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Abstract: In this paper we consider the problem of state estimation for linear dynamic systems
using quantized measurements. This problem arises when state estimation needs to be done using
information transmitted over a digital communication channel. We investigate how to design
the quantizer and the estimator jointly.

1. INTRODUCTION

In this paper, we study the problem of state estimation
using quantized measurements transmitted over a digital
communication channel. The use of such a channel lim-
its the amount of information able to be transmitted.
Therefore, it is desirable to know how to quantize the
measured signal so that good state estimation can be
achieved using limited information. A lot of research has
happened in the last decade or so for feedback control
problems using quantized measurements; see, for example,
Wong and Brockett (1999), Baillieul (2001), Brockett and
Liberzon (2000), Elia and Mitter (2000, 2001), Nair and
Evans (2003), Tatikonda and Mitter (2004), and Fu and
Xie (2005, 2006).

Traditional quantizers employ linear quantization, i.e., the
quantization grids are equally spaced. While this type of
quantizers tends to preserve information well when the
input signal falls into the dynamic range of the quantizer,
the number of quantization levels required for a given
quantization step-size increases linearly as the dynamic
range increases. This paper considers logarithmic quantiz-
ers where the quantization step-size grows exponentially
as the input increases. The use of logarithmic quantizers is
motivated by the fact they are shown to outperform linear
quantizers in control problems, as demonstrated by Elia
and Mitter (2000, 2001), and Fu and Xie (2005, 2006). We
show in this paper that logarithmic quantizers also work
well for state estimation problems.

2. PROBLEM FORMULATION

Consider the following linear system:

x(k + 1) = Ax(k) + Bw(k), x(0) = x0

y(k) = Cx(k) + v(k)
(1)

where x(k) ∈ Rn is the state, w(k) ∈ Rm is the process
noise, y(k) ∈ R is the measurement, v(k) ∈ R is the
measurement noise, and A,B and C are known matrices
of appropriate dimensions. It is assumed that x0 ∈Rn is
a random variable with mean x̄0 and covariance matrix
Σ0, and w and v are uncorrelated zero-mean white noises

with covariances Σw and Σv, respectively, and they are
uncorrelated with x0.

The quantized estimator we consider consists of three
parts: a quantizer, a digital communication channel and
an estimator, as shown in Fig. 1. Instead of quantizing
the measured signal directly, we choose to quantize the
prediction error of the estimator:

x̂(k + 1) = Ax̂(k) + LQ(y(k) − ŷ(k)), x̂(0) = x̄0

ŷ(k) = Cx̂(k)
(2)

where x̂(k) ∈ Rn and ŷ(k) ∈ R are estimates of x(k)
and y(k), respectively, Q(·) is the quantizer, and L is the
estimator gain. The quantity

ε(k) = y(k) − ŷ(k) (3)

is the prediction error, and the quantization error will be
denoted by εq(k), i.e.,

εq(k) = ε(k) − Q(ε(k)). (4)
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Fig. 1. Quantized state estimation.

Note that state estimation is constructed only using the
quantized prediction error. Hence, under the ideal channel
assumption, both sides of the channel can construct the
same estimate using the quantized prediction error.

This paper considers static quantizers. A static quantizer
takes one input sample and produces one output sample
without referring back to the previous input samples. Our
objective of quantized state estimation is similar to that of
stationary Kalman filter (see, Anderson and Moore, 1979),
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namely we want to minimize the asymptotic variance of
the estimation error defined by:

lim
k→∞

E{(x(k) − x̂(k))T (x(k) − x̂(k))} (5)

subject to certain constraints on the quantizer, where in
the above E{·} denotes mathematical expectation.

3. STATE ESTIMATION WITH LOGARITHMIC
QUANTIZATION

A logarithmic quantizer has quantization levels given by

V = {µi = ρiµ0 : i = 0,±1,±2, · · ·} ∪ {0}, µ0 > 0 (6)

where ρ ∈ (0, 1) represents the quantization density. A
small ρ implies coarse quantization, whereas a large ρ
means dense quantization. The associated quantizer Q(·)
is depicted in Fig. 2 and is defined as follows:

Q(ε) =



















ρiµ0, if
1

1 + δ
ρiµ0 < ε ≤

1

1 − δ
ρiµ0;

0, if ε = 0;

−Q(−ε), if ε < 0

(7)

where

δ = (1 − ρ)/(1 + ρ). (8)
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Fig. 2. Logarithmic quantizer.

