossible if A1 is not satisfied. Assumption 
A2 is a typical condition of control system design for general 
nonlinear system. Assumption A3 poses a limitation on the 
rate of change of the system output permissible before the 
control law to be formulated is applicable. From the ‘energy’ 
point of view, the energy rate increasing inside a system can 
not go to infinite if the energy rate of change of input is in a 
finite altitude. 

Theorem 1: For the nonlinear system (1) or (2), satisfying 
assumptions A1-A3, then there must exist ( )kΦ , called 
pseudo-partial-derivative (PPD) vector , when ( ) 0U kΔ ≠  we 
have 

( 1) ( ) ( ),Ty k k U kΔ + = Φ Δ                                                            (3) 

and ( ) .k bΦ ≤  Where 1( ) [ ( ), , ( )] .T
Lk k kφ φΦ =  

Remark 2: The validity of the theorem1 is proved by Hou Z. 
(1994, 1997, and 1999). The element of PPD vector is 
obviously a time-varying parameter even though the (1) or (2) 
is time-invariant system. It is clearly that ( )kΦ has some 
relations with inputs and outputs of the system till time 
instant k. The theorem 1 gives that ( )kΦ is a "differential" 
signal in some sense and bounded for any k, so we have 
certain reasons to say that ( )kΦ is a slowly time-varying 

parameter and the relation with ( )U k can be ignored when the 
magnitude of ( )U kΔ  and the sampling period are not too 
large. 
Remark 3: From theorem 1 and remark 1, we know that (3) is 
a dynamic linear system with slowly time-varying parameter 
when ( ) 0U kΔ ≠  and ( )U kΔ  is not too big. Therefore, besides 
the condition ( ) 0U kΔ ≠ will be considered in the control 
system design, some free adjustable parameter should be 
added in the control input criterion function, which is used to 
keep the rate of change of control input signal not vary too 
large. 

Remark 4: When the constant L=1, the partial form 
linearization (PFL) of nonlinear system becomes the tight 
form linearization (TFL), which is much easier and simpler 
for use and implementation than the partial form linearization 
here. 

3. MODEL FREE ADAPTIVE CONTROL SYSTEM 
DESIGN 

Control law algorithm: For the one-step-ahead controller 
(Goodwin, et al., 1984), excessive control effort may be 
called for to bring ( 1)y k + to ( 1)ry k + in one step, particularly 
in the early stages of parameter tuning. The weighted one-
step-ahead controller, in general, leads to steady-state 
tracking error. So we used the following control input 
criterion function 

2 2( ( )) [( ( 1) ( 1)) ( ( ) ( 1)) ],rJ u k y k y k u k u kλ= + − + + − −                        (4) 
where λ  is a weighting constant. 
Rewrite (3) as      

( 1) ( ) ( ) ( ),Ty k y k k U k+ = +Φ Δ                                                      (5) 
Substituting (5) into (4) and differentiating (4) with respect to 

( )u k and setting it be zero give the control law as follows: 

( ) ( )
( )

2
1 1

2
1 1

2

( ) ( 1) ( ) ( 1) ( ) / ( )

( ) ( ) ( 1) / ( ) .

k r

L

k i
i

u k u k k y k y k k

k k u k i k

ρ φ λ φ

ρ φ φ λ φ
=

= − + + − +

− Δ − + +∑
                      (6) 

Remark 5: The kρ   in control law algorithm (6) is a step-size 
constant series, which is added in order to get it generality. 

Remark 6: From (4) and (6), we can see that λ  is not only a 
penalty factor on 2( )u kΔ , so the substitution domain of that 
system (2) is substituted by system (3) can be limited in some 
extent, which, as a results, makes PPD vector ( )kΦ not change 
in value too much, but also is a part of denominator in (6). 
This is an important parameter for this control system. 
Computer simulation results show that suitable choice of λ  
can improve the performance of the control system. 