3.1 Basic Properties

Defining the estimation error e(k) = x(k) − x̂(k), the
estimation error dynamics can be described as follows:

e(k + 1) = Ae(k) + Bw(k) − LQ(ε(k))

ε(k) = Ce(k) + v(k)
(9)

Our task is to choose ρ and L so that the asymptotic
estimation error variance in (5) is minimized.

As observed in Fu and Xie (2005), a logarithmic quantizer
is easily bounded by a sector bound, namely

|Q(ε) − ε | ≤ δ | ε | . (10)

Using the above, we may rewrite (9) as

e(k + 1) = Ae(k) − Lε(k) + Bw(k) + L∆(k)ε(k) (11)

where

∆(k) =

{

εq(k)/ε(k), if ε(k) 6= 0;

0, otherwise
(12)

with the property that |∆(k)| ≤ δ for all k.

Given the sector bound for ∆(k) as above, we consider an
auxiliary uncertain system defined by

z(k + 1) = (A − LC)z(k) − Lv(k) + Bw(k)

+L∆k[Cz(k) + v(k)], |∆k| ≤ δ (13)

Note that (13) differs from (11) in the sense that ∆k

is an arbitrary function, whereas ∆(k) in (11) is due to
the quantizer Q(·). It turns out that ∆(k) in (11) can be
viewed as a special instance of ∆k.

Some basic features for the auxiliary system are in order:

Theorem 1. The estimation error dynamics (11) has the
following properties:

(1) If the probability density functions of x(0)− x̄0, w(k)
and v(k) are even, then the estimation error e(k) has
zero-mean and its probability density function is even
for all k ≥ 0;

(2) The estimation error dynamics (9) is quadratically
stable if and only if the auxiliary system (13) is
quadratically stable, i.e., there exists a matrix X =
XT > 0 such that

eT Xe > (Ae − LQ(Ce))T X(Ae − LQ(Ce)) (14)

for all nonzero e ∈ Rn if and only if there exists a
matrix P =PT > 0 such that

P > (A − L(1 + ∆)C)T P (A − L(1 + ∆)C) (15)

for all |∆| ≤ δ;

(3) If the system (13) is quadratically stable, then the
covariance matrix of e(k) is bounded;

(4) The minimum quantization density ρinf(L) for the
auxiliary system above to be quadratically stable for
a given L is given by

ρinf(L) = (1 − δsup(L))/(1 + δsup(L)) (16)

where

δsup(L) = 1/‖C(zI − A + LC)−1L‖∞. (17)

Proof : The first property can be easily shown by induction.
Since x̂(0) = x̄0, then e(0) is zero-mean with an even
probability density function. Note that Q(·) is an odd
function. Suppose e(k) is so too for some k. Then, it follows
from (11) that e(k + 1) is also zero-mean with an even
probability density. Hence, by induction, e(k) is zero-mean
with an even probability density function for all k ≥ 0.

The second property is proved in Fu and Xie (2005).

To show the third property, we assume that (15) holds for
some matrix P =PT > 0. Since (15) is a strict inequality,
it follows that

(1 − 2η)P > (A − L(1 + ∆)C)T P (A − L(1 + ∆)C)

for some sufficiently small scalar η > 0. Next, define the
Lyapunov function candidate V (e)=eT Pe for system (11).
Considering (11) it follows that

V (e(k + 1)) = [Ae(k) − L(1 + ∆(k))ε(k) + Bw(k)]T P

· [Ae(k) − L(1 + ∆(k))ε(k) + Bw(k)]
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= eT (k)[A − L(1 + ∆(k))C]T P [A − L(1 + ∆(k))C]e(k)

+ [L(1 + ∆(k))v(k) + Bw(k)]T P

· [L(1 + ∆(k))v(k) + Bw(k)]

− eT (k)[A − L(1 + ∆(k))C]T P

· [L(1 + ∆(k))v(k) + Bw(k)]

− [L(1 + ∆(k))v(k) + Bw(k)]T P

· [A − L(1 + ∆(k))C]e(k)

≤ (1 + τ)eT (k)[A − L(1 + ∆(k))C]T P

· [A − L(1 + ∆(k))C]e(k)

+ (1 + 1/τ)[L(1 + ∆(k))v(k) + Bw(k)]T P

· [L(1 + ∆(k))v(k) + Bw(k)]

for any τ > 0. Choosing 1 + τ =(1−η)/(1−2η) implies:

V (e(k + 1)) ≤ (1 − η)V (e(k)) + m1v
2(k) + m2w

T (k)w(k)

for some sufficiently large scalars m1 and m2 independent
of k. Applying the result above recursively, we obtain

V (e(k))≤ (1 − η)kV (e(0))

+
k

∑

i=1

(1 − η)k−i[m1v
2(i) + m2w

T (i)w(i)].

Taking mathematical expectation and denoting by E(k)
the covariance matrix of e(k), the latter inequality implies:

Tr(E(k))≤
1

λmin(P )

[

(1 − η)kE{V (e(0))}

+
(

m1Σv + m2Tr(Σw)
)

k
∑

i=1

(1 − η)k−i
]

≤ m̃0Tr(E(0)) + m̃1Σv + m̃2Tr(Σw)

for some constants m̃0, m̃1 and m̃2, where Tr(·) denotes
matrix trace. Hence, E(k) is bounded.

The fourth property follows from the known fact that
system (13) is quadratically stable if and only if the H∞

norm of C(zI −A−LC)−1L is less than 1/δ; see Packard
and Doyle (1990). Therefore, the largest δ to maintain
quadratic stability is given by (17) and the minimum
quantization density ρinf(L) is related to δsup(L) by (16).

3.2 Asymptotic Covariance of Estimation Error

We now proceed to quantify the asymptotic covariance of
e(k). Denote by E(k) the covariance matrix of e(k) and its
asymptotic version by E = limk→∞ E(k). We assume that
ρ > ρinf(L) so that E(k) is bounded (by Theorem 1). It is
also assumed that w(k) and v(k) are Gaussian distributed.
Moreover, we will denote by σ2

ε and σ2
q the asymptotic

variance of ε(k) and εq(k), respectively, and define

δ̃2 = σ2
q/σ2

ε (18)

to be the normalized quantization error variance.

The computation of E(k) is complicated by the fact
that Q(·) is a nonlinear function. But when the number

of quantization levels is not too small, the following
conditions hold very well in numerical simulations.

C1. The quantization error εq(k) is uncorrelated with
ẽ(k + 1) = Ae(k) − Lε(k) + Bw(k) (note that the
latter is the predicted state estimation error without
quantization error);

C2. The prediction error ε(k) is approximately Gaussian
distributed.

Under Condition C2, we may relate the variance of the
quantization error εq(k) to that of the prediction error
ε(k). We observe that εq(k) is influenced by the choice
of µ0 in (7). However, two simple properties are easily
observed from (7):

P1. εq(k) is periodic in µ0 in a logarithmic scale, i.e., if
µ0 is multiplied by ρj for any integer j, εq(k) remains
the same;

P2. A logarithmic quantizer is linearly scalable in the
sense that if ε(k) is multiplied by ρj for any integer
j, then εq(k) is multiplied by the same factor.

In fact, it turns out that the influence of µ0 on εq(k) is
negligible for small values of δ. This means that σ2

q is

approximately proportional to σ2
ε for a given δ.

For a Gaussian distributed prediction error, the assertion
above can be well justified by numerical simulations and
the actual δ̃2 can be well approximated by

δ̃2 ≈ (1 + 0.45δ2)δ2/3 . (19)

We now estimate the asymptotic covariance matrix of e(k).

Theorem 2. Consider the quantized estimation error dy-
namics (9). Suppose Conditions C1 and C2 and the ap-

proximation (19) for δ̃ hold. Denote by Ẽ(k) an approxi-
mation of E(k). Then E(k + 1) can be approximated by

Ẽ(k+1) = (A − LC)Ẽ(k)(A − LC)T + δ̃2LCẼ(k)CT LT

+(1 + δ̃2)LΣvLT + BΣwBT . (20)

Moreover, if system (9) is quadratically stable, then Ẽ =

limk→∞ Ẽ(k) generated by (20) exists and is finite. It
follows that the asymptotic covariance matrix E can be
approximated by the solution Ẽ = ẼT ≥ 0 to the following
generalized discrete-time Lyapunov equation:

Ẽ = (A − LC)Ẽ(A − LC)T + δ̃2LCẼCT LT

+(1 + δ̃2)LΣvLT + BΣwBT . (21)

Proof : Using Condition C1 and the properties of w(k) and
v(k), it is straightforward to see that

E(k + 1) = (A − LC)E(k)(A − LC)T + BΣwBT

+LΣvLT + LE{ε2
q(k)}LT .