Remark 7: From control law algorithm (14), we can see that 
this kind of control law has an iterative form, it is different 
from the control law in (Goodwin, et al., 1984), and has no 
relations with any structural information (mathematical 
model, structure, orders) of controlled plant, it is designed 
only by I/O data of controlled system. 
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PPD estimation algorithm: From the remark 2, we know that 
the unknown parameter vector PPD is usually a slowly time-
varying under some condition, so the conventional time-
varying parameter estimation algorithm could be used to 
estimate it. Such as, the modified projection algorithm(Hou, 
et al., 1997, 1999), the Least-Square algorithm with a time-
varying forgetting factor (Goodwin, et al., 1984), or the 
leakage recursive least-square algorithm (Tan, et al., 2001). 

The modified Projection algorithm is: 

( )
( )

2

2

ˆ ˆ( 1) ( ) ( ) ( 1) / ( )

ˆ( ) ( ) ( ) / ( ) ,

k

T
k

k k U k y k U k

U k U k k U k

η μ

η μ

Φ + = Φ + Δ Δ + + Δ

Δ Δ Φ + Δ

                        (7) 

Remark 8: The differences between the algorithm (7) and the 
projection algorithm (also known as NLMS algorithm) are as 
follows: the addition of the small constant μ  to the 
denominator of the NLMS algorithm is only for avoiding 
division by zero, no practical meaning, but μ  here in 
algorithm (7) is a weighting constant which punishes the rate 
of change of parameter estimate, and the methods which the 
NLMS and the (7) are derived are also different.  

The MFAC scheme, using the parameter estimate algorithm 
(7), control law algorithm above, is as follows  

( ) ( )
( )

2
1 1

2
1 1

2

ˆ ˆ( ) ( 1) ( ) ( 1) ( ) / ( )

ˆ ˆ ˆ( ) ( ) ( 1) / ( ) ,

k r

L

k i
i

u k u k k y k y k k

k k u k i k

ρ φ λ φ

ρ φ φ λ φ
=

= − + + − +

− Δ − + +∑
                     (8) 

( )
( )

2

2

ˆ ˆ( 1) ( ) ( ) ( 1) / ( )

ˆ( ) ( ) ( ) / ( ) ,

k

T
k

k k U k y k U k

U k U k k U k

η μ

η μ

Φ + = Φ + Δ Δ + + Δ

− Δ Δ Φ + Δ

                       (9) 

1 1 1
ˆ ˆ ˆ( 1) (1), ( 1) ,k if kφ φ φ ε+ = + ≤                                              (10) 

where the step-size series usually can be set , (0,2),k kρ η ∈  
and ,λ μ  are two weighting constants, ε is a small positive 
constant, 1̂ (1)φ is the initial value of 1( ).kφ  

Remark 9: Since the unknown parameter vector, i.e., the 
PPD, are time-varying, the conventional projection or least 
squares algorithm cannot handle this case properly, so some 
time-varying algorithms should be used to estimate the 
unknown parameters of PPD. In fact, any time-varying 
parameter estimate algorithm can be used to estimate the 
PPD. 

Remark 10: The controller above has L parameters needed to 
be adjusted on-line, it is quite different from the traditional 
adaptive control system design, in which usually there are 2n 
parameters needed to be estimated on-line, where n denotes 
the order of the controlled system. For the case of L=1, the 
number of controller parameters needed to be adjusted on-
line for SISO nonlinear system is only one, that is, the 
dimension of PPD vector. It can be designed much easier 
than that of the traditional adaptive control system.  

Remark 11: In order to make the condition ( ) 0U kΔ ≠  in 
theorem 1 satisfied, and meanwhile to make parameter 

estimate algorithm have stronger ability to track time-varying 
parameter, a reset measurement of an estimation algorithm 
should be taken as (10). 

Remark 12: The choice of the Control Input Length Constant 
of Linearization can usually be set 1. For a complex system, 
it can be set to the order sum estimated value of the plant. 

Remark 13: The whole scheme has no relation with the 
controlled plant except the I/O data of the plant, no prior 
knowledge (no form of the system model, order of the system 
and training process are needed) are used. This is the reason 
why we call it be Model Free Adaptive Control. All 
information and assumptions about the model before are just 
to want to make discussion clearly.  