Then, we can get (20) by using (18) and considering that

E{ε2(k)} = CE(k)CT + Σv .

Now suppose (9) is quadratically stable. By Theorem 1,
‖δC(zI − A + LC)−1L‖∞ < 1. Using the discrete-time
bounded-real lemma (de Souza and Xie, 1992), there exists
a matrix Ω=ΩT > 0 such that
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1 − δ2CΩCT > 0,

Ω − LLT − Ae(Ω
−1 − δ2CT C)−1AT

e > 0

where Ae = A − LC. Since (Ω−1 − δ2CT C)−1 ≥ Ω, the
above inequalities imply

Ω − AeΩAT
e > δ2LCΩCT LT . (22)

We denote

Ē = αΩ, W = (1 + δ̃2)LΣvLT + BΣwBT

where α > 0 is a scaling parameter. Since (22) is linear in
Ω and is a strict inequality, it follows that there exists a
sufficiently large α > 0 such that Ē ≥ Σ0 and

Ē − AeĒAT
e > δ2LCĒCT LT + W. (23)

We will show that Ē ≥ Ẽ(k) for all k ≥ 0. This can be

proved by induction. Note that Ē ≥ Σ0 = Ẽ(0) and δ̃ ≤ δ.

Suppose Ẽ(k) ≤ Ē for some k. Then, from (20) and (23),

Ẽ(k + 1) ≤ AeĒAT
e + δ2LCĒCT LT + W ≤ Ē.

Hence, Ē is indeed an upper-bound of Ẽ(k) for all k.

Now we use the result above to show the convergence of
Ẽ(k). Considering that (20) is a linear difference equation

in Ẽ(k), it can be rewritten as

Ẽv(k + 1) = ÃẼv(k) + W̃ (24)

where Ẽv(k) and W̃ are the vector forms of Ẽ(k) and W ,

respectively, Ã is a constant matrix related to A,L,C and
δ̃. Since Ẽ is bounded for any bounded input W and initial
condition Ẽv(0), (24) has bounded-input, bounded-output
stability. This in turn implies that (24) has asymptotic

stability. It follows that Ẽv converges to a constant vector
as k → ∞ (because the input W̃ is constant). Therefore,

Ẽ = limk→∞ Ẽ(k) exists and is finite. Hence, (21) follows.

3.3 Design of Estimator Gain

We now discuss how to design L. From (21), it is natural

to choose L to minimize Ẽ. If δ (and thus δ̃) is small and
the Kalman gain LK , which is the optimal L when δ =0,
is not large, it is typically sufficient to choose L=LK . In
general, the following result can be used:

Theorem 3. The optimal L that minimizes Tr(Ẽ) in (21)
can be found by solving the following generalized discrete-
time algebraic Riccati equation for a symmetric and
positive-definite matrix Ẽ:

Ẽ = AẼAT + BΣwBT −
AẼCT CẼAT

(1 + δ̃2)(CẼCT + Σv)
(25)

and the optimal estimator gain L is given by

L =
1

(1 + δ̃2)(CẼCT + Σv)
AẼCT . (26)

Equivalently, we can obtain Ẽ in (25) by solving the
following convex optimization problem:

min Tr(Q), subject to:

[

Q I
I P

]

≥ 0,











P PA PB δ̃PA

ATP (1+δ̃2)(P +CT Σ−1
v C) 0 0

BTP 0 Σ−1
w 0

δ̃ATP 0 0 (1+δ̃2)P











≥ 0 (27)

with the optimal Ẽ given by Ẽ =P−1.