As we have known, the designing of the controller and 
estimator of traditional adaptive control system depends on 
the structure and the orders of mathematical model of 
controlled plant, but the structure and the orders of controlled 
system are very difficult to identify, and sometimes have 
relations with time and ambient, so the applications of 
various adaptive control systems reported may be failure due 
to the un-modelled dynamics. The MFAC system presented 
in this paper only use the I/O data of controlled system, thus 
the un-modelled dynamics disappear, therefore it should have 
strong robustness. 

4. STABILITY ANALISYS 

Lemma1 (Payne, 1987): Consider the time-varying 
difference equation 

( 1) ( ) ( ) ( ),x k F k x k v k+ = +                                                        (11) 

where ( )x t and ( )v t are real vectors of finite dimension. 
Suppose that the sequence of matrixes{ }( )F k and 0(0)x x=  are 
bounded and that the free system 

( 1) ( ) ( ), 0,z k F k z k k+ = ≥                                                        (12) 

is exponentially stable. Further, supposed that there exist 
sequences of non-negative real number { }( )kγ and { }( )kδ and 
an integer 0N ≥ , such that 

0
( ) ( ) ( ) ( ),

N

i
v k k x k i kγ δ

=

≤ − +∑                                               (13) 

where ⋅ denotes the usual Euclidean norm. Under those 
conditions, if { }( )kγ converge to zero and { }( )kδ are bounded, 
then ( )x k and ( )v k are bounded. If, in addition, { }( ) 0kδ → , 
then { }( ) 0x k →  and { }( ) 0v k → . 

Lemma 2 (Gerschgorin, 1931):  Let .n n
ijA a C ×⎡ ⎤= ∈⎣ ⎦  Assume 

that 
, 1

,
n

i ij
j i j

aσ
≠ =

= ∑  then each eigenvalue of A  is in at least one 

of the disk .ii iz a σ− ≤                                            

Theorem 2: Under Assumptions A1, A2 and A3, Suppose the 
plant described by (1) is controlled by (3) and estimate ˆ ( )kΦ is 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3511



 
 

     

 

identified using the algorithm (7a), and if 
, ( 1) (1 ) ( ),k k

sp r spy const y k y y kα α= + = + − 1α <  and λ is carefully 
chosen, then we have  

lim ( ) 0,spk
y y k

→∞
− = { } { }( ) , ( )y k u k are bounded sequences. 

Proof: 

Two steps to prove this theorem. First step is to prove the 
estimated value of PPD is bounded. Then we prove the BIBO 
property. 

 We now prove that the estimated value of PPD is bounded. 

Let ˆ( ) ( ) ( )k k kΦ = Φ − Φ , then parameter estimation 
algorithm becomes  

( )( )2

( ) ( 1) ( )

( 1) ( 1) / || ( 1) || ( 1).T

k k k

I U k U k U k kμ

Φ = Φ − −Φ

+ −Δ − Δ − + Δ − Φ −
                 (14) 

Taking norms on both sides of (14) 

( ) ( )( )2( ) ( 1) ( 1) / ( 1) ( 1)

( 1) ( ) .

Tk I U k U k U k k

k k

μΦ ≤ − Δ − Δ − + Δ − Φ −

+ Φ − −Φ

  (15) 

There exist positive constant 1d <  such that following 
inequality holds 

( ) (0) 2 (1 ) /(1 ).k kk d D d dΦ ≤ Φ + − −                                   (16) 

In view of (16), ( )kΦ  is bounded, ( )kΦ  is bounded, so ˆ ( )kΦ  
is bounded. 

Based on the estimated value of ˆ ( )kΦ , now we prove the 
tracking error, input and output of system are bounded.  

Let 

( ) ( ).spe k y y k= −                                                                  (17) 

Substituting ( 1) (1 ) ( )k k
r spy k y y kα α+ = + −  into (8) gives 

1
2

21

ˆ ( ) ˆ( ) [ ( ) ( ) ( 1)].ˆ ( )

L
kk

i
i

k
u k e k k u k i

k
ρ φ

α φ
λ φ =

Δ = − Δ − +
+

∑                        (18) 

Set [ ]( ) ( ) ( 1) ,Tx k u k u k L= Δ Δ − + [ ]1 0 0 TB = , 

1 2 1 3 1
2 2 2

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 0ˆ ˆ ˆ( ) ( ) ( )
1 0 0 0 ,
0 1 0 0

0 0 1 0

k k k Lk k k k k k
k k k

A

ρ φ φ ρ φ φ ρ φ φ
λ φ λ φ λ φ

⎡ ⎤
− − −⎢ ⎥

+ + +⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

( )2
1 1
ˆ ˆ( ) ( ) / ( )kr k k kρ φ λ φ= + . 