Proof : Expanding the right-hand side of (21) and regroup-
ing the terms, we get

Ẽ = AẼAT + BΣwBT −
AẼCT CẼAT

(1 + δ̃2)(CẼCT + Σv)

+ (L − AẼCT R−1)R(L − AẼCT R−1)T (28)

where R=(1 + δ̃2)(CẼCT + Σv). Nullifying the term that

involves L will minimize Ẽ, which yields (25) and (26).

In order to show (27), consider the following modified
version of (21):

ẼΩ = (A − LC)ẼΩ(A − LC)T + δ̃2LCẼΩCT LT

+(1 + δ̃2)LΣvLT + BΣwBT + Ω (29)

where Ω=ΩT ≥ 0. It is clear that ẼΩ is a monotonically
increasing function of Ω. Hence,

min
Ẽ,L

Tr(Ẽ), subject to:

Ẽ > (A − LC)Ẽ(A − LC)T + δ̃2LCẼCT LT

+(1 + δ̃2)LΣvLT + BΣwBT (30)

gives the (unique) solution of Ẽ to (21). Now rewriting
the right-hand side of (30) as that of (28), we see that the
optimal L is given by (26) and the optimization problem
above simplifies to

min
Ẽ

Tr(Ẽ), subject to:

Ẽ > AẼAT + BΣwBT −
AẼCT CẼAT

(1 + δ̃2)(CẼCT + Σv)

=
δ̃2

1 + δ̃2
AẼAT + BΣwBT

+(1 + δ̃2)−1A(Ẽ−1 + CT Σ−1
v C)−1AT .

Denoting P = Ẽ−1 and pre- and post-multiplying the left
and right sides of the above inequality by P leads to:

P >
δ̃2

1 + δ̃2
PAP−1AT P + PBΣwBT P

+(1 + δ̃2)−1PA(P + CT Σ−1
v C)−1AT P.

Applying Schur’s complement, the latter inequality be-
comes the matrix inequality in (27). Finally, it is easy to

check that min Tr(Ẽ) is the same as

min Tr(Q), subject to

[

Q I
I P

]

≥ 0

because the latter reaches the optimum when Q=P−1 = Ẽ.
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3.4 Illustrative Example

We now give an example to demonstrate the accuracy of
the estimate Ẽ and the proposed estimator gain design.
We will call the optimal L in (26) a robust estimation
gain due to the fact that it is designed to mitigate quan-
tization errors. The gain L designed without considering
quantization errors will be referred to as the Kalman gain.

The example we consider is a low-pass filtered random pro-
cess corrupted by a measurement noise. More specifically,
the system model of the filter is given by (1) with

A =















2.4744 −2.8110 1.7038 −0.5444 0.0723

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0















,

BT = [1 0 0 0 0],

C = [0.245 0.236 0.384 0.146 0.035]

and Σw =1. Different values of Σv will be considered. The
filter has a normalized bandwidth of approximately 0.25
(where 1 corresponds to the Nyquist bandwidth).

Two cases, Σv =1 and Σv =1/16, are tested. The range of
δ for the tests is chosen to be [0 0.3]. For a given Σv and
δ, we have designed two estimator gains, one taken as the
Kalman gain designed by ignoring the quantization error
and the other being the robust gain computed using (26).
Quadratic stability of (9) is verified using (17) for both
gains at δ=0.3.

Figures 3 and 4 show the simulated values of Tr(E) for

both estimator gains along with their estimates Tr(Ẽ).
Figure 3 is for Σv = 1 and Figure 4 for Σv = 1/16. From
these figures, we see that when the measurement noise is
relatively large (Σv = 1), the Kalman gain performs well
(and is actually slightly better than the robust gain). But
when the measurement noise is relatively low (Σv =1/16),
the robust gain performs significantly better than the
Kalman gain. This is because when Σv is small, Kalman
estimation relies heavily on the measurement, which is
thus sensitive to quantization errors. In contrast, the
robust gain is designed to cope with quantization errors, so
it performs better when Σv is small and the quantization
error dominates.

Also seen in Figures 3 and 4 is that, in all cases, the
estimate Tr(Ẽ) matches the actual Tr(E) very well, es-
pecially for small δ. Since we typically want the quantizer
not to introduce too much additional estimation error, a
relatively small δ needs to be used. This example shows
that the estimate Ẽ is reasonably accurate.