Equation (18) can be rewrite as 

( ) ( 1) ( ) ( ).kx k Ax k r k Be kα= − +                                          (19) 

Let max [1, ]
max ( )
i k

r r i
∈

=  and taking norms on both sides of (19) we 

have 

max( ) ( 1) ( ) .kx k A x k r e kα≤ − +                                             (20) 

From Lemma 2 and choosing λ  sufficiently large, such that 

( )2
1 1

2

ˆ ˆ ˆ( ) ( ) / ( ) 1
L

k j
j

k k kρ φ φ λ φ
=

+ <∑ , then the spectral radius ρ of A  

is less than 1. 

From (20) we have 

max
0

( ) ( )
k

k i i

i
x k r e iρ α−

=

≤ ∑ ,                                                   (21) 

Substituting (5) and (8) into (17) and let 

1 2 2 1 3 3

1

ˆ ˆ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ( ) ( ) ( ) ( ) 0)T
L L

C k k r k k k k r k k k

k r k k k

φ φ φ φ φ φ

φ φ φ

= − −

−
,  

we have 

( )( )2
1 1 1
ˆ ˆ( 1) 1 ( ) ( ) / ( ) ( ) ( ) ( 1),e k k k k e k C k x kφ φ λ φ+ = − + + −            (22) 

where ( )( )2
1 1 1
ˆ ˆ( 1) 1 ( ) ( ) / ( ) ( )e k k k k e kφ φ λ φ+ = − +  is exponential 

stable. 

Taking norm on the second item of right side of (22) 

( )
1

1
max

0

( ) ( 1) ( ) max , ( ) .
k

k

i

C k x k C k r e iρ α
−

−

=

⎛ ⎞− ≤ ⎜ ⎟
⎝ ⎠
∑                   (23) 

From (20) we have  

[ ]

( )max 00

( ) ( 1) ( 1)

( ) max ( ) / (1 )(1 ) .

T

k

i ki

u k u k u k L

x i r e i ρ α
≤ ≤

=

− − +

≤ ≤ − −∑
           (24) 

From Lemma 1, (23) and (24), the results can be easily 
obtained. 

5.  SIMULATION STUDY 

In this section, the simulation results of adaptive control of 
two different discrete-time SISO nonlinear systems in series 
by using the same controller, even the same initial values, 
under same conditions, are given to demonstrate the 
effectiveness of the model-free adaptive scheme proposed, 
and the correctness of the declaration that the controller can 
be designed without the prior knowledge about the plant 
controlled, these knowledge are needed for the traditional 
adaptive control system design, which includes the form of 
mathematics model of the system, the structure of the system, 
such as, linear, affine nonlinear or linear in parameter, etc., 
the order and relative degree of the system, and so on. All the 
models below are only used for collection of I/O data.  

The initial conditions in all the following two examples are 
set the same, they are (1) (2) (5) 0u u u= = = = ,  

(1) (2) (3) 0y y y= = = , (4) 1y = , (5) (6) 0y y= = .The initial 
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value of PPD are set to be 4(6) [1,0,0] , 10Tφ ε −= = , 3L = . 
The reset initial value of PPD is set to be 0.5.  

The first example is a system that consists of a non-minimum 
phase nonlinear subsystem (Hou, 1994, 1999) and a linear 
subsystem. This system has the property that the structure, 
order and phase of the controlled system is time varying. The 
second example is a nonlinear system with a step change 
time-varying parameter.  

Example 1:  
2 22.5 ( ) ( 1) /(1 ( ) ( 1) )

0.7sin(0.5( ( ) ( 1)))
( 1) 1.4 ( 1) 1.2 ( ), 200,

0.1 ( ) 0.2 ( 1) 0.3 ( 2) 0.1 ( )
0.02 ( 1) 0.03 ( 2), 200,

y k y k y k y k
y k y k

y k u k u k k
y k y k y k u k

u k u k k

⎧ − + + −
⎪ + + −⎪⎪+ = + − + ≤⎨
⎪− − − − − +⎪

+ − + − >⎪⎩

   (25) 

The simulation results using the MFAC scheme and the PID 
controller are shown in Fig.1, where PID controller is 

0
( ) [ ( ) ( ) / ( ( ) ( 1))]

k

p I d
j

u k K e k e j T T e k e k
=

= + + − −∑  

The PID tuning parameters are set to be 0.15,pK =  
0.5, 0i dT T= = , at which the best control performance is 

achieved. 

0 50 100 150 200 250 300 350 400
-8
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0
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Traking performance

y*
PID
MFAC

0 50 100 150 200 250 300 350 400
-60

-40

-20

0

20

40

60

80

Control input

PID
MFAC

 

Fig.1. Comparison simulation results between MFAC and 
PID. 

It is deserved to point out that the tuning of PID parameters 
must be chosen carefully, the control performance is sensitive 
to the choice. Careless selection of them can yields the 
oscillations or even unstable. But the tuning of the MFAC 
controller parameter λ  is much easier than that of PID. 

Example 2:  

2 2 2

2 2

2

( 1) ( ) ( 1) ( 2) ( 1)
( ( ) 1) /(1 ( ) ( 1) ( 2) )
(1 ( )) ( ) /(1 ( ) ( 1)

( 2) )

y k y k y k y k u k
y k y k y k y k

a k u k y k y k
y k

+ = − − −

× − + + − + −

+ + + + −

+ −

,    (26) 

where ( )a k is a time-varying parameter. 

When ( ) 1a k = , the example is controlled by using multilayer 
recurrent neural network with a special architecture (Jin, et al., 
1994). For the reader who interested in the details please see 
the reference. The simulation result using the MFAC scheme 
is shown in fig.2. 

From the performance above, we can see that the control 
effect is quite satisfied, which even better than that of using 
neural network (Jin, et al., 1994). Furthermore the 
computation burden is much less than using neural network 
and it is much easer than using neural network. 

0 100 200 300 400 500 600 700 800
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-0.5

0

0.5

1

1.5
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0 100 200 300 400 500 600 700 800
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-0.4
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0

0.1

0.2

0.3

0.4

0.5

Control input    

Fig.2. Simulation results using MFAC with 1)( =ka  
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When  
0 100
1 100 300

( )
2 300 500
3 500 800

k
k

a k
k
k

≤⎧
⎪ < ≤⎪= ⎨ < ≤⎪
⎪ < ≤⎩

, the simulation result using the 

MFAC scheme is shown in fig.3. The abrupt changes in 
tracking performance are caused by the suddenly change of 
the time-varying parameter ( )a k . 

0 100 200 300 400 500 600 700 800
-0.6

-0.4
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0
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Tracking performance  
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0
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0.8

1

Control input  

Fig.3. Simulation results using MFAC with time-
varying parameter ( )a k  

6. CONCLUSIONS 

In this paper, the MFAC scheme based on the partial form 
linearization model is introduced and its BIBO stability is 
provided. In contrast to other adaptive control schemes, the 
features of this new typed adaptive control method are as 
follows: First, the proposed MFAC scheme uses the I/O data 
of controlled system only. No mathematical model and 
structural information of controlled plant are needed, which 
implies that we can design the controller independently, and 
also implies that we can develop a generic controller for the 
industrial processes. Secondly, the MFAC mechanism does 
not require any external testing signals and any training 
process, which are necessary to the nonlinear system adaptive 
control by using neural networks, it implies that it is less 
expensive and low cost. Thirdly, the scheme proposed is 
simple and can be easily used and implemented, and has 

minimum computational burden and strong robustness. 
Finally, the all results of this paper can be extended easily to 
the MISO and MIMO nonlinear cases.  
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