4. STATE ESTIMATION WITH FINITE-LEVEL
QUANTIZATION

A finite-level quantizer can be designed by simply trun-
cating a logarithmic quantizer. We define a 2N -level loga-
rithmic quantizer with 0 < ρ < 1 as

0 0.05 0.1 0.15 0.2 0.25 0.3
27

27.2

27.4

27.6

27.8

28

28.2

28.4

δ

T
r(

E
)

Estimated Tr(E) using Kalman gain
Simulated Tr(E) using Kalman gain
Estimated Tr(E) using robust estimation gain
Simulated Tr(E) using robust estimation gain

Fig. 3. Logarithmic quantization for Σv = 1.

0 0.05 0.1 0.15 0.2 0.25 0.3
10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

δ

T
r(

E
)

Estimated Tr(E) using Kalman gain
Simulated Tr(E) using Kalman gain
Estimated Tr(E) using robust estimation gain
Simulated Tr(E) using robust estimation gain

Fig. 4. Logarithmic quantization for Σv = 1/16.

Q(y) =















































ρiµ0, if
1

1 + δ
ρiµ0 < y ≤

1

1 − δ
ρiµ0,

0 < i < N − 1;

ρN−1µ0, if 0 ≤ y ≤
1

1 − δ
ρN−1µ0;

µ0, if y > µ0/(1 + δ);

−Q(−y), if y < 0.

(31)

Recall that in the infinite-level quantization case µ0 does
not affect εq(k) much. In the finite-level quantization case,
the parameter µ0 needs to be optimized. Also, in the
infinite-level case, a smaller value of δ leads to a smaller
quantization error. But this is no longer true in the finite-
level case because a smaller δ for a fixed N means that
the input range for the quantizer without quantization is
smaller. Therefore, both µ0 and δ need to be optimized for
a given number of quantization levels.

To set up this optimization problem, we assume that
Conditions C1 and C2 hold. Recall that the zero-mean
property is guaranteed when x(0)− x̄0, w(k) and v(k)
have even probability density functions. The optimization
problem can be written as follows:

min J(µ0, δ) (32)
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where J(µ0, δ) is the variance of the quantization error. It
turns out that the optimal J(µ0, δ) depends on µ=µ0/σε

rather than µ0 and J(µ0, δ) linear in σε, i.e., we may write

J(µ0, δ) = J̃(µ, δ)σε .

For the given N , J̃(µ,δ) can be numerically optimized and
the result is shown in Table 1. In the table, Nb denotes the
number of quantization bits, namely 2Nb =2N .

Nb N δ ρ µ0/σε J(µ0, δ)/σε

2 2 0.5338 0.3040 1.7699 0.1457

3 4 0.3253 0.5091 2.7220 0.04892

4 8 0.1909 0.6794 3.4887 0.01568

5 16 0.1095 0.8026 4.0931 0.00494

6 32 0.0619 0.8834 4.5774 0.00153

7 64 0.0346 0.9331 4.9779 0.00047

8 128 0.0191 0.9625 5.3134 0.00014

Table 1. Optimized quantization density.

Using the optimized J̃(µ, δ), we can revise (21) to

Ẽ = (A − LC)Ẽ(A − LC)T + BΣwBT

+ LΣvLT + J̃(µ, δ)L(CẼCT + Σv)LT . (33)

4.1 Illustrative Example

The results above are demonstrated using the same exam-
ple as in the previous section. The simulations are shown
in Figures 5 and 6, again for Σv = 1 and Σv = 1/16,
respectively. Three observations are made. Firstly, with
about 4 ∼ 5 bits of quantization, the quantized estimator
has its estimation error variance only marginally larger
than in the case without quantization. Secondly, the im-
provement by the robust estimation gain is marginal when
Nb ≥ 4, but more noticeable when Nb is small, especially
when the measurement noise is relatively small. For the
case when Σv = 1/16 and Nb = 2, the Kalman gain yields
Tr(E) ≈ 56. If we decrease Σv further, the Kalman gain
will yield an unstable estimator. Thirdly, our estimate for
the estimation error is very accurate (with less than 0.1%
relative error for Nb ≥ 3).
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Fig. 5. Finite-level quantization for Σv = 1.
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Fig. 6. Finite-level quantization for Σv = 1/16.
